
SetDroid: Detecting User-configurable Setting
Issues of Android Apps via Metamorphic Fuzzing

Jingling Sun§

Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, China
jingling.sun910@gmail.com

Abstract—Android, the most popular mobile system, offers
a number of app-independent, user-configurable settings (e.g.,
network, location and permission) for controlling the devices
and the apps. However, apps may fail to properly adapt their
behaviors when these settings are changed, and thus frustrate
users. We name such issues as setting issues, which reside in the
apps and are induced by the changes of settings. According to our
investigation, the majority of setting issues are non-crash (logic)
bugs, which however cannot be detected by existing automated
app testing techniques due to the lack of test oracles. To this end,
we designed and introduced, setting-wise metamorphic fuzzing, the
first automated testing technique to overcome the oracle problem
in detecting setting issues. Our key insight is that, in most cases,
the app behaviors should keep consistent if a given setting is
changed and later properly restored. We realized this technique
as an automated GUI testing tool, SETDROID, and applied it on
26 popular, open-source Android apps. SETDROID successfully
found 32 unique, previously-unknown setting issues in these apps.
So far, 25 have been confirmed and 17 were already fixed. We
further applied SETDROID on 4 commercial apps with billions
of monthly active users and successfully detected 15 previously
unknown setting issues, all of which have been confirmed and
under fixing. The majority of all these bugs (37 out of 47) are non-
crash bugs, which cannot be detected by prior testing techniques.

Index Terms—testing, android, setting

I. MOTIVATION AND CONTRIBUTION

Android provides a number of user-configurable settings.

According to the official Android documentation [1], [2], we

find that there are 9 major setting categories, i.e., network
and connect, location and security, sound, battery, display,

apps and notifications, developer options, accessibility, and

others (including language, theme and time). In practice, these

settings can be changed via the system app Settings on

any Android device. The apps on the device are expected to

consciously adapt their behaviors to cater for these setting

changes, and ensure reliable function at any time.

However, since setting changes are diverse and may happen

at any time, achieving the above goal could be challenging.

Even well-tested apps may suffer from setting issues. For

example, WordPress [3] (a popular website and blog content

management app with 50 million installations on Google Play

and 2,400 stars on GitHub) has such a critical issue: when a

user turns on the airplane mode in the process of publishing a

new blog post, WordPress will be stuck at the post uploading

status forever, even after the user turns off the airplane mode

and connects to the network again [4].

§This work is conducted under the supervision of Geguang Pu and Ting Su
from East China Normal University and supported by NSFC No. 62072178
and the project of STC of Shanghai No. 19511103602.

To understand the setting issues in Android apps, we have

studied 1,074 setting issues from 180 popular Android apps on

GitHub and found that the majority of these issues (759/1,074

≈70.7%) lead to non-crash consequences, e.g., problematic UI

display, stuck, and function failure. However, due to the lack

of test oracles, existing automated GUI testing tools can hardly

uncover these issues [5], [6].

To fill the gap, we leveraged the idea of metamorphic testing

and introduced setting-wise metamorphic fuzzing, the first

automated testing approach to overcome the oracle problem in

detecting setting issues for Android apps. We implemented this

approach as an automated GUI testing tool, SETDROID, and

applied it on 26 popular open-source apps and 4 commercial

apps. Finally, it revealed 47 previously-unknown setting issues

from these apps. So far, 40 were confirmed and 17 of them

were fixed. Most of these bugs (37 out of 47) are non-crash

bugs, and cannot be detected by existing testing techniques.

II. RELATED WORK

Android app testing has received much attention [7]–[14].

However, existing generic automated testing tools are limited

to crash bugs due to the lack of test oracles and ineffective

in detecting setting issues. Prior work [15], [16] however

explores limited types of settings and have different research

focuses from ours. Sadeghi et al. [15] propose PATDROID

to detect bugs caused by changing app permissions. Lu

et al. [16] propose PREFEST to detect bugs caused by the

changes of apps’ own preferences and some system settings

(i.e., WiFi, Bluetooth, mobile data, and location). PATDROID

and PREFEST focus on reducing the testing cost due to the

combinations of different options but do not consider the

impact of setting changes during app usage. Moreover, they

can only detect crash bugs, while our work can detect both

crash and non-crash bugs.

III. APPROACH AND IMPLEMENTATION

Metamorphic testing [17] is a property-based software test-

ing approach to addressing the test oracle problem. In our

scenario, our key observation is that, in most cases, the app

behaviors should keep consistent if a given setting is changed

and later properly restored. Otherwise, a likely setting issue

happens. For example, an app’s function should not be affected

if (1) the network is closed but immediately opened; or (2)

a specific app permission is revoked but later granted when

the app requests that permission again. We leverage this

observation as one kind of metamorphic relation to overcome

the oracle problem.

108

2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

978-1-6654-1219-3/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSE-Companion52605.2021.00049

20
21

 IE
EE

/A
C

M
 4

3r
d

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

En
gi

ne
er

in
g:

 C
om

pa
ni

on
 P

ro
ce

ed
in

gs
 (I

C
SE

-C
om

pa
ni

on
) |

 9
78

-1
-6

65
4-

12
19

-3
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

SE
-C

om
pa

ni
on

52
60

5.
20

21
.0

00
49

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 24,2021 at 08:59:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Workflow of SETDROID to detect setting issues.

Our Approach. We formalize our technique as follows. Let e
be a GUI event (e.g., click, edit, swipe, rotate screen); let e.w
be the GUI widget w that e targets. Let � be a GUI layout

(page) of an app which represents a GUI hierarchy tree. Let

E be a given seed GUI test which is a sequence of events

E = [e1, e2, . . . , en]. Starting from the initial page �1 of the

app, E can be executed on an app P to obtain a sequence of

GUI layouts L = [�1, �2, . . . , �n+1]. Specifically, we can view

the execution of ei as a function, i.e., �i+1 = ei(�i). Then,

we inject a pair of events 〈ec, eu〉 into E to obtain a mutant

test E′, where ec changes a given setting at random position,

while eu restores the setting. Specifically, we designed two

strategies to obtain E′ by injecting 〈ec, eu〉 into E:

• Immediate setting mutation. We inject ec followed imme-

diately by eu. For example, ec closes the network, and eu
immediately opens the network.

• Lazy setting mutation. We inject ec first, and only inject eu
when it is necessary (e.g., the app prompts an alert dialog).

For example, ec revokes an app permission, and eu grants

the permission only when the app requests that permission.

By comparing the GUI consistency between the seed test E
and the mutant test E′, we can detect setting issues. Formally,

the oracle checking rule is: if there exists one GUI event e′i ∈
E′ (e′i corresponds to ei ∈ E), and its target widget e′i.w
cannot be located on the corresponding layout �′i ∈ L′ (�′i
corresponds to �i ∈ L), then a likely setting issue is found.

∃e′i.ei.w ∈ li ∧ e′i.w /∈ l′i (1)

Tool Implementation. We realized our approach as an auto-

mated GUI testing tool SETDROID. Fig. 1 depicts the overview

of SETDROID, which contains three main modules: (1) test
executor, (2) setting change injector, and (3) oracle checker.

We implemented this tool on the UI Automator test framework

[18], which provides a set of APIs to perform interactions with

apps and obtain apps’ information such as GUI layouts.

(a) Test Executor. The test executor randomly generates a

seed test on device A, and replays the same event sequence

(but injected with setting changes) on reference device B. We

generate random seed tests because such tests are expected

to be much more diverse, practical, and scalable to obtain.

SETDROID can also integrate with existing test input genera-

tion tools to obtain seed tests.

(b) Setting Change Injector. The two devices A and B were

initialized with the default setting environment before testing

(i.e., airplane mode off, Wi-Fi on, mobile data on, location on,

TABLE I
SETTING ISSUES DETECTED BY SETDROID

App subjects 26 open-source apps 4 commercial apps
Bug state detected confirmed fixed detected confirmed

#Bugs 32 25 17 15 15

TABLE II
COMPARISON WITH EXISTING TOOLS ON THE 26 OPEN-SOURCE APPS, C

AND NC REPRESENT CRASH AND NON-CRASH BUGS, RESPECTIVELY

Settings Connect and Location Permission Others
Tool Prefest SetDroid PATDroid SetDroid SetDroid

Consequence C NC C NC C NC C NC C NC
#Bugs 0 0 0 10 2 0 6 7 3 6

battery saving mode off, multi-window off, screen orientation
in the landscape, notification on, language is English). Then,

this module randomly injects the setting change event ec into

the test on device B. It now supports these ec events, i.e., turn
on airplane mode, turn off Wi-Fi, turn off mobile data, turn off
location, turn on battery saving, turn on multi-window, rotate
the screen, turn off the notification, change to other language.

The corresponding event eu will be inserted after ec to restore

the corresponding settings as predefined.

(c) Oracle Checker. This module will check whether the

oracle checking rule is violated. If the rule is violated, a

corresponding bug report will be generated, which records the

executed events and GUI screenshots for bug diagnosing.

IV. EVALUATION

We use the 26 apps from the prior work [16] as our

evaluation subjects. We ran SETDROID and the two relevant

testing tools PATDROID and PREFEST with the same time (12

hours per app). For any found non-crash bug, we manually

inspected the bug report and counted the true positives (TP

for short) and false positives (FP for short). We replayed

each TP bug on real Android devices for validation before

reporting on GitHub. In addition, we used SETDROID to test

4 commercial apps from Tecent and ByteDance. They are

WeChat [19], QQMail [20], TikTok [21] and CapCut [22],

which have billions of monthly active users.
During testing, SetDroid reported 156 errors, 134 of which

were TPs (131/156≈83.9%). We analyzed the FPs and found

these FPs are caused by specific app features. For example,

when the screen orientation setting is changed, AlwaysOn will

pop up an animation on top of the screen to explain the app

function. As shown in Table I, out of the 26 apps, SetDroid

found 32 unique and previously unknown setting issues from

24 apps. So far, 25 have been confirmed and 17 were already

fixed. We also found 15 setting issues in the 4 commercial

apps, all of which have been confirmed and under fixing.
Considering PREFEST and PATDROID only cover limited

types of settings, we compare the number of bugs they detected

in terms of the settings they cover w.r.t. SETDROID. As

shown in Table II, PREFEST did not detect any bug while

PATDroid detected two crash bugs related to permission.

Most importantly, we can see that SetDroid detected 32 non-

crash setting issues from the 26 open-source apps, none of

which can be detected by PREFEST and PATDROID. Overall,

these results clearly show that SETDROID is effective and

outperforms existing tools.

109

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 24,2021 at 08:59:40 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] “Android Developers Documentation,” 2021, retrieved 2021-1 from
https://developer.android.com.

[2] “Android Help,” 2021, retrieved 2021-1 from https://support.google.
com/android.

[3] “Wordpress,” 2021, retrieved 2021-1 from https://github.com/
wordpress-mobile/WordPress-Android.

[4] “Wordpress issue #6026,” 2017, retrieved 2021-1 from https://github.
com/wordpress-mobile/WordPress-Android/issues/6026.

[5] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su, “Large-
scale analysis of framework-specific exceptions in android apps,” in 2018
IEEE/ACM 40th International Conference on Software Engineering
(ICSE), 2018, pp. 408–419.

[6] T. Su, L. Fan, S. Chen, Y. Liu, L. Xu, G. Pu, and Z. Su, “Why my app
crashes understanding and benchmarking framework-specific exceptions
of android apps,” IEEE Transactions on Software Engineering, 2020.

[7] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Droidbot: a lightweight ui-guided
test input generator for android,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), 2017, pp.
23–26.

[8] “Android monkey,” 2021, retrieved 2021-1 from https://developer.
android.com/studio/test/monkey.

[9] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for android applications,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis (ISSTA), 2016, pp. 94–105.

[10] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based gui testing of android apps,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering (FSE), 2017, pp. 245–256.

[11] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, and
Z. Su, “Practical gui testing of android applications via model abstraction
and refinement,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), 2019, pp. 269–280.

[12] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, and G. Pu, “Efficiently
manifesting asynchronous programming errors in android apps,” in Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering (ASE), 2018, pp. 486–497.

[13] Z. Dong, M. Böhme, L. Cojocaru, and A. Roychoudhury, “Time-travel
testing of android apps,” in Proceedings of the 42nd International
Conference on Software Engineering (ICSE), 2020, pp. 1–12.

[14] W. Guo, L. Shen, T. Su, X. Peng, and W. Xie, “Improving automated
GUI exploration of android apps via static dependency analysis,” in
IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2020, pp. 557–568.

[15] A. Sadeghi, R. Jabbarvand, and S. Malek, “Patdroid: permission-aware
gui testing of android,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering (FSE), 2017, pp. 220–232.

[16] Y. Lu, M. Pan, J. Zhai, T. Zhang, and X. Li, “Preference-wise testing
for android applications,” in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (FSE), 2019, pp. 268–278.

[17] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: a new
approach for generating next test cases,” HKUST-CS98-01, Hong Kong
University of Science and Technology, Tech. Rep., 1998.

[18] uiautomator2 Team, “uiautomator2,” 2021, retrieved 2021-1 from https:
//github.com/openatx/uiautomator2.

[19] “Wechat,” 2021, retrieved 2021-1 from https://www.wechat.com.

[20] “Qqmail,” 2021, retrieved 2021-1 from https://en.mail.qq.com.

[21] “Tiktok,” 2021, retrieved 2021-1 from https://www.tiktok.com.

[22] “Capcut,” 2021, retrieved 2021-1 from https://lv.faceueditor.com.

110

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 24,2021 at 08:59:40 UTC from IEEE Xplore. Restrictions apply.

