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Static code analyzers are widely used to help find program flaws. However, in practice the effectiveness
and usability of such analyzers is affected by the problems of false negatives (FNs) and false positives (FPs).
This paper aims to investigate the FNs and FPs of such analyzers from a new perspective, i.e., examining
the historical issues of FNs and FPs of these analyzers reported by the maintainers, users and researchers
in their issue repositories — each of these issues manifested as a FN or FP of these analyzers in the history
and has already been confirmed and fixed by the analyzers’ developers. To this end, we conduct the first
systematic study on a broad range of 350 historical issues of FNs/FPs from three popular static code analyzers
(i.e., PMD, SpotBugs, and SonarQube). All these issues have been confirmed and fixed by the developers. We
investigated these issues’ root causes and the characteristics of the corresponding issue-triggering programs.
It reveals several new interesting findings and implications on mitigating FNs and FPs. Furthermore, guided
by some findings of our study, we designed a metamorphic testing strategy to find FNs and FPs. This strategy
successfully found 14 new issues of FNs/FPs, 11 of which have been confirmed and 9 have already been fixed
by the developers. Our further manual investigation of the studied analyzers revealed one rule specification
issue and additional four FNs/FPs due to the weaknesses of the implemented static analysis. We have made all
the artifacts (datasets and tools) publicly available at https:// zenodo.org/doi/10.5281/zenodo.11525129.
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1 INTRODUCTION
Static code analyzers (or static checkers) [55] are commonly used to help find program flaws at the
early stages of software development (after code compilation and before testing) [37, 58, 64, 68].
These analyzers usually target various types of programflaws including best practice violations, code
design issues, common programming mistakes and security vulnerabilities [43, 68, 76]. Otherwise,
these flaws might be costly and difficult to find by manual code reviews or testing [35, 48, 82].
Typically, to find these flaws, these analyzers implement a number of checking rules (or rules for
short), supported by some forms of static analysis with different complexities (e.g., syntactic pattern
matching, control-/data-flow analysis, symbolic execution).
In practice, it is known that the effectiveness and usability of these analyzers could be affected

by the problems of false negatives (FN s for short), i.e., missing true program flaws [46, 71, 72], and
false positives (FPs for short), i.e., the reported warnings are spurious [48, 51, 77]. To investigate FNs
and FPs, most of existing studies [46, 51–54, 59, 71–73, 77] evaluate the fault detection abilities or
the usability of these analyzers against known faults. For example, Habib et al. [46] use the faults of
Defects4J to investigate FNs and find that these analyzers could only find 4.5% of the field defects;
Wedyan et al. [77] use the known coding faults from some open-source projects to investigate
FPs and find that 96% of the warnings reported by these analyzers are spurious. The main goal
of such studies is to assess the effectiveness and usability of the evaluated analyzers in terms of
general FNs and FPs. For example, these studies find that most field defects are missed because
these defects are not targeted by existing rules in the analyzers or these defects are domain-specific
errors [46, 52, 54, 71, 72].
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Different from these prior studies, this paper aims to investigate the FNs and FPs from a new
perspective, i.e., examining the historical, fixed issues of FNs and FPs of these analyzers in their
own issue repositories — each of these issues manifested as a FN or FP of these analyzers and has
been confirmed and fixed by developers. Exploring this perspective has one key benefit — we can
inspect the fixing patches and the implementations (which however the prior studies usually do
not care about) of the analyzers to obtain the fine-grained insights on why FNs and FPs are induced.
These insights could be useful for the analyzers’ developers to mitigate FNs/FPs at the root. To our
knowledge, no prior work systematically studies such issues.
To fill the gap, we studied a broad range of 350 historical issues (corresponding to 80 FNs and

270 FPs), which were collected from the issue repositories of three popular, open-source static
code analyzers (i.e., PMD [20], SpotBugs [34], and SonarQube [39]). All these issues are valid and
representative because they have been confirmed and already fixed by the developers. Specifically,
to obtain a general and in-depth understanding of FNs and FPs, we study how these issues are
induced (i.e., root causes), and which characteristics of input programs could lead to these issues
(i.e., input characteristics). To our knowledge, this is the first systematic study to investigate the
FNs and FPs of static code analyzers from the perspective of historical issues. We will discuss and
compare with the relevant work [75, 80] in detail in Section 8.

Our study aims to answer the the following three research questions:

• RQ1 (Root Causes): What are the common root causes of these historical issues of FNs and
FPs affecting the static code analyzers? We aim to investigate the root cause by examining
the analyzers’ documentations (e.g., rule specifications), the issue reports, the issue-triggering
programs and the fixing patches (detailed in Section 3). This RQ identifies the reasons why the
FNs/FPs are induced and helps developers avoid or mitigate such issues.

• RQ2 (Input Characteristics): What are the characteristics of input programs leading to these
historical issues of FNs and FPs of the static code analyzers? We aim to investigate the input
characteristics by examining the analyzers’ documentations (e.g., rule specifications), the issue
reports and the issue-triggering programs and their representations (detailed in Section 4). This
RQ identifies which characteristics of the input programs are pivot for inducing FNs or FPs and
helps developers design better test programs or testing strategies for static code analyzers.

Answering these two questions is beneficial to both the analyzers’ developers and the researchers
in this field. The answers can provide new insights on how to improve these analyzers (e.g.,
mitigating or unveiling FNs and FPs), thus complementing those general studies on only evaluating
the effectiveness or the usability of these analyzers [46, 51–54, 59, 71–73, 77]. Through answering
RQ1 and RQ2, we obtained several new interesting findings and implications that shed light on
mitigating FNs/FPs (Section 5). Therefore, we aim to investigate the usefulness of these findings:

• RQ3 (Usefulness of Our Findings): How can some of our study’s findings from RQ1 and
RQ2 help identify issues of FNs and FPs in these static code analyzers? We aim to show some
proof-of-concept demonstrations (in Section 6) to validate the usefulness of our study’s findings.

Specifically, we designed a metamorphic testing strategy to automatically find FNs/FPs (Section 6.1).
This strategy helped us find 14 new issues (12 FNs and 2 FPs) of the studied analyzers, 11 of
which have been confirmed and 9 have been fixed. Additionally, we further manually examined the
implementations of some rules of the studied analyzers (Section 6.2). We found one rule specification
issue and additional four FNs/FPs due to the weaknesses of the implemented static analysis. We
have reported these issues to the developers and all have been confirmed/fixed.

In summary, our work has made the following contributions:
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Fig. 1. Typical workflow and architecture of a static code analyzer.

• We conduct the first systematic study to investigate FNs and FPs of static code analyzers from the
new perspective of the historical issues. We construct a dataset of 350 historical issues of FNs and
FPs from the studied analyzers to serve as the basis of our study and future research in this field.

• We study the 350 historical issues of FNs and FPs to investigate their root causes and input
characteristics and identify several new interesting findings.

• We discuss the implications of our study to shed light on mitigating FNs and FPs. We also
demonstrate the usefulness of our study’s findings by two proof-of-concept demonstrations.

• We have made all the artifacts (datasets and tools) publicly available at https:// zenodo.org/doi/10.
5281/zenodo.11525129.

2 STUDY METHODOLOGY
This section details the methodology of our study. Specifically, Section 2.1 gives some background
knowledge on the static code analyzers, Section 2.2 introduces the selected analyzers for our study,
Section 2.3 presents how we collect the historical issues of FNs and FPs from the issue repositories
of the studied analyzers, and Section 2.4 explains how we manually analyze these issues.

2.1 Background on Static Code Analyzers
Figure 1 shows the typical workflow and architecture of classic static code analyzers like PMD [20],
SpotBugs [34], and SonarQube [39]. Given the source files under check, an analyzer converts it
to some form of intermediate representation, e.g., abstract syntax tree (AST), bytecode or control-
/data-flow graph (CFG/DFG), and searches for the code snippets violating the rules (outputted
as a warning report). Specifically, an analyzer usually implements a number of rules, each of
which has its own specification and implementation (e.g., PMD’s rules [17], SpotBugs’s rules [6],
SonarQube’s rules [18]). Each rule is designed to detect one specific type of program flaws, e.g.,
best practice violations, code design issues, common programming mistakes and security vulnerabilities.
In detail, each rule is implemented based on some form of static analysis (chosen by the developers
of the analyzers), e.g., AST-based syntactic pattern matching, data-flow analysis and symbolic
execution. Note that the major components of different analyzers may not align with each other.
For example, all the classic analyzers like PMD, SpotBugs and SonarQube implement a number
of checking rules (associated with the corresponding rule specifications), and all the analyzers
would construct the symbol tables in their analysis modules. But only SonarQube uses symbolic
execution for static analysis. PMD only implements reaching definition analysis (one specific
data-flow analysis), while SpotBugs implements data-flow analysis more generally supporting
forward and backward analyses. In addition, PMD and SonarQube’s analysis module works at the
source code level, while SpotBugs’s works at the bytecode level.
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For example, AbstractClassWithoutAbstractMethod [5] is one of the rules implemented in PMD
to enforce generally accepted best practices. It warns any abstract class which does not contain
any abstract methods because an abstract class suggests an incomplete implementation, which
is to be completed by subclasses implementing the abstract methods. This rule is implemented
by syntactic pattern matching based on AST. For another example, S2259 (Null pointers should
not be dereferenced) [28] is one of the rules in SonarQube to detect programming bugs. It checks
that a reference to null should never be dereferenced or accessed because doing so will cause a
NullPointerException. This rule is implemented upon SonarQube’s symbolic execution engine.

2.2 Static Code Analyzers Selected for Our Study
In this work, we focus on the static code analyzers for Java language because Java is one of the
most popular programming language and targeted by (many) existing analyzers. Specifically, we
selected the three representative static code analyzers for Java, i.e., PMD [20], SpotBugs [34],
and SonarQube [39], as the subjects for our study based on the following reasons. First, these
tools are popular. For example, PMD has been integrated into several industrial IDEs (e.g., Eclipse,
IntelliJ IDEA, Visual Studio Code); SpotBugs, the successor of FindBugs [47], has been used by
Google; SonarQube has been applied at the CI pipelines by many companies. Moreover, these
tools have been widely studied by many prior work [41, 46, 51, 57, 65, 75, 77]. Second, these tools
are open-sourced. It eases the issue collection and analysis. We can inspect the fixing patches
and tool implementations to investigate FNs and FPs. Third, these tools adopt different analysis
strategies, including syntactic pattern matching, data-flow analysis and symbolic execution. These
characteristics can help us gain more overall understanding on FNs and FPs. There are other static
code analyzers for Java [63] like FindBugs [47], ErrorProne [15], Infer [16] and CheckStyle [12],
but we did not select these tools as the subjects. We did not select FindBugs because it is deprecated
and has not beenmaintained for almost ten years (its latest versionwas released in 2015). FindBugs’s
development has moved to SpotBugs (which we studied in this work). Moreover, FindBugs and
ErrorProne do not maintain the issues of FNs and FPs (e.g., without labeling the FNs/FPs or
linking with the fixing patches), Infer has only a few checking rules (i.e., 25 rules) and thus few
issues of FNs/FPs, and Checkstyle focuses more on coding standards rather than program flaws.
Figure 2 shows our study’s workflow including collecting and analyzing the historical issues

of FNs and FPs from the issue repositories of the studied analyzers. We explain the process in
Section 2.3 and Section 2.4.

2.3 Collecting Historical Issues of FNs and FPs
To obtain a broad range of issues, we collected all the reported issues before the time of our study
(which was started in Oct. 2022). We focus on the FNs/FPs that were reported on checking Java
programs supported by all the three studied analyzers. Moreover, we require that these FNs/FPs
have been confirmed and fixed by the developers because the confirmed bug information, the
committed patches, the discussions between the developers and the implementations of the rules
provide us informative details to study the root causes and the input characteristics of these issues.

We detail the issue collection process below. Note that we focus on those issues of FNs and FPs
which have been confirmed and fixed. For PMD, an issue is considered as confirmed if PMD’s
developers explicitly labeled the issue with “a:false-positive” or “a:false-negative”. For SpotBugs
and SonarQube, an issue is considered as confirmed if the developers explicitly confirmed the
issue is a FN or a FP during discussions. An issue is considered as fixed if the issue report has been
closed and associated with the fixing commits.
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Fig. 2. Workflow of our study.

Table 1. Statistics of the studied static code analyzers (K=1,000), and the dataset of valid FNs and FPs.

Analyzer

GitHub

#Stars

#Total Java

Rules

Date of first

collected issue

Date of last

collected issue

#Valid Issues

(FP/FN)

PMD 4.3K 325 2017/2/17 2022/10/8 226(155/71)
SpotBugs 3K 468 2016/12/7 2022/10/27 21(15/6)
SonarQube 7.7K 618 2018/6/11 2022/10/30 103(100/3)

• PMD. We collected all the closed issues with the labels “a:false-positive” and “a:false-negative”

from PMD’s issue repository on GitHub. To collect issues that are related to Java programs, we
filtered out the issues that do not contain the keyword “java” in the issue title or body. We initially
obtained 80 FNs and 228 FPs.

• SpotBugs. SpotBugs’s issues are not well-classified with explicit issue labels. Thus, we checked
whether the issue title or body contains the keywords “FP”, “FN”, “bug”, “error”, “false positive”,
“false alarm” , or “false negative” to filter issues. Finally, we obtained 104 unclassified issues.

• SonarQube. SonarQube’s issues are maintained on the community website. We use the APIs
of Sonar community [33] to collect the issues with the labels “Clean Code”, “Report False-positive
/ False-negative”, “java”, “answered”, and “closed”. We obtained 229 unclassified issues.
We manually verified whether each collected issue is a valid FN or FP by inspecting the issue

report and reproducing the issue if necessary. During this process, we excluded those mislabeled or
duplicated issues, won’t fix issues of deprecated rules, and the issues caused by user misconfig-
urations. We only retained those developer-confirmed and -fixed FNs/FPs. Finally, we obtained
a dataset of 350 FNs/FPs, including 71 FNs/155 FPs of PMD, 6 FNs/15 FPs of SpotBugs, and 3
FNs/100 FPs of SonarQube. Each issue is associated with at least one piece of issue-triggering
program from the issue report. Table 1 gives the detailed statistics of the collected issues. Note that
many issues of Spotbugs were excluded because they were not confirmed by the developers, e.g.,
the issue reporters misunderstood or misconfigured the rules, or the issue-triggering programs
were deemed as unrealistic (not likely written by humans). The issues which were closed but not
confirmed were also excluded from our study.

2.4 Analyzing Historical Issues of FNs and FPs
To answer RQ1 and RQ2, we investigated 350 FNs/FPs in the dataset to understand the root causes
and input characteristics. Specifically, we inspected the documentation (e.g., rule specifications),
the discussions in the issue reports, the issue-triggering program and the fixing patches. In this
process, some issue labels (e.g., dataflow analysis) or some keywords (e.g., anonymous class) in the
issue titles could indicate the likely root causes or the input characteristics leading to the issue. To
confirm our understanding, we inspected the fixing patches (i.e., fixing commits or pull requests)
and reproduced the issue against the rule implementation if necessary. During the analysis process,
we may inspect the AST of the issue-triggering program and mutate the program to locate which
code parts are pivot for triggering FNs/FPs.
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Specifically, to build the taxonomies, we adopted the open card sorting approach [69] and
conducted the preceding analysis in an iterative process. In each iteration, 30 issues in the dataset
were randomly selected and two of the co-authors independently studied each of these issues.
These two co-authors are familiar with Java (with 5 years of Java programming experience) and
the relevant static analysis techniques. According to their own understanding, they independently
labeled each issue with the categories of root causes and input characteristics. Afterward, these
two co-authors cross-validated and discussed the labels until they reached a consensus on the
categorized results. When they could not reach a consensus, the other co-authors participated in
the discussion to help make the final decision. Such an iteration was repeated twelve times until
all 350 issues were analyzed. We observed that this iterative process converged on the categories
after the first 3 rounds. This manual analysis process requires considerable knowledge of Java and
the implementations of static code analyzers, which took us around six person months. During
this manual analysis process, we computed the Cohen’s Kappa coefficient [36] to evaluate the
inter-rater agreement [? ] between the two co-authors. Cohen’s Kappa is a statistical measure used
to quantify the level of agreement between two raters beyond what would be expected by chance.
It is particularly useful when evaluating subjective judgments, where the goal is to determine how
consistently two or more raters classify or label the same items. The high inter-rater agreement
indicates that the raters are in close alignment in their judgments, while low agreement suggests
differences in their evaluations. By applying Cohen’s Kappa, we ensured that the categories of root
causes and input characteristics assigned by the co-authors were consistent and reliable, minimizing
the impact of individual biases. In the first three rounds, the Cohen’s Kappa coefficient was around
0.5, primarily because these two co-authors were still unfamiliar with the FNs and FPs of the
static analyzers and hadn’t yet reached a consensus. As their understanding deepened and they
gained more experience, the coefficient increased to 0.9 in subsequent rounds. After the discussions
between them in each round, they eventually achieved a perfect agreement with a Kappa of 1.0.
Our study primarily focuses on the root causes and input characteristics of FNs and FPs, and

has not explored other possible dimensions (e.g., severity, affected versions, latency, and fixability)
because these other dimensions are difficult to be analyzed or may bring additional threats to
validity. For example, none of PMD, SpotBugs and SonarQube maintains the labels of severity
because how to tell the severity of a FN or a FP is unclear. Investigating the versions of the analyzers
affected by the issues of FNs and FPs may not offer interesting insights because the FNs/FPs were
reported for the checking rules. Instead, examining how many times of the rules were affected
by FNs/FPs might be more interesting (which we have investigated in Section 6.2). The latency
of fixing FNs/FPs may or may not indicate the difficulty of fixing FNs/FPs. The fixability is also
difficult to measure in an objective manner because some issues were fixed by workarounds.

3 RQ1: ROOT CAUSES
In this section, we focus on the 350 issues in the three analyzers to study the root causes. We
identified the 7 major root causes from 350 FNs/FPs. To be concise, we brief these root causes in
Table 2. Specifically, we categorized the issues into the disjoint groups of root causes according to
the major components of a static code analyzer (see Figure 1) in which the issues may happen. We
explain and illustrate these root causes as follows.

3.1 Flawed Rule Specification
In this category, the rule specification itself (documented in natural language) is flawed, thus leading
to FNs or FPs. For example, PMD’s rule DoNotUseThreads [14] intends to warn against the direct use
of threads (e.g., Thread, ExecutorService) in favor of J2EE’s managed thread mechanism. However,
this rule is incorrectly designed to warn the use of Runnable because the developers misunderstand
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Table 2. The taxonomy of root causes of FNs and FPs from the three static code analyzers.
Category Description Example #Issues Ratio

Flawed Rule Specification Some design flaws in the rule specification. - 21 6%

Inconsistent Rule

Implementation

The rule specification is correct but the
implementation is inconsistent with the
specification.

- 9 2.6%

Unhandled Language

Features or Libraries

Unhandled Language Features or Libraries - 101 28.9%

Unhandled Language
Features

Some language features (e.g. lambda
expressions) are not handled. Figure 3a 74 21.1%

Unhandled Java Libraries Some Java libraries (e.g. java.util.Optional)
are not handled. - 27 7.7%

Missing Cases Missing Cases - 125 35.7%
Missing cases that should be

whitelisted
Some objects that should be added to the
whitelist are missing. Figure 3b 38 10.9%

Missing cases which should
be similarly handled

Missing cases or objects which should be
similarly handled. - 30 8.6%

Missing specific cases Missing specific cases that are not covered
by the two categories above - 57 16.3%

Mishandling Intermediate

Representations

Matching the incorrect nodes during the
traversal of the IR (e.g. AST) - 24 6.9%

Analysis Module Error or

Limitation

Analysis Module Error or Limitation - 51 14.6%

Scope analysis error or
limitation Wrong resolving of the variable scopes. Figure 3c 6 1.7%

Type resolution error or
limitation Incorrect or limited type resolution. Figure 3d 38 10.9%

Dataflow analysis error or
limitation

Errors in the dataflow analysis or limited
use of dataflow analysis Figure 3e 3 0.9%

Symbolic execution error or
limitation

Errors or limitations in the symbolic
execution engine. Figure 3f 4 1.1%

General Programming Error

General errors which are not unique for
static code analyzers. - 11 3.1%

Miscellaneous Minor issues that affect only a few FNs/FPs. - 8 2.3%
The symbols“ ” and “ ”, “ ” and “ ” denote the differences between our study and the two most relevant work from
Wang et al. [75] and Zhang et al. [80], respectively, in terms of the results of issue analysis. We discuss the differences in
detail in Section 8.

that Runnable is identical to Thread. In fact, Runnable is a class whose instances are intended to be
executed by a thread. It is compliant with the managed thread environment in J2EE, and thus should
not be warned. Due to this flawed specification, this rule reports a FP (PMD’s Issue #1627) when
the input program uses Runnable. To resolve this issue, the developer fixed the rule specification
and implementation1.

Finding 1 & Implications: Flawed Rule Specification could lead to both FNs and FPs. To avoid
such rule specification issues, the analyzers’ developers should carefully inspect and fully
understand the language specifications (e.g., Java language) as well as the language’s idioms
and the best practices when designing the rules.

3.2 Inconsistent Rule Implementation
In this category, the rule specification is correct but the implementation is inconsistent. For ex-
ample, PMD’s rule AvoidThrowingNullPointerException is specified to warn manually throwing

1https://github.com/pmd/pmd/pull/2078/commits/5739041b164d0bb4cc94715aa3bed801c4565e02
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1  public byte[] foo( byte[] a1, byte[] a2){
2       if (a1.length != a2.length) {// FP: compare with equals()
3           ... 
4       }
5  }

(d) Type resolution limitation: PMD #2976

1  // should be whitelisted
2  @javax.annotation.concurrent.Immutable
3   class MyImmutable{...}
4  
5  // should be whitelisted
6  @javax.annotation.concurrent.ThreadSafe
7   class MyThreadSafe{...}
8  
9   class Main
10   {
11      private volatile MyImmutable x;     // FP
12      private volatile MyThreadSafe y;    // FP
13   }

(b) Missing cases that should be whitelisted: SonarJava-3804

1  public void Test( ){
2       int a = 0; 
3       a = a + 3;     // FP: DD-Anomaly
4  }

(e) Dataflow analysis error: PMD #1749

1  public class Outerclass {
2       private int[] arr; 
3       public int[] getArr() {return arr;}  // true positive
4       public static class Innerclass{
5   private int[] arr2; 
6     public int[] getArr() {return arr2;} // FN
7       }
8  }

(a) Unhandled language features: PMD #1738
1  public void foo() {
2       if (true) {           // Scope 1 
3           final String logMessage = "Message with three para: 

{}, {}, {}”;
4       }
5       if (true) {           // Scope 2 
6           final String logMessage = "Message with one 

parameter: {}";
7           final Object param = null; // FP: missing arguments, 

expected 3 arguments but have 1
8           logger.trace(logMessage, param);
9       }
10 }

(c) Scope analysis limitation: PMD #3284
1  public void foo(Boolean b)
2 {
3     if ( b == Boolean.TRUE ){}
4     else if ( b == Boolean.FALSE ){} // FP: expression 

always evaluates to “true”
5  }

(f) Symbolic execution error: SonarJava-3619

Fig. 3. Illustrative examples for explaining root causes (the code snippets are simplified).

NullPointerExceptions. However, this rule’s implementation is inconsistent with the specification.
It simply warns every occurrence of NullPointerExceptionwithout checking whether an exception
throwing occurs. As a result, this rule leads to a FP (PMD’s Issue #2580): for example, the rule will
warn this code line Exception e = new NullPointerException("Test message"), however this code
line does not throw an exception but only creates an exception object.

3.3 Unhandled Language Features or Libraries
3.3.1 Unhandled Language Features. A rule may lead to FNs or FPs if some language features (e.g.,
lambda expressions, nested classes) are not handled. For example, Figure 3a showcases a FN of
PMD’s rule MethodReturnsInternalArray induced by nested classes. This rule warns the methods
that return internal arrays. In this case, arr at line 2 and arr2 at line 5 are internal arrays. The
two methods getArr()s at line 3 and 6, return the internal arrays arr and arr2, respectively. They
violate the rule. However, the rule did not handle the nested class, and did not warn at line 6.

3.3.2 Unhandled Java Libraries. Some Java libraries were not handled, leading to FNs or FPs.
For example, Java 8 introduces the class Optional to handle optional values. Specifically, Optional
provides Optional.isPresent() to check if a value is present (i.e., non-null). Later, Java 11 introduced
a new method Optional.isEmpty(). This method allows to check whether the Optional value is
null. However, SonarQube failed to timely support Optional.isEmpty(), leading to a FP (see
SonarQube’s issue SonarJava-3087).

Finding 2 & Implications: Unhandled language features or libraries affects 101 of the 350
issues (28.9%), which is one major root cause. It indicates that the analyzers’ developers
should timely check the rules when some new Java language features or new Java libraries
are introduced, and update the rule implementations if necessary.
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3.4 Missing Cases
3.4.1 Missing cases that should be whitelisted. The analyzers commonly use whitelists (precluding
checking on specific code elements) to avoid spurious warnings. However, these analyzers may
miss the cases which should be whitelisted. For example, Figure 3b showcases a FP of SonarQube’s
rule S3077 due to failing to whitelist some Java annotations. This rule warns the non-primitive fields
modified by volatile. In this example, the classes MyImmutable and MyThreadSafe are annotated
as immutable (line 2) and thread-safe (line 6), respectively. It means the immutability and the
thread-safety are already ensured by the users. Thus, the non-primitive fields (i.e., x at line 11
and y at line 12) should not be warned. The developers fixed this FP by adding the annotations
@ThreadSafe and @Immutable into the whitelist of this rule. Note that the issues of this category all
lead to FPs.

3.4.2 Missing cases which should be similarly handled. Some cases are functionally equivalent
w.r.t. the rule specification. However, sometimes analyzers may only handle some cases but fail
to similarly handle others. For example, SonarQube’s issue SonarJava-3586 reported a FP be-
cause SonarQube only handles the annotation org.springframework.lang.Nullable but not the
annotation reactor.util.annotation.Nullable. Both of these annotations have identical semantics,
i.e., indicating the annotated elements can be null in some circumstances. To fix this issue, the
developers added reactor.util.annotation.Nullable. Note that this issue does not belong to the
category of unhandled language features (discussed in Section 3.3.1) because the rule can correctly
handle the @Nullable annotations but missed reactor.util.annotation.Nullable.

3.4.3 Missing specific cases. The analyzers may miss other specific cases when doing rule checking.
For example, PMD’s Issue #2275 showcases a FP of the rule AppendCharacterWithChar. For an object
of class StringBuffer, say sb, this rule recommends converting sb.append(“a”) to sb.append(‘a’)

to improve performance. However, for the case of sb.append(“a”.repeat(length)), it is valid and
should not be warned by this rule. But PMD assumes that append()’s argument should always be
string literals. It does not consider the case of using method calls like repeat().

Finding 3 & Implications: Missing cases affects 125 of the 350 issues (35.7%), which is the
most common root cause. It indicates that the analyzers’ developers should (1) carefully decide
which cases need to be whitelisted and similarly handled, and (2) design different diverse test
programs to validate the rule implementations.

3.5 Mishandling Intermediate Representations
Static code analyzers usually convert input programs into some intermediate representation (IR),
e.g., abstract syntax trees or bytecode, for analysis. However, mishandling IRs could lead to FNs or
FPs. For example, PMD’s Issue #3949 reports a FN of rule FinalFieldCouldBeStatic. The rule warns if
a final field is assigned by a compile-time constant but not modified by static. This rule correctly
warns public final int BAR = 42, but fails to warn public final int BAR = (42). Because the IR
structures of these two cases are different at the level of abstract syntax tree due to the parenthesis.

3.6 Analysis Module Error or Limitation
3.6.1 Scope analysis error or limitation. Java adopts the static scoping rules to analyze the scopes
of symbols. However, some issues are caused by imprecise scope analysis. Figure 3c showcases a FP
of PMD’s rule InvalidLogMessageFormat. The rule checks whether the numbers of arguments and
placeholders ( “{}”) in slf4j or log4j2 loggers are matched. In this case, the variable logMessage in
Scope 1 (lines 2 to 4) is incorrectly mapped to the variable logMessage in Scope 2 (lines 5 to 9). As a
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Fig. 4. Input characteristics leading to FNs/FPs.

result, the rule incorrectly warns that the argument param at line 7 is not matched with the three
placeholders in the logMessage (in Scope 1).

3.6.2 Type resolution error or limitation. Type resolution is a crucial ability of analyzers to decide
the types of symbols. However, the implementation of type resolution may have some limitations.
Figure 3d showcases a FP of PMD’s rule CompareObjectsWithEquals due to the incorrect type
resolution. This rule requires using “equals()” instead of “==” to compare object references. However,
at line 2, a1.length and a2.length are the type of integers and it is fine to use “==”. PMD’s incorrect
type resolution leads to a FP. We observe that these three analyzers do not utilize Java compilers
for precise type resolution, but implement their own type resolutions.

3.6.3 Dataflow analysis error or limitation. Some dataflow analysis errors could lead to FNs or FPs.
For example, Figure 3e showcases a FP of PMD’s rule DataflowAnomalyAnalysis. This rule warns
about data flow anomalies, e.g., redefinition of a recently defined variable without prior usage. In
this example, the variable a is defined at line 2, used at line 3, and then redefined at line 3. No data
flow anomalies happen. However, the dataflow analysis module erroneously processes the variable
definition and use from left to right at line 3 (assuming a is defined and then used).

3.6.4 Symbolic execution error or limitation. SonarQube uses symbolic execution to implement
some rules. Some FNs and FPs are caused by the errors in the symbolic execution engine. For example,
Figure 3f showcases a FP of SonarQube’s rule S2589. This rule warns the gratuitous boolean expres-
sions that always evaluate to “true” or “false”. In this example, the symbolic execution engine misin-
terprets that the boxed type Boolean has only two kinds of values Boolean.TRUE and Boolean.FALSE

but missed the other value null. When the engine meets the condition if(b == Boolean.TRUE) at
line 3, it tries to reach the else if branch with the “only” other value Boolean.FALSE, and thus
incorrectly assumes that the boolean expression at line 4 always evaluates to “true”.

Finding 4 & Implication: Type resolution errors or limitations is the most common root cause
among the static analysis modules. It indicates that improving the abilities and precision of
such static analysis is important to mitigate FNs/FPs.

3.7 General Programming Error
Some FNs or FPs are caused by general programming errors, e.g., mistaking the logic expression (A

|| B) as (A && B), where A and B are boolean conditions.
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1  @Value
2  public class CustomException extends RuntimeException{
3        String customValue; // FP: the final modifier should be added
4  }

1  import static java.util.Objects.*;
2  public void bar(Connection conn, String sql) {
3       PreparedStatement lPreparedStmt = null; // FP: not closed after use
4       try {
5            lPreparedStmt = conn.prepareStatement(sql);
6       } catch (SQLException ex) {...
7       } finally {
8             if (nonNull(lPreparedStmt)) {     // nonnull() is not recognized
9             // if (lPreparedStmt != null){       // works fine
10                   try {
11                         lPreparedStmt.close();
12                   } catch (SQLException pEx) {...}
13  }}}

1   // correct case
2  public class Case1 {
3       public void foo() {doSomething();}
4       private static void doSomething() {}   // no FP
5  }
6  // FPcase
7  public class Case2 {
8       public void foo() {
9             InnerClass.doSomething();   // doSomething() is used here 
10  } 
11       static class InnerClass {
12           private static void doSomething(){ // FP: unused private method
13           }
14       }
15  }

1  public class Test {
2       public double energy(int x) {    return 0.0;   }

      // if the array energy is renamed as energy2,  no FP
3       private void f(double[] energy) {
4             energy[0] = energy(1);
5  }}

1  public boolean func() {
2       String s1 = "str1";
3       final String s2 = "str2";
4       return s1 == s2;     // FN: strings are compared by "=="
5  }

(a) False positive with annotations: SonarJava-3320

(b) False positive with Java standard libraries: PMD #3148

(c) False positive with nested classes: PMD #3468

(d) False positive with same identifiers: PMD #1474

1  public int case() {
2       int start;      // FP: unused variable start
3       if (true)    start = 1; 
4       else    start = 2;
5       return start;
6  }

(f) False positive with initialization and assignments: PMD #3114

1  public class Foo {
2       public void bar(int a) {
3             if (a > 3 + 5) {    // FN: avoid literal in if condition 
4             // if (a > 8)          // can be correctly warned
5       }}
6  }

(e) False negative with complex expressions: PMD #2140

(h) False negative with modifiers: SpotBugs #1764

(g) False positive with lambda expressions: PMD #1723

1  Runnable someAction = () -> {
2       var foo = new ArrayList<String>(5); // FP: use diamond 

operator
3       System.err.println(foo);
4  };

Fig. 5. Illustrative examples for explaining input characteristics (the code snippets are simplified)

3.8 Miscellaneous
This category includes some miscellaneous reasons. For example, some issues are caused by the
unhandled whitespace in rule properties, some are caused by missing setting the property value
of target type, and some are the limitations of libraries used by the analyzers (e.g. limitations of
XPath version 1.0 used by PMD). These cases are not relevant to the core functionality of the
analyzers in performing rule checking.

4 RQ2: INPUT CHARACTERISTICS
This section investigates the input characteristics leading to FNs and FPs of the studied analyzers.
From the 350 issues, we excluded 70 issues because these issues are not relevant to the input
programs (e.g., those issues caused by flawed rule specification, inconsistent rule implementation,
general programming errors). Thus, we analyzed the remaining 280 issues and identified 10 major
input characteristics. Figure 4 shows their proportions. We illustrate these input characteristics
from the most to the least common and also discuss their correlations with the root causes.
Annotations. Java annotations are a form of metadata that provides additional information of Java
programs. They are usually placed above the declarations of code segments (e.g., classes, methods
and fields) to provide compile-time or runtime information. Figure 5a showcases this characteristic
which leads to a FP of SonarQube’s rule S1165. This rule requires that the fields of exception
classes should be final. When @Value (from Lombok) annotates the class CustomException (line 1),
all the fields (e.g., customValue at line 3) in the class are made final by default. However, the rule
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does not handle @Value, and thus warns that a final modifier should be added (a FP). Note that
this category of “annotations” are mainly triggered by the root causes of missing cases that should

be whitelisted (Section 3.4.1) and unhandled Java libraries (Section 3.3.2).

Finding 5 & Implication: Annotations is the most common input characteristics of programs
to trigger FNs/FPs. It is mainly related with the root cause of missing cases that should be

whitelisted and affects all the three studied analyzers. The analyzers’ developers should
carefully model these annotations in the rule implementations.

Method Calls and Field Accesses.Method calls or field accesses may induce FNs or FPs. This
characteristic is mainly related with the root cause of type resolution errors or limitations (Sec-
tion 3.6.2). For example, PMD rule UseEqualsToCompareStrings warns comparing strings by using
“==” or “!=”. In PMD issue #3004, this rule gives a FP on the expression s.charAt(0) == s.charAt(1),
where s is a string variable and s.charAt(i) is a method call returning the character at index i

of s. This FP is caused by the incorrect type resolution on the return value of charAt(). Figure 3e
shows another example of FP with the characteristics of accessing the field length of an array.
Java Standard Libraries. Static code analyzers may fail to handle the classes in Java standard
library (e.g., java.lang.*). This characteristic is mainly related with the root cause of unhandled
java libraries (Section 3.3.2). For example, Figure 5b shows a FP of PMD’s rule CloseResource

when handling java.util.Objects.nonNull(). This rule warns unclosed resources. In Figure 5b,
the resource lPreparedStmt is created (line 5) and properly closed (line 11). However, PMD reports
a FP as it fails to handle the semantic of nonNull(), thus believes lPreparedStmt.close() is not
reachable. Replacing nonNull() with lPreparedStmt!=null eliminates the FP.
Nested Classes. Some rules may fail to support or handle nested classes. This characteristic is
mainly related with the root cause of unhandled language features (Section 3.3.1). Figure 5c illustrates
a FP of PMD’s rule UnusedPrivateMethod. This rule warns unused private methods. For the private
method doSomething() in class Case1, PMD does not report a warning at line 4. However, when
doSomething() is declared in a nested class InnerClass (line 12) but used in foo (line 9), a FP (line
12) occurs.
Same Identifiers. In Java programs, variables, fields, methods may have the same symbol names.
This characteristic is mainly related with the root causes of type resolution errors or limitations

(Section 3.6.1) and type resolution errors or limitations (Section 3.6.2). Because the same identifiers
may complicate the symbol table construction which requires scope analysis and type resolution.
Figure 5d shows an input program that triggers a FP of PMD’s rule ArrayIsStoredDirectly. This
rule warns that the constructors and methods receiving arrays should clone objects and store the
copy. Because it can prevent future changes from the users affecting the original array. However,
in Figure 5d, when the double type array energy (line 3) has the same symbol name as the method
energy (line 2), this rule mistakes the method call energy (on the right hand side, line 4) as an array,
and thus reports a spurious warning (FP).
Complex Expressions or Statements. Some complex expressions or statements may induce
FNs or FPs. This characteristic is mainly related with the root causes of mishandling intermediate

representations (Section 3.5) and missing specific cases (Section 3.4.3). For example, complex arith-
metic operations (e.g. changing a>3 to a>1+2) or complex boolean operations (e.g. changing false

to false||false), addition of no side-effect expressions (e.g., encapsulating statements by if(true)

or expressions by {}), and addition of this. to non-static field access (e.g. changing a to this.a).
Figure 5e shows a FN due to the complex arithmetic operation. While the rule successfully detects
simple expression a>8, it fails to accurately analyze complex but equivalent expression a>3+5.
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Finding 6 & Implication: Deliberately complicating expressions or statements could be a
useful strategy to stress-testing of the rule implementations and manifest the issues caused by
mishandling intermediate representations and missing specific cases.

Java External Libraries. Java external libraries are prepackaged modules in JAR files, offering
versatile functions, e.g., the Spring Framework, JUnit, or Google Guava. However, inaccurate or
late support for these libraries may lead to inaccurate analysis results. This characteristic is mainly
related with the root cause of unhandled java libraries (Section 3.3.2).
Variable Initialization and Assignments. Variable initializations and assignments may induce
FPs or FNs. This characteristic is mainly related with the root causes of missing specific cases

(Section 3.4.3) and mishandling intermediate representations (Section 3.5). For example, direct
initialization (variables are assigned during initialization, e.g., int a = 1;), delayed assignment
(variables are assigned after declaration, e.g., int a; ...; a = 1;), assignmentwithin expressions (the
assignments are within other expressions, e.g., if(condition = var == 3)), nontrivial assignments
(assignments involving other variables instead of only literals, e.g., a = b), and uninitialized variables
can induce FPs or FNs. Figure 5f shows a FP of PMD’s rule UnusedAssignment. This rule warns
unused assignments and variables. The variable start is declared (line 2) and used (lines 3 and 4).
However, the rule fails to handle the delayed variable assignment and incorrectly warns start is
not used (line 2).
Lambda Expressions. Lambda expression was introduced in Java 8. Failing to handle lambda
expressions may induce issues. This characteristic is mainly related with the root causes of un-
handled language features (Section 3.3.1). For example, Figure 5g illustrates a FP of PMD’s rule
UseDiamondOperator induced by a lambda expression. This rule avoids the duplicate declarations
of type parameters in the diamond operator. At line 2, the variable foo does not get explicitly typed,
so the type declaration string in the diamond operator is not duplicated. However, this rule gives
a FP only inside the lambda expression.
Modifiers. Java modifiers (e.g., public, private, protected, static and final) control the accessi-
bility of classes, constructors, fields or attributes. Analyzers may fail to deal with these modifiers.
Figure 5h shows a FN of SpotBugs rule ES_COMPARING_STRINGS_WITH_EQ triggered by the final

modifier. This rule warns when the strings are compared with ==. In this case, if s2 is annotated
with final, no warning is reported at line 5, although there is a comparison with ==, which is a FN.
Deleting the final modifier makes the rule work correctly. This characteristic is mainly related
with the root causes of unhandled language features (Section 3.3.1).
Others. We find that a few minor characteristics (e.g., extend, enum, anonymous classes) that may
also induce the issues of FNs/FPs.

5 IMPLICATIONS AND DISCUSSIONS
This section discusses the implications distilled from the findings of RQ1 and RQ2 to shed light on
what the developers and researchers could do to tackle FNs/FPs. We will also discuss other aspects
of our work.
Avoid issues caused by common root causes or input characteristics. Our study finds that
unhandled language features is one of the most common root causes for all the three studied
analyzers (RQ1’s Finding 2). Thus, developers should timely check the rule specifications when
some new Java language features are introduced, and update the rule implementations if necessary.
According to the statistics in Table 2, timely supporting new language features could avoid 21.1%
of the issues. Missing cases is another common root cause (RQ1’s Finding 3). To counter this, given
a rule, the analyzers’ developers should consider different input characteristics (summarized RQ2)
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when designing its test programs. The code under check may be written in different specific ways. In
this regard, researchers could devise automated testing techniques to generate diverse test programs.
To show the feasibility, in Section 6.1, we designed such a proof-of-concept testing strategy to
generate new test programs by mutating existing ones. On the other hand, annotations, method

calls and field accesses, and Java standard libraries are the major input characteristics affecting all
the three studied analyzers (see RQ2). Thus, developers should pay more attention to model the
semantics of annotations and Java standard libraries when implementing the rules. According to
the statistics in Figure 4, properly modeling annotations could avoid 21% of the issues.
Improving the underlying static analysis modules. Static code analyzers usually adopt some
form of static analysis, e.g., AST-based syntactic pattern matching, data-flow analysis and symbolic
execution. We find that improving the abilities of static analysis modules in general is important
for mitigating FNs/FPs. For example, PMD is mainly affected by type resolution error or limitation

and scope analysis error or limitation (RQ1’s Finding 4). As a result, PMD may incur FNs/FPs when
handling same identifiers (revealed byRQ2) which requires proper type resolution or scope analysis.
Indeed, we note that PMD has recently significantly rewritten its type resolution for the new version
v7.0. SonarQube may incur FNs/FPs due to the errors or limitations of its symbolic execution
engine. The developers of SonarQube are also continuing the improvement of the engine.
However, we observe that in some cases developers may not immediately improve the static

analysis modules, although they would confirm the reported FNs/FPs. This is because they need
to trade off many factors like the investment cost, the development plans, the tool performance
and the analysis precision (or soundness) after the improvement. For example, SonarQube’s Issue
#90849 [2] is an FN caused by the limitation of the symbolic execution engine. The developers
confirmed this FN but do not plan to fix it immediately considering too much investment is required.
The developers disclosed that the current engine is purposely designed in this way to avoid raising
FPs at the cost of inducing FNs. But the developers commented that “we are working on a new

bug-detection engine, that should be, at some point, able to handle such cases and would allow us

to replace this rule with a more performant version of it (this new engine is already running on

SonarCloud and some versions of SonarQube)”. For another example, PMD’s developers confirmed
several issues like #4127 [1] (which is a FP) which were caused by the limitations of type resolution.
But it took the PMD’s developers more than one year to improve the type resolution module and
resolve all these issues.
Additionally, we observe that choosing the appropriate form of static analysis for implementing

the rules is also important. For example, data-flow analysis can provide more precise information
than AST-based syntactic pattern matching, thus reducing potential FNs/FPs. In Section 6.2, we
will investigate the weaknesses of the static analysis modules in the studied analyzers, and show
the consequences and trade-offs of choosing the forms of static analysis.
Following best practices when building static code analyzers. During our study, we observed
some best practices to tackle FNs/FPs by inspecting the fixing patches. We explicitly summarize
these best practices to inspire (new) developers. (1) Enforcing modularity when designing rules. Some
rules may have similar analysis procedures. In such scenarios, developers should consider moving
these procedures into a common utility class. In this way, fixing the FNs or FPs induced by this
utility class could benefit all the relevant rules (no separated fixes are needed anymore). In the
PMD’s PR #2899, one developer commented “using a common utility class to share logic between

rules, or to store procedures that are not really rule-specific”. PMD’s developers commented in its
roadmap “In general, a rule should use TR (type resolution) when it can, and fall back on non-TR

approach otherwise. No need for separating rules for TR and non-TR.” [26]. These comments confirm
the importance of modularity design. (2) Avoiding workaround fixes of FNs or FPs. The workaround
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Table 3. Equivalent Input Program Mutation Operators

Mutation Operators Original Program/Mutated Program Examples

(a) Wrapping a method
with a nested class.

class foo{
- method();
+ class NestedClass{ method();}
  }

(b) Converting an
anonymous class to a
lambda expression.

- Runnable r = new Runnable(){
- @Override
- public void run() {...}
- };
+ Runnable r = () -> {...};

(c) Renaming symbol
names to create same
identifiers.

- int a;
+ int b;
public void b(){...}

(d) Replacing with
equivalent statements
or expressions.

- j++;
+ ++j;
-------------------------------
- if(false){...}
+ if(false || false){...}
-------------------------------
class foo{
     int a; 
     void foo(){
- bar(a);
+ bar(this.a);
  }}

(1)

(2)

(3)

fixes may introduce some adverse side effects — fixing a FP but introducing new FNs, or visa versa.
Thus, developers should always try to fix the true root causes of FNs/FPs, and carefully evaluate
the effect of their patches. During fixing, avoiding introducing FPs is also important because the
number of reported FPs could affect the usability of the analyzers [67]. For example, SonarQube’s
developers commented that “SonarQube is not warning against any good practice, rather the goal of

each rule is to favor good practices while keeping the false positive rates as low as possible (ideally

zero)” [38]. Researchers could devise effective techniques to help developers find or avoid FPs.

6 RQ3: PROOF-OF-CONCEPT DEMONSTRATION OF OUR FINDINGS
This section demonstrates how our findings can help identify issues in analyzers and reveal the
weaknesses of static analysis modules.

6.1 Finding the Analyzers’ FNs/FPs by Automatically Generating Equivalent Programs
This section shows a proof-of-concept testing strategy to help find FNs or FPs of static code
analyzers. The main idea is to automatically generate equivalent input programs from existing
ones to stress test the analyzers.
Equivalent Input Program Mutation. One insight obtained from our study is that we can
perform equivalent input program mutations to help find FNs or FPs. Specifically, given an original
input program of an analyzer, we can generate some equivalent program variants based on some
program mutation operators. Here, equivalent program variants means that these variants are
expected to have the same analysis results with the original program when checked by the analyzer.
If the analysis results (e.g., the reported warnings) are different between the original program and
its variants, some FNs or FPs are likely found. Based on the findings of RQ2, we selected four
kinds of input characteristics to design the program mutation operators (see Table 3). Specifically,
based on the findings of RQ1, the mutation operators (a) and (b) target the root cause of unhandled
language features, (c) targets the root cause of type resolution and scope analysis error or limitation,
and (d) targets the root cause of missing specific cases.
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(a) Wrapping a method with a nested class. Given a Java class, this mutation operator identifies all
the methods in this class. For each (static or non-static) method, the operator creates a nested
class to wrap this method and properly adjusts the original class fields or methods accesses to
be compliant with the code changes.

(b) Converting an anonymous class to a lambda expression. In Java, an anonymous class can be
equivalently represented by a lambda expression. Thus, given a Java class, this mutation
operator identifies all the anonymous classes. For each anonymous class, it converts the class
to a lambda expression.

(c) Creating same identifiers. Given a Java class, this mutation operator identifies all the methods
and the fields in this class. For each field, it renames its symbol name to the name of one
existing method’s name.

(d) Replacing with equivalent statements or expressions. We support three forms of equivalent
mutations: replacing (1) the statement j++; with ++j; or vice versa, (2) false with false ||

false; and (3) the access of a non-static class field a with this.a.

Implementation. We use JavaParser [19] to parse the input programs into abstract syntax trees
(ASTs), manipulate the tree nodes according to the mutation operators and generate equivalent
program variants. The implementation consists of around 1000 lines of Java code.
Experimental Setup. We applied our testing strategy to test the latest versions of the three studied
analyzers at the time of our study (PMD v7.0.0-rc3, Spotbugs v4.7.4 and SonarQube v10.0.0.68432).
We collected all the test programs released by these tools as the original input programs: 3,754
programs from PMD, 572 programs from SonarQube, and 1,227 programs from Spotbugs. We
used JavaParser to parse, transform and create new test programs in Java 11. We used Python
scripts to run the tests against the analyzers and analyze the outputs. We compared the analysis
outputs by checking whether the numbers or the types of reported warnings are identical. If not,
we likely find some FNs/FPs, and manually inspect each of them for confirmation. The testing
process was conducted on a 64-bit Ubuntu 20.04 LTS machine with 16GB RAM. It took about 2
hours to run all the newly generated test programs for PMD, 1.5 hours for SonarQube, and 1 hour
for Spotbugs.
Results and Analysis. Table 4 gives the issues of FNs and FPs (with Issue IDs from 1∼14) found by
our testing strategy. We found 12 FNs and 2 FPs from the three static code analyzers. We reported
all these issues to the developers. Up to now, 11 issues have been confirmed, 9 of which have been
already fixed; and 3 issues are still waiting for feedback from the developers. These issues affected
12 different rules from PMD and SpotBugs. We note that most issues were found by the mutation
operator (b), which found 6 issues, and (d) (the three forms of equivalent expression) found 1, 1
and 5 issues, respectively. The mutation (c) did not find new issues in the analyzers. The reason
may be that the latest version of PMD v7.0 significantly improved its type resolution and scope
analysis modules. Thus, PMD may avoid many potential type resolution issues, while the other
two analyzers are robust.
To our knowledge, Wang et al. [75] conducted the first work to find FNs or FPs of static code

analyzers. They used a differential testing strategy, i.e., comparing the outputs of similar rules
between two different analyzers to find issues. Different from their work, our testing strategy
is one form of metamorphic testing [40] which does not require a reference analyzer. Indeed,
10 issues found by us which cannot be found by [75]. Because the related 8 buggy rules in our
experiment do not have similar rules in other analyzers. For example, for the rule “UseIOStream-

sWithApacheCommonsFileItem” in PMD, no similar rule in SonarQube exists. Thus, the issue (with
ID: 6 in Table 4) could be missed by differential testing. Thus, our proof-of-concept testing strategy
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Table 4. Statistics of the 19 issues found by our study

ID  Tools Mutation 
Operators

Issue 
Type Affected Rules Status

1  PMD (b) FP AvoidAccessibilityAlteration Fixed
2  PMD (b) FN LawOfDemeter Fixed
3  PMD (d)-(2) FN WhileLoopWithLiteralBoolean Fixed
4  PMD (d)-(3) FN LawOfDemeter Fixed
5  PMD (d)-(3) FN ConsecutiveLiteralAppends Fixed

6  PMD (d)-(3) FN UseIOStreamsWithApacheComm
onsFileItem Fixed

7  PMD (d)-(3) FN UnsynchronizedStaticFormatter Fixed
8  PMD (d)-(3) FN GuardLogStatement Fixed
9  PMD (d)-(1) FN UnusedPrivateField Fixed

10  PMD (b) FP DoNotTerminateVM Confirmed
11  PMD (b) FN LawOfDemeter Confirmed
12  PMD (b) FN AccessorClassGeneration Pending
13  PMD (a) FN UnusedAssignment Pending
14  Spotbugs (b) FN NP_ALWAYS_NULL Pending

15  Sonarqube — FN Java:S2589 Fixed
16  Sonarqube — Spec. Java:S2384 Fixed
17  PMD — FP CloseResource Confirmed
18  Sonarqube — FP Java:S2384 Confirmed
19  Sonarqube — FN Java:S2259 Confirmed

1

could complement the prior work. We believe that more mutation operators could be designed to
help find more FNs or FPs of static code analyzers. We leave it as an interesting future work.

6.2 Investigating the Weaknesses of Static Analysis Modules
The static code analyzers use some forms of static analysis. Thus, the weaknesses of the static
analysis modules in the analyzers may lead to FNs/FPs (see RQ1’s Finding 4). To this end, we aim
to manually investigate some typical rules of the studied analyzers to investigate their potential
weaknesses based on our insights from RQ1 and RQ2.
InvestigationMethod. To select typical rules for inspection, we ranked all the rules of each studied
analyzer in terms of the number of historical fixed issues from the most to the least. To constraint
our manual cost, we chose the top five buggy rules from PMD, SpotBugs and SonarQube for
careful inspection. Our insight is that investigating such “buggy” rules are more likely to reveal the
weaknesses of static analysis modules. Table 5 lists these selected rules from the three analyzers. In
the column of “Rule Name (#Fixed Issues)”, the number in the parenthesis following the rule name
is the number of historical fixed issues. The column “Reference” gives the rule specification.
During our investigation, for each rule in Table 5, we (1) reviewed its specification and imple-

mentation (understanding which kind of program flaws the rule checks and which form of static
analysis the rule uses), (2) examined all its historical issues and the corresponding fixing patches
(understanding which root causes and/or input characteristics trigger these issues, and whether the
corresponding fixing patches are workarounds), and (3) applied some code mutations on the rule’s
test programs to manifest FNs/FPs. Here, the code mutations are applied based on the findings of
RQ1 and RQ2: (i) the common input characteristics leading to FNs/FPs. From the top ten input
characteristics triggering FPs/FNs identified in Section 4 (also see Fig. 5), we selected these three
input characteristics, i.e., method calls and field accesses, variable initialization and assignment and
complex expressions and statements, as the mutation strategies (operators) to manually investigate
the weaknesses of the analyzers. We did not select the other input characteristics from the top ten
because some input characteristics (e.g., nested classes, same identifiers) are suitable for automatically
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Table 5. Top five buggy rules of the studied analyzers in terms of the number of historical fixed issues.
Tool Rule Name (#Fixed Issues) Reference

PMD ImmutableField (12) [22]
UnnecessaryFullyQualifiedName (11) [23]
CloseResource (11) [21]
UnusedPrivateField (8) [25]
UnusedImports (8) [24]

SpotBugs DMI_RANDOM_USED_ONLY_ONCE (2) [7]
NP_NONNULL_PARAM_VIOLATION (2) [8]
RV_RETURN_VALUE_IGNORED (2) [10]
RCN_REDUNDANT_NULLCHECK_ OF_NONNULL_VALUE (2) [9]
UPM_UNCALLED_PRIVATE_METHOD (2) [11]

SonarQube S2589: Boolean expressions should not be gratuitous (3) [30]
S3749: Members of Spring components should be injected (3) [32]
S2384: Mutable collection or array members should not be stored or
returned directly (3)

[29]

S2259: Null pointers should not be dereferenced (3) [27]
S2695: "PreparedStatement" and "ResultSet" methods should be called
with valid indices (2)

[31]

generating equivalent programs (in Section 6.1) while some input characteristics (like annotations,
Java standard libraries and Java external libraries) are difficult to apply for manual code mutations.
In practice, we applied the input characteristic of method calls and field accesses to test those rules
which may require dataflow information (e.g., PMD’s rule CloseResource). For example, we can
encapsulate the sink (e.g., closing some resource) into a new method, and call that new method
at the original place. This mutation strategy can stress test the inter-procedure analysis ability of
a rule. For another example, if the original test program involves some variable assignments, we
can transform the assignments into different forms (e.g., transforming the assignment of a local
variable into that of a global variable or a class variable) by applying the input characteristic of
variable initialization and assignment to stress test the rules. We can also apply the characteristic of
complex expressions and statements to purposely transform the original expressions or statements
into the complicated ones to stress test the rules. (ii) The correlations between the root causes and
the input characteristics. For example, mutatingmethod calls and field accesses may affect or require
type resolution and control/data-flow analysis, and mutating variable initialization and assignments

and complex expressions or statements may affect or require scope analysis. Note that these code
mutations do not guarantee the mutated program is equivalent to the rule’s original test program
(like what we did in Section 6.1).

Table 4 shows the five issues (with Issue IDs from 15∼19) found by us in these analyzers’ latest
versions, indicating the weaknesses of their static analysis modules (leading to FNs or FPs). All
these issues were confirmed by the developers. We illustrate these issues below.
Fail to handle basic method call flows. Figure 6a shows a FP of PMD’s rule CloseResource. In
this case, we hoisted the original statement of closing the connection c (line 15) into a method call
closeConnection (line 14), and closed the connection c at line 6. However, PMD reports a FP at line
14, although c is correctly closed at line 6. The PMD developer confirmed that this issue is a valid
FP and commented that “since this is all within one class, it would be nice if PMD could detect this on

its own (through some basic call flow)”. This case shows the weakness of data-flow analysis in PMD.
In fact, we find that PMD’s data-flow analysis is limited (i.e., it only supports reaching definition
analysis procedure [13]).
Fail to analyze variable scopes. Figure 6b shows a FN of SonarQube’s rule S2589. This rule
enforces that boolean expressions should not be gratuitous (if a boolean expression does not change
the evaluation of the condition, it is redundant and should be removed). In this example, we moved
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1     public class Foo {
  2
  3 +      public void hasArguments(String name){
  4－     public static void hasArguments(String name){
  5 int length = name.length();   
  6 System.out.println("Name length: " + length);
  7 }
  8 
  9 public static void main(String[] args) {
10 String name = null;
11－ hasArguments(name);
12  
13 +          Foo foo = new Foo();
14 +          foo.hasArguments(name);
15 }
16     }

1     import java.sql.Connection;
  2 import net.sourceforge.pmd.….closeresource.Pool;    
  3     
  4 public class Foo {
  5 +     void closeConnection(Connection c) {
  6 +          c.close();
  7 +      }
  8
  9        void bar(Pool pool) {
10            Connection c = pool.getConnection();
11            try {
12                } catch (Exception e) {
13                } finally {
14 + closeConnection(c);  // FP: c is not closed                                                        
15－                c.close();
16                }
17         }
18     }

1    public class AISD {
  2 private byte[] buf;
  3 private AISD( final byte[] buf) {
  4 this.buf = buf;  // FP
  5        }
  6        private void set(final byte[] buf) { 
  7            this.buf = buf; // true positive    
  8        }
  9        public AISD of( final byte[] buf) { 
10            return new AISD(buf.clone( )); 
11     }}   

(a) PMD : FP of CloseResource

1     public class booleanExpression {
  2 +  public static final int c = 0;
  3 public static void booleanExpressionMethod( ) {
  4－ int c = 0;
  5 if (c != 0) {   // FN: "c" is always "0"
  6 System.out.println("c == 0");
  7 }}}

(b) SonarQube : FN of S2589 (Constant Expressions 
in Boolean Conditions)

(c) SonarQube : FP of S2384 (Mutable members 
stored directly in private constructors)

(d) SonarQube : FN of S2259 (Null pointers should not 
be dereferenced)

Fig. 6. Simplified code examples illustrating the weaknesses of static analysis modules in the studied analyzers.

the declaration of the local variable c (line 4) outside of the method booleanExpressionMethod

and declared c as a static final class field (line 2). However, SonarQube failed to report the rule
violation. We reported this issue to SonarQube. The developer confirmed that this is a valid FN
and commented that “Indeed our engine is failing to evaluate constants outside the method’s scope”.
This issue was fixed [4]. This case shows SonarQube’s weakness in analyzing variable scope.
Fail to choose the appropriate form of static analysis. Figure 6c shows a FP of SonarQube’s
rule S2384. This rule enforces that private mutable members in a class should not be directly
stored or returned. In this example, this rule correctly warns line 7 because the private mutable
member buf is directly stored. However, the rule reports a FP at line 4 which should not be reported
because the private constructor AISD is only called by the public method of which safely clones the
parameter buf. The SonarQube developer confirmed that this issue is a valid FP and commented
that “Unfortunately, this rule is (implemented as) AST-based, and it brings some limitations. So to

eliminate these false positives the rule should rely on the data flow”. This case shows the weakness of
SonarQube in choosing the inappropriate form of static analysis for some rules. We also found a
flawed specification issue in this rule (Issue 16 in Table 4) which has been fixed [3].
Fail to track runtime types in symbolic execution. Figure 6d shows a FN of SonarQube’s rule
S2259. This rule warns about null pointer dereference. For the original input program, this rule
can correctly warn the dereferenced null pointer name (at line 5) because the string variable name

is assigned as null (line 10). However, when we changed the static method hasArguments to an
instance method, and changed the original static method call on hasArguments to the method call
by the class instance foo, the rule has a FN at line 5. The SonarQube developer confirmed that this
issue is a valid FN and commented that “the FN is caused by a limitation of the symbolic execution

engine”. The developer explained that, in the new code, the method hasArguments is an instance
method and therefore requires a class instance to be called. The engine that runs this rule fails to
track runtime types in the execution paths that it follows because it currently only support tracking
of final methods (e.g., static methods). The developer said they have already started to enhance
the engine. This case shows the weakness in resolving runtime types, affecting the precision of
symbolic execution in SonarQube.

7 THREATS TO VALIDITY
Internal Validity. Our study requires manual analysis and the human expertise of static code
analyzers to answer RQ1 and RQ2. Thus, we may introduce some threats to the categories of root
causes and input characteristics and their percentages. To counter this, in Sections 3 and 4, two of
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the co-authors independently inspected the issues, cross-checked their results, and discussed them
with the other co-authors to reach a consensus. They tried their best to reduce potential threats.

We studied 350 issues which include 270 FPs and 80 FNs (the FPs are more than the FNs).
This disparity between FNs and FPs may bring some threats in the computed percentages of the
categories of root causes and input characteristics. But the readers should know that this disparity
might be difficult to correct and it does not mean that FPs are more important than FNs. Because
(1) the users are more likely to report FPs than FNs, and (2) many FNs are not reported because no
checking rules exist [46, 52, 54, 71] (such FNs may not be considered valid issues of the analyzers).
External Validity. We collected and investigated 350 issues of FNs and FPs. The number of these
issues might be not large enough and may bring some threats to the generability of our study’s
findings. But we believe the generability of our findings can be justified by the following reason.
We have collected all the historical, fixed issues of FNs and FPs from the three representative
PMD, Spotbugs and SonarQube prior to the time of our study. These issues are diverse and
were reported by the analyzers’ own developers (who found FNs/FPs during development), real
users (who found FNs/FPs by scanning real-world projects), and researchers (who found FNs/FPs
by developing automated testing techniques). Compared to the prior relevant work, our study
investigates the largest number of issues of FNs and FPs and their patches. For example, Thung
et al. [71] and Habib et al. [46] only investigate 19 and 20 FNs respectively, Wang et al. [75] only
investigate 46 issues (38 FNs and 8 FPs) and Zhang et al. [80] only investigate 79 issues of FNs and
FPs. We have looked into these FNs/FPs which were analyzed by these prior work. We find our
study’s findings have included all their analysis results (i.e., root causes, input characteristics).

One possible method of further generalizing some of our findings might be analyzing open-source
Java projects by using these analyzers, and determine to what extent the coding practices in these
projects are likely to “trigger” any of the issues we found. However, this method may face some
challenges in deciding the generalizability of our findings. First, it may be limited to investigating
the issues of FPs if we do not have the ground-truth of program flaws in these projects. Second,
if we do have the ground-truth, the missed flaws may not indicate the issues of FNs because the
checking rules of these analyzers cannot cover all possible program flaws. But we can access the
generalizability of our findings from the perspective of Wang et al.’s work [75]. They analyze
2,728 open-source Java projects by using these analyzers and find 46 issues of FNs/FPs based on
differential testing. The root causes and input characteristics of these 46 issues are all included by
our findings (which we will discuss in detail in Section 8), and thus our findings should be general.
In addition, PMD has more historical issues than the other two analyzers. It may affect the

generalizability of our findings. But we find the root causes of PMD’s issues are similar to those
of Spotbugs’s and SonarQube’s issues. Thus, we believe the distilled categories of root causes
should be general. Our study only considers three static code analyzers. So our conclusions may not
generalize beyond these studied analyzers. However, these three analyzers are representative and
widely used in practice and implement different forms of static analysis. In the future, to further
mitigate the threats, we would expand our analysis to more static code analyzers. We focus on the
historical issues triggered by Java programs (Java is one of the most popular languages supported
by existing static code analyzers [63]). As a result, some of our findings may be specific to Java and
may not be generalized for other programming languages. Therefore, we plan to study the historical
issues of FNs/FPs from other programming languages in the future to mitigate this potential threat.

8 RELATEDWORK
This section discusses two strands of related work on studying static code analyzers: (1) evaluating
the effectiveness and usability, and (2) finding and studying the FNs and FPs.
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Evaluating Static Code Analyzers. In the literature, many studies exist in evaluating the
effectiveness (i.e., the fault detection abilities) of the static code analyzers [41, 44, 46, 51–54, 59, 71–
73, 77]. All these studies reveal that static code analyzers suffer from FNs. To analyze the reasons of
FNs, for example, Thung et al. [71, 72] and Habib et al. [46] respectively manually examine 19 and
20 missed field defects and their corresponding program. They find that almost all these defects
were missed because they are not targeted by existing rules in the analyzers or they are domain-
specific errors. This insight is also shared by more recent and comprehensive studies [52, 54] — the
insufficient rules w.r.t. field defects and the inability to handle logical (domain-specific) errors are
the main reasons of FNs. On the other hand, several studies reveal that static code analyzers are also
affected by FPs [48, 51, 66, 77], thus undermining the usability [56, 63, 74]. Different from these prior
studies, our work studies the analyzers from a new perspective, i.e., examining the historical (fixed)
issues to understand FNs and FPs. Moreover, our study inspects the implementations of static code
analyzers, and the fixing patches to analyze FNs/FPs. Thus, many of our findings are fine-grained
and have not been identified by these prior studies. A recent comprehensive survey [45] shows that,
to mitigate FPs, most work develops post-processing techniques (e.g., statistical analysis, machine
learning) to classify or rank the static analysis warnings. These work usually does not care about
the implementation of static code analyzers. In contrast, our work inspects the implementations to
find insights which could mitigate the FPs at the root.
Finding and Studying FNs/FPs. To our knowledge, the studies of Wang et al. [75] and Zhang
et al. [80] are most relevant to ours. However, our study have several major differences with these
two prior studies. First, the research goals of our study and these two studies are different. Our
work aims to conduct a systematic study on understanding the historical issues of FNs/FPs. Thus,
we investigate a broad range of 350 developer-confirmed and -fixed FNs/FPs. Wang et al. [75]
and Zhang et al. [80] mainly focus on designing some testing techniques to find FNs/FPs of the
analyzers. Although Wang et al. and Zhang et al. inspect the FNs/FPs found by their techniques —
Wang et al. inspect 46 found FNs/FPs (only 19 were confirmed and fixed) and Zhang et al. inspect
79 found FNs/FPs (only 26 were confirmed and fixed) — their conclusions could be biased by the
limited diversity of their found issues. Moreover, they do not examine the fixing patches and the
implementations of the analyzers when inspecting FNs/FPs.
Second, due to the differences between research goals and the datasets, our findings are more

systematic and in-depth. For example, the 13 “bug patterns” and 3 “typical faults” (see Section 3.2
and 3.3 in [75]) summarized by Wang et al. and 5 “root causes” (see Section 5.2 in [80]) summarized
by Zhang et al. are all included in our identified root causes and input characteristics. Specifically,
in Table 2, the root causes annotated by “ ” and “ ” are only partially identified by Wang et al.

and Zhang et al. respectively, while the root causes annotated by “ ” and “ ” are missed by Wang
et al. and Zhang et al. respectively.

Third, Wang et al. use a differential testing strategy to find FNs/FPs, while we use a metamorphic
testing strategy to find FNs/FPs (in Section 6.1). These two testing strategies have their own
strengths and weaknesses and can complement each other in finding FNs/FPs. The differential
testing strategy might be limited by the number of paired rules with similar functionality between
two different analyzers. Take PMD and SonarQube as an example, according to the statistics
reported by Wang et al. (Section 3.1 in [75]), PMD and SonarQube respectively have 304 and 545
rules in total, but they only have 74 paired rules. Therefore, the differential testing strategy can
only test 24.3%(≈74/304) and 24.3%(≈74/545) of all the rules of PMD and SonarQube, respectively,
while the metamorphic testing strategy do not require the paired rules. On the other hand, the
metamorphic testing strategy is limited to the number and strength of the identified metamorphic
relations (i.e., the program mutation operators for generating equivalent program variants). In our
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case study, the issue finding results (discussed in Section 6.1) indeed show that our metamorphic
testing strategy can complement the differential testing strategy because 10 out of the 14 FNs/FPs
found by our metamorphic testing strategy cannot be found by the differential testing strategy.
The reason is that the rules affected by these 10 FNs/FPs do not have the paired rules, and thus
cannot be tested by differential testing. But our metamorphic testing strategy does not have such
limitations. On the other hand, the rules affected by the remaining 4 FNs/FPs could be found by
the differential testing strategy because these rules have their paired rules. It would be interesting
in the future to further compare the differential testing strategy and our metamorphic testing
strategy in a more systematic way. But in general it is difficult to decide which testing strategy
is more effective in finding FNs/FPs because different factors like the diversity of input programs
and the number/strength of identified metamorphic relations may affect the results. Zhang et al.

use metamorphic testing like us, and propose 13 mutation operators (3 operators are inspired
from historical issues). However, only one mutation operator (see Table 3, (d)-(2)) used by our
testing strategy is overlapped with those of Zhang et al. (see Table 2 in [80]). The remaining five
mutation operators (see Table 3, (a), (b), (c), (d)-(1), (d)-(3)) from our work are new and have not
been identified by Zhang et al.. This difference also reflects that our study’s findings are more
systematic. As a result, the testing technique proposed by Zhang et al. could find only one issue (i.e.,
Issue 3 in Table 4) out of 14 FNs/FPs found by us. Last but not least, our work identifies additional
four FNs/FPs caused by four types of weaknesses of the static analysis modules, while Wang et al.
and Zhang et al. do not perform such deep analysis on the static analysis modules.
In the literature, there are also other works focused on finding defects in static code analyzers.

These works focus on either specific static analysis modules or specific input program characteristics,
e.g., value analysis and constant propagation [42], alias analysis [78], data-flow analysis [70], the
configurations of static analysis [61, 62], and annotation-introduced faults [81].
There are some work validating the correctness of more sophisticated program analyzers like

abstract interpreters [60], symbolic executors [49], model checkers [79] and compilers [50]. But
these work does not target the analyzers we studied.

9 CONCLUSION
We present the first systematic study on 350 historical issues of FNs/FPs from three representative
static code analyzers. We investigated the root causes and input characteristics, which help devel-
opers and researchers to understand FNs/FPs. Our study yields some new interesting findings and
implications to improve the static code analyzers. Additionally, we conduct two proof-of-concept
demonstrations to show the usefulness of our findings: (1) finding FNs and FPs, and (2) investigating
the weaknesses of the static analysis modules. We have made our artifacts publicly available at
https:// zenodo.org/doi/10.5281/zenodo.11525129 to benefit the community.
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