
Evaluating the E�ectiveness of Deep Learning Models for
Foundational Program Analysis Tasks

QIAN CHEN, Nanjing University, China

CHENYANG YU, Nanjing University, China

RUYAN LIU, Nanjing University, China

CHI ZHANG, Nanjing University, China

YU WANG∗, Nanjing University, China

KE WANG∗, Visa Research, USA

TING SU, East China Normal University, China

LINZHANG WANG, Nanjing University, China

While deep neural networks provide state-of-the-art solutions to a wide range of programming language tasks,

their e�ectiveness in dealing with foundational program analysis tasks remains under explored. In this paper,

we present an empirical study that evaluates four prominent models of code (i.e., CuBERT, CodeBERT, GGNN,

and Graph Sandwiches) in two such foundational tasks: (1) alias prediction, in which models predict whether

two pointers must alias, may alias or must not alias; and (2) equivalence prediction, in which models predict

whether or not two programs are semantically equivalent. At the core of this study is CodeSem, a dataset built

upon the source code of real-world �agship software (e.g., Linux Kernel, GCC, MySQL) and manually validated

for the two prediction tasks. Results show that all models are accurate in both prediction tasks, especially

CuBERT with an accuracy of 89% and 84% in alias prediction and equivalence prediction, respectively. We also

conduct a comprehensive, in-depth analysis of the results of all models in both tasks, concluding that deep

learning models are generally capable of performing foundational tasks in program analysis even though in

speci�c cases their weaknesses are also evident.

Our code and evaluation data are publicly available at https://github.com/CodeSemDataset/CodeSem.

CCS Concepts: • Software and its engineering → Automated static analysis; • Computing methodolo-

gies → Neural networks.

Additional Key Words and Phrases: Deep Learning, Alias Analysis, Equivalence Checking

∗Corresponding authors.

Authors’ addresses: Qian Chen, State Key Laboratory for Novel Software Technology, Department of Computer Science

and Technology, Nanjing University, Nanjing, China, qc@smail.nju.edu.cn; Chenyang Yu, State Key Laboratory for

Novel Software Technology, Department of Computer Science and Technology, Nanjing University, Nanjing, China,

mf21330109@smail.nju.edu.cn; Ruyan Liu, State Key Laboratory for Novel Software Technology, Department of Computer

Science and Technology, Nanjing University, Nanjing, China, mf21330053@smail.nju.edu.cn; Chi Zhang, State Key

Laboratory for Novel Software Technology, Department of Computer Science and Technology, Nanjing University, Nanjing,

China, zhangchi_seg@smail.nju.edu.cn; Yu Wang, State Key Laboratory for Novel Software Technology, Department

of Computer Science and Technology, Nanjing University, Nanjing, China, yuwang_cs@nju.edu.cn; Ke Wang, Visa

Research, Palo Alto, USA, kewang@visa.com; Ting Su, Shanghai Key Lab of Trustworthy Computing, Software Engineering

Institute, East China Normal University, Shanghai, China, tsu@sei.ecnu.edu.cn; Linzhang Wang, State Key Laboratory

for Novel Software Technology, Department of Computer Science and Technology, Nanjing University, Nanjing, China,

lzwang@nju.edu.cn.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/4-ART112

https://doi.org/10.1145/3649829

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0009-0005-0312-0571
HTTPS://ORCID.ORG/0009-0006-9194-0656
HTTPS://ORCID.ORG/0009-0007-7233-9272
HTTPS://ORCID.ORG/0000-0002-2848-6108
HTTPS://ORCID.ORG/0000-0002-7216-6929
HTTPS://ORCID.ORG/0000-0003-0844-5023
HTTPS://ORCID.ORG/0000-0003-1628-9796
HTTPS://ORCID.ORG/0000-0003-4794-1652
https://github.com/CodeSemDataset/CodeSem
https://orcid.org/0009-0005-0312-0571
https://orcid.org/0009-0006-9194-0656
https://orcid.org/0009-0007-7233-9272
https://orcid.org/0000-0002-2848-6108
https://orcid.org/0000-0002-7216-6929
https://orcid.org/0000-0003-0844-5023
https://orcid.org/0000-0003-1628-9796
https://orcid.org/0000-0003-4794-1652
https://doi.org/10.1145/3649829

112:2 Qian Chen, Chenyang Yu, Ruyan Liu, Chi Zhang, Yu Wang, Ke Wang, Ting Su, and Linzhang Wang

ACM Reference Format:

Qian Chen, Chenyang Yu, Ruyan Liu, Chi Zhang, Yu Wang, Ke Wang, Ting Su, and Linzhang Wang. 2024.

Evaluating the E�ectiveness of Deep Learning Models for Foundational Program Analysis Tasks. Proc. ACM

Program. Lang. 8, OOPSLA1, Article 112 (April 2024), 29 pages. https://doi.org/10.1145/3649829

1 INTRODUCTION

Riding on the stunning advancements of deep learning in recent years, deep neural networks
have demonstrated remarkable capabilities in inferring semantic programs properties (e.g., bug
detection [Allamanis et al. 2018; Wang et al. 2020], program repair [Chen et al. 2019; Dinella et al.
2019], code documentation generation [Feng et al. 2020; Wang and Su 2020]). In light of the growing
integration of neural technologies into the programming language (PL) research, a key question
remains under addressed: how far can we push deep learning models in the �eld of program analysis;

are they even capable of solving tasks that are traditionally in the realm of foundational static analysis?

By “foundational”, we mean static analysis that serves the foundation for various client analyses.
The response to this question has a profound impact on the programming language community. If
the answer is yes, neural networks can become a viable alternative for developing static analysis
applications perhaps with their own advantages (e.g., easier to create, higher e�ciency). Conversely,
if the answer is no, it can shed light on the de�ciencies of existing code models, motivating future
research to build �ner models for program analysis. In this paper, we aim to answer this question.
Speci�cally, we undertake a systematic and rigorous evaluation on the e�cacy of deep neural
networks in performing foundational program analysis tasks.

We face two primary challenges: �rst, (1) how to de�ne prediction tasks that correspond to the
foundational tasks in program analysis; second, (2) how to curate a dataset at scale that serves the
tasks being de�ned. For the �rst challenge, we draw on two foundational problems in PL research
— alias analysis and equivalence checking — to derive alias prediction and equivalence prediction
respectively. Since the two analyses are among the most well-established, important static analysis,
with an extensive literature and broad range of applications, we design our evaluation task in the
mold of alias analysis and equivalence checking. Alias prediction requires models to classify if two
pointers must alias, may alias1 or must not alias. Equivalence prediction is about predicting whether
or not two programs are semantically equivalent. It is worth mentioning that equivalence prediction
di�ers in fundamental ways from clone detection [Horwitz 1990], a well-known problem in software
engineering. Speci�cally, much of the clone detection work focuses on syntactic similarity of source
code [Golubev et al. 2021; Jiang et al. 2007; Kamiya et al. 2002; Sajnani et al. 2016; Wang et al.
2018; Yuan and Guo 2012] whereas equivalence checking requires models to predict the semantic
equivalence of programs, thus is clearly a better �t to the central theme of this work.
To overcome the second challenge, our key idea is to leverage the results of the corresponding

program analysis methods so that models can be trained on potentially unlimited amount of labeled
data without any human e�ort in data labeling. However, the quality of such labeled data poses a
risk given that results of any program analysis method are almost certain to contain noise (since
static analysis must involve approximation due to Rice’s theorem, hence the issue of false positives;
and dynamic analysis can not reason about all possible program behavior, hence the issue of
false negatives). In response, we propose a key adjustment to a prominent, two-stage learning
encompassing pre-training and �ne-tuning. This adjustment allows models to exploit the labeled
data despite its inherent noise.

Our training approach consists of three phases: generalized pre-training, specialized pre-training,
and �ne-tuning. While generalized pre-training and �ne-tuning directly correspond to the two

1To better align with the goals of this work, we have modi�ed the conventional de�nition of the may-alias relation in PL

literature. Speci�cally, it now represents a disjoint aliasing relation to must-alias (Section 2.1).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

https://doi.org/10.1145/3649829

Evaluating the E�ectiveness of Deep Learning Models for Foundational Program Analysis Tasks 112:3

stages in pre-training and �ne-tuning, specialized pre-training, a new, in-between stage, trains
models to approximate downstream prediction tasks using the results of the corresponding program
analysis methods. Even though data used at this stage carries noise, models can take advantage of it
to learn a coarse decision boundary. This boundary is subsequently re�ned during the �ne-tuning
stage, utilizing clean, ground-truth data. Take the alias prediction as an example. In specialized
pre-training, we deploy models to learn from results of two alias analysis [Kastrinis et al. 2018;
Zheng and Rugina 2008], which produce three classes of alias pairs: ground-truth must-alias and
must-not-alias, and noisy may-alias (details are provided in Section 5.2.1). By learning from real
must-alias, must-not-alias, and noisy may-alias, models �rst solve an easier sub-task of separating
must-alias and must-not-alias in the specialized pre-training stage. Then, models conquer the entire
task by re�ning the decision boundary between may-alias and must-alias/must-not-alias using
ground-truth data in the �ne-tuning stage. We note that our training work�ow, especially the last
two phases, resembles an in�uential learning strategy called curriculum training [Bengio et al.
2009], under which models are trained on data shu�ed in the ascending order of di�culty levels.
To a certain degree, the correlation to curriculum training validates of our training approach.

Our Goals. In this work, we set out to explore what all is achievable within the machinery of deep
neural networks in program analysis. Given that deep learning models are fundamentally based on
pattern recognition, an approach that is not considered particularly suitable for simulating classical
static analysis algorithms, we believe such an exploration is a worthwhile pursuit. Technically,
our primary goal is to evaluate the performance of four in�uential code models (i.e., CuBERT,
CodeBERT, GGNN, and Graph Sandwiches) in two foundational tasks of program analysis: alias
prediction and equivalence prediction. It is worth noting that our aim is not to propose novel
solutions to alias or equivalence prediction, or even replace existing algorithms for alias analysis
or equivalence checking with deep neural networks. Both of these can be steps too far given the
current landscape of deep models of code, and there is no su�cient evidence that deep neural
networks are even applicable to the kind of foundational static analysis considered in this paper. As
a secondary goal, we aim to benchmark the performance of graph models (i.e., GGNN and Graph
Sandwiches) w.r.t. di�erent graph representations of code including Abstract Syntax Tree-based,
Control Flow Graph-based, and Program Dependence Graph-based.

Advantages over Existing Benchmarks. Compared to existing benchmarks for code models [Hu-
sain et al. 2019; Lu et al. 2021; Puri et al. 2021], our work o�ers two crucial advantages. First,
our dataset consists of code extracted from programs of real-world �agship software rather than
coding platforms at which code are written to solve speci�c algorithmic problems. It is clear their
specialized, non-standard programs (e.g., implement division with subtraction only; test if a given
number is a palindrome) are not particularly relevant to real programming settings to which code
models are designed to apply. Therefore, results of code models on those benchmarks are unlikely
to generalize to useful end goals in the real world. Second, those works evaluate deep learning
models in tasks that are well-explored by prior works (e.g., variable misuse prediction [Allamanis
et al. 2018], method name prediction [Alon et al. 2019]). Therefore, their �ndings provide limited
new insights into the strengths and weaknesses of deep learning models. In contrast, we de�ne
alias prediction and equivalence prediction, derived from two foundational static analysis, as the
prediction tasks in our evaluation.

Summary of Main Findings. Our results show that all models are accurate in both prediction
tasks, in particular, CuBERT, the most accurate model, achieves 89% accuracy in alias prediction
and 84% accuracy in equivalence prediction. We observe that program representation is a key factor
to the performance of graph models. The accuracy of the exact same model can vary signi�cantly
depending on the type of graphs in which programs are represented in both prediction tasks.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

112:4 Qian Chen, Chenyang Yu, Ruyan Liu, Chi Zhang, Yu Wang, Ke Wang, Ting Su, and Linzhang Wang

However, we �nd that the program dependency graph-based representation enables GGNN and
Graph Sandwiches to achieve their highest accuracy in both prediction tasks. This underscores the
power and versatility of this program representation for graph models. Regarding the comparison
between our training approach and the existing pre-training and �ne-tuning approach, models
trained with our approach are almost always more accurate than those undergoing pre-training
and �ne-tuning, demonstrating the e�ectiveness and generality of our approach to training models
towards solving the foundational program analysis tasks.

Next, we perform an in-depth analysis on models’ results in order to gain a deeper understanding
of what models have learned in the two prediction tasks. In alias prediction, we examine the nature
of the alias pairs that models detected from the locality aspect. That is, whether the detected alias
pairs are generally very local or they span a number of statements. Our analysis reveals that all
models achieve sustained accuracies even when the instructions that establish aliasing relations
become increasingly distant. In equivalence prediction, we �rst investigate if models have resorted
to a simple, template-matching approach to determining the semantic equivalence of two programs.
That is, did models simply memorize equivalent program pairs in the training set into templates,
which they then use to match test pairs by accommodating shallow, syntactic variations. However,
we �nd that only 11% of equivalent program pairs in the test set can be matched to a pair of training
programs with minor syntactic modi�cations, indicating the learning capacity of code models
that goes far beyond such a template-matching approach. To further demonstrate the challenges
that code models have overcome to achieve high accuracies, we consider three well-established
equivalence checking tools (i.e., trace alignment [Churchill et al. 2019], ARDIFF [Badihi et al. 2020],
and Rêve [Felsing et al. 2014]) as reference points, in particular, we assess their performance on
CodeSem. Quite surprisingly, all tools perform exceedingly poorly, with the top-performer achieving
under 25% accuracy, and more importantly, we �nd that all code models have coped comfortably
with the very issues that severely hinder those equivalence checking tools (e.g., limitations in
aligning execution traces, di�culties in solving complicated path constraints).

Overall, we conclude that in general, the evaluated code models are capable of handling even the
foundational tasks in program analysis. On the other hand, we also identify speci�c areas in which
models still have signi�cant headroom to improve. For example, models can be imprecise in dealing
with pointers with complicated def-use patterns in alias prediction; in addition, they also display
limited capability to perform sophisticated reasoning about the program behavior in equivalence
prediction. With regard to the weaknesses of code models, we point out potential directions of
future research for continuously improving deep learning models in programming language tasks.
In summary, we make the following contributions in this paper:

(1) We de�ne two learning tasks — alias prediction and equivalence prediction — for evaluating
code models in performing foundational program analysis tasks.

(2) We assemble CodeSem, a dataset for alias and equivalence prediction, using code exclusively
extracted from the program of real-world �agship software.

(3) We propose a general, novel, three-stage training approach that leverages the results of
program analysis tools to train models towards alias prediction and equivalence prediction.

(4) We present the results of an extensive quantitative and qualitative evaluation of four promi-
nent models of code (i.e., CuBERT, CodeBERT, GGNN, and Graph Sandwiches) in alias and
equivalence prediction.

2 PREDICTION TASKS

This section de�nes alias prediction and equivalence prediction, two downstream tasks that we use
to evaluate deep learning models.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

Evaluating the E�ectiveness of Deep Learning Models for Foundational Program Analysis Tasks 112:5

2.1 Alias Prediction

Alias prediction is derived from alias analysis, which checks whether two pointer variables refer to
the same memory location at a particular program point. E�ective alias analysis plays an essential
role in nearly all program analyses for object-oriented programs [Sridharan et al. 2013]. For example,
computing a precise inter-procedural control-�ow graph, a prerequisite for many program analyses,
often requires signi�cant reasoning on pointer aliasing to resolve virtual dispatch. Furthermore,
any program analysis attempting to discover non-trivial properties of an object must reason about
mutations to that object through pointer aliases. As a foundation for many client analyses, alias
analysis facilitates typestate analysis [Phulia et al. 2020], taint analysis [Tripp et al. 2013], and value
�ow analysis [Shi et al. 2018].

Unlike the classical may-alias analysis (for determiningmay-alias or must-not-alias pairs) or must-
alias analysis (for identifying speci�cally must-alias pairs), alias prediction classi�es if two pointer
variables must alias, may alias, or must not alias all at once, a more elegant approach to identifying
aliasing relations. While the conventional de�nition of must- and must-not-alias [Altucher and
Landi 1995; Balatsouras et al. 2017; Fink et al. 2006] still applies to our prediction task (De�nition 2.1
and 2.2), we make a minor modi�cation to the de�nition of may-alias [Altucher and Landi 1995;
Horwitz 1997], in particular, we add an additional constraint (underlined in De�nition 2.3) to
exclude must-alias from may-alias.

De�nition 2.1. (Must Alias) Two variables E1 and E2 is must-alias at a program point = if for all
executions to =, E1 and E2 refer to the same location at =.

De�nition 2.2. (Must-not Alias) Two variables E1 and E2 is must-not alias at a program point = if
E1 and E2 do not refer to the same location at = on any execution to =.

De�nition 2.3. (May Alias) Two variables E1 and E2 is may-alias at a program point = if for some
but not all executions to =, E1 and E2 refer to the same location at =.

2.2 Equivalence Prediction

We derive equivalence prediction from equivalence checking, a long-standing problem in computer
science. It is an important building block for many client applications. For example, in the setting of
compiler veri�cation, equivalence checking is employed to verify the correctness of transformations
performed by compilers [Necula 2000; Sewell et al. 2013; Tate et al. 2009]; superoptimizers also rely
on equivalence checker to ensure that the optimized programs maintain the same semantics of the
original programs [Churchill et al. 2019, 2017; Dahiya and Bansal 2017]. In addition, equivalence
checking has been applied to problem domains like program synthesis [Schkufza et al. 2013] and
code refactoring [Ramos and Engler 2011]. A central issue to equivalence checking is the de�nition
of semantic equivalence. In this work, we follow Churchill et al. [2019]’s formalization.

De�nition 2.4. (Semantic Equivalence) Two programs ?1 and ?2 are semantically equivalent if,
when ?1 and ?2 start in identical machine states (e.g., registers, stack, heap), (1) they have identical
output registers and heap states; or (2) they encounter the same run-time error (or loop forever).

The output registers and heap states together re�ect the state in which machine ends after
executing a program. We ignore stack because it is used for allocating local, temporary variables.

3 TRAINING APPROACH

In this section, we �rst introduce the code models selected for this study, followed by a detailed
presentation of our training work�ow.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

112:6 Qian Chen, Chenyang Yu, Ruyan Liu, Chi Zhang, Yu Wang, Ke Wang, Ting Su, and Linzhang Wang

3.1 Models of Code

CuBERT. Built upon BERT [Devlin et al. 2019] (Bidirectional Encoder Representations from
Transformers), the core of CuBERT [Kanade et al. 2020] is a multi-layer bidirectional Trans-
former [Vaswani et al. 2017]. CuBERT is a natural application of BERT in programming language
tasks. Similar to BERT, CuBERT is �rst pre-trained on a larger dataset to learn general code embed-
dings and then �ne-tuned on a smaller dataset for speci�c downstream tasks such as variable-misuse
classi�cation, wrong binary operator prediction, and exception type prediction.

CodeBERT. CodeBERT [Feng et al. 2020] is among the latest models of code based on BERT. Unlike
CuBERT, CodeBERT is a bimodal code model for programming language and natural language.
A main point of novelty is its capability to pre-train with both bimodal data (i.e., code-text pairs)
and unimodal data (i.e., code or text alone). CodeBERT achieves state-of-the-art results on several
cross-lingual prediction tasks like code search and code document generation.

GGNN. GGNN (Gated Graph Neural Network) [Allamanis et al. 2018], a variant of Graph neural
network, has been widely used in machine learning models of source code. Central to GGNN is the
message-passing mechanism, and the way it works is at each message-passing step, every node
sends messages to its neighbors and summarizes messages received from its neighbors which it
uses together with its prior state to compute the new state with a GRU cell [Cho et al. 2014].

Graph Sandwiches. Graph Sandwiches [Hellendoorn et al. 2019] aims to replicate the strength
of sequence models in learning global data properties for a base graph model. Speci�cally, it
incorporates sequential layers into message-passing steps of graph neural networks such that
the node embeddings are not solely learned from the message-passing layers, the way that node
representations are learned in a typical GNN, but also from sequence models like RNN [Rumelhart
and McClelland 1987] or Transformer.

3.2 Training Workflow

Our training work�ow consists of three stages: generalized pre-training, specialized pre-training,
and �ne-tuning. Below, we give the details of each training stage.

3.2.1 Generalized Pre-Training. The generalized pre-training stage corresponds to the pre-training
phase in the widely-used, two-stage learning approach, namely generative pre-training followed
by discriminative �ne-tuning. The goal of this stage is to learn general, foundational properties of
source code independent of downstream prediction tasks. To design the task at the generalized
pre-training stage, we can simply adopt the pre-training tasks used in sequence models. Speci�-
cally, CuBERT is pre-trained with masked sequence token prediction and next sentence prediction

concurrently [Devlin et al. 2019; Kanade et al. 2020]. The former is to mask some percentage of
tokens in an input program at random for the model to predict. The latter is for the model to predict
if two given sentences follow each other. A sentence here refers to a logical code line which is
the shortest sequence of contiguous lines that makes up a legal statement. For CodeBERT, we use
replaced token detection [Clark et al. 2020], in which models learn to detect whether a token is
original or counterfeit generated by language models. We note that replaced token detection is
the only pre-training task of CodeBERT that can work with unimodal data (i.e., only code in our
setting). The other pre-training task, which deals with bimodal data (i.e., text and code), is not
applicable to our setting.
As GGNN and Graph Sandwiches lack well-established pre-training tasks, we leverage the pre-

training tasks commonly used in sequence models. To this end, we introduce masked graph node

prediction, based on CuBERT’s masked sequence token prediction task. This task involves randomly
masking some nodes in a program graph, which the models must then predict. For simplicity, we

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

Evaluating the E�ectiveness of Deep Learning Models for Foundational Program Analysis Tasks 112:7

only mask nodes that directly correspond to tokens of a program, such as terminal nodes in an
abstract syntax tree. Furthermore, we only consider nodes that have previously appeared in the
program prior to the masking locations. To replicate the setup of masked sequence token prediction,
we mask 15% of the nodes in each program graph for masked graph node prediction. Additionally,
we draw inspiration from CuBERT’s next sentence prediction to develop adjacent edge prediction

for GGNN and Graph Sandwiches. Speci�cally, we train these models to predict the type of edge
connecting two randomly selected nodes from a graph. We also note that in this task, the absence
of an edge is considered a prediction class.

3.2.2 Specialized Pre-Training. Specialized pre-training initiates the process of adapting model
parameters learned in the generalized pre-training stage towards the speci�c prediction tasks.
However, unlike �ne-tuning which relies on clean, ground-truth data to facilitate knowledge
transfer, specialized pre-training merely aims to learn a coarse decision boundary for the speci�c
prediction task with data that contains an acceptable amount of noise. The advantage of this
approach is that it allows models to exploit potentially unlimited amounts of labeled data produced
by corresponding program analysis methods during the specialized pre-training stage. This, in turn,
can help to more e�ectively adapt the learned model to downstream tasks during �ne-tuning stage.

For Alias Prediction, we propose a task called noisy alias prediction, where models learn from the
results of a sound may-alias [Zheng and Rugina 2008] and sound must-alias analysis [Kastrinis
et al. 2018]. As explained in Section 1, this task involves a two-step process in which models
initially (1) learn a precise decision boundary between must- and must-not-alias given that data in
these two categories is ground-truth. Subsequently, (2) models learn a rough decision boundary
between must- and may-alias, and must-not- and may-alias, respectively given that may-alias data
is noisy. These decision boundaries, those learned in Step (2) in particular, will be re�ned in the
later �ne-tuning stage. Because separating must- and must-not-alias (which is the main objective
of the specialized pre-training stage) is an easier sub-task in alias prediction since they are the
two extremes of aliasing relations, and di�erentiating between must-/must-not-alias and may-alias
(which is the main objective of �ne-tuning stage) poses a greater challenge. Speci�c to GGNN and
Graph Sandwiches, our pre-training work�ow (generalized pre-training followed by specialized
pre-training) aligns with Weihua et al. [2020]’s approach for pre-training graphs models in general:
pre-training tasks should enable graph models to capture both local (e.g., nodes and edges) and
global (e.g., graph-level) properties. Clearly, the former is the objective of generalized pre-training
while the latter is the objective of specialized pre-training in our training approach.

For Equivalence Prediction, we design noisy functional equivalence prediction task where models
learn to predict whether or not two programs have the same input-output pair. In this task, models
learn from results of a testing method for functional equivalence [Jiang and Su 2009]. Since this
testing method can only refute the equivalence of two programs, it yields ground-truth data for
inequivalent programs and noisy data for equivalent programs. Using these labeled data, models
aim to learn a coarse separation of programs w.r.t. (a noisy version of) functional equivalence,
which later will be re�ned w.r.t. (the exact version of) semantic equivalence.

3.2.3 Fine-Tuning Tasks. After the generalized and specialized pre-training stages, models undergo
�ne-tuning tasks that directly correspond to the prediction tasks in this evaluation — alias prediction
or equivalence prediction. During the �ne-tuning stage, only ground-truth data is used to complete
the adaption of model parameters learned from the two pre-training stages towards the downstream
prediction tasks. Figure 1 depicts the training work�ow for all evaluated models. Speci�cally,
CuBERT undergoes concurrent training in the generalized pre-training stage for masked sequence
token prediction and next sentence prediction. CodeBERT is trained with replaced token detection
during the generalized pre-training stage. Bothmodels are then trained with noisy alias prediction or

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

112:8 Qian Chen, Chenyang Yu, Ruyan Liu, Chi Zhang, Yu Wang, Ke Wang, Ting Su, and Linzhang Wang

Generalized Pre-Training

Graph Models

Sequence Models

Masked Graph Node Prediction

Masked Sequence Token Prediction
 + Next Sentence Prediction

Replaced Token Detection

Noisy Alias Prediction

Noisy Functional
Equivalence Prediction

Alias Prediction

Equivalence Prediction

Specialized Pre-Training Fine-Tuning

Adjacent Edge Prediction

OR

Fig. 1. The complete training workflow.

noisy functional equivalence prediction during the specialized pre-training stage before being �ne-
tuned on each prediction task. GGNN and Graph Sandwiches follow the same training work�ow,
starting with masked graph node prediction followed by adjacent edge prediction. In practice, this
order yields minor advantages over models trained concurrently or in reverse order. Afterward,
both models are trained with noisy alias prediction or noisy functional equivalence prediction
before being �ne-tuned on alias or equivalence prediction tasks.

4 MODEL ARCHITECTURES FOR ALIAS AND EQUIVALENCE PREDICTION

In this section, we explain how we utilize the existing architecture of each code model to solve the
two prediction tasks.

Model Architecture for Alias Prediction. Let F be a single function or a set of functions in a call
chain; let E1 and E2 denote two variables for which an aliasing relation is predicted at program point
= within F , we design models to take a 3-tuple input in the form of <F ,DefE1 ,DefE2> where DefE1
and DefE2 are the sets of de�nitions of E1 and E2 that are live at =. The reason we only consider
live de�nitions of E1 and E2 is because they are the instructions that exclusively determine the
aliasing relations of E1 and E2. Since there may be distinct de�nitions of E1/E2 that can be live at =
in the context of F ’s control �ow (e.g., both line 4 and 6 can be a live de�nition of @ at line 9 in
Figure 2a), we take into account all of them. Since the way variables are used may also provide
useful information, we introduce another design that incorporates uses of variable de�nitions from
the def-use chain [Stoltz et al. 1994]. In this design, models will take a 5-tuple input in the form
of <F ,DefE1 ,UseE1 ,DefE2 ,UseE2> as input, where UseE1 /UseE2 is a set of uses from the def-use chain
of DefE1 /DefE2 . Figure 2b illustrates the architecture of sequence models for alias prediction using
the code in Figure 2a as an example. In both designs, the �rst element of the input tuple, F , is
represented by token sequence, which is fed into sequence models to generate the �nal hidden
vector of each token in F . Regarding the embeddings of DefE1 and DefE2 , we extract the �nal hidden
vector of the token on the Left Hand Side (LHS) of DefE1 and DefE2 (e.g.,

p
31 in Figure 2b for the

de�nition of ? at line 3 in Figure 2a). Our rationale is that LHS can represent the whole de�nition
because of the way tokens communicate through the self-attention mechanism. If DefE1 or DefE2
contains multiple de�nitions, we perform mean pooling over the embeddings of every de�nition’s

LHS (e.g., mean-pooling the embedding of q
31 and

q
32 as depicted in Figure 2b). If variable uses

are not considered, then we simply feed a softmax regression layer with the concatenation of
embeddings of DefE1 and DefE2 to predict the aliasing relation between E1 and E2. Otherwise, the
following steps will be taken.
First, we compute the embedding of UseE1 or UseE2 by mean-pooling the hidden state of every

use of DefE1 or DefE2 , where each use is represented by a token that indicates the usage point of E1
or E2. For instance, p D1

and p
D2

are the two use points of the de�nition of ? at line 3 in Figure 2a,
and their embeddings are mean-pooled to produce the embedding of the uses of the de�nition

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

Evaluating the E�ectiveness of Deep Learning Models for Foundational Program Analysis Tasks 112:9

1 int main(int argc , char** argv) {

2 int x = argc;

3 int *p = &x;

4 int *q = NULL;

5 while (x < 5) {

6 q = p;

7 ++*p;

8 }

9 return *q;

10 }

(a) An example program having two

pointers ? and @.

... int * p = &x; int * q = NULL; ... q = p ; ++* p ; ... return * q ; ...

concatenation mean pooling concatenationmean pooling

CuBERT or CodeBERT

(b) The architecture of sequence models for predicting the aliasing

relation between ? (annotated as p) and @ (annotated as q).

Fig. 2. The architecture of sequence models for alias prediction.

of ? . Next, we concatenate the embedding of UseE1 or UseE2 to that of DefE1 or DefE2 to produce
the �nal embedding of E1 (denoted by �E1) or E2 (denoted by �E2). For example, concatenating the
embedding resulted from the mean-pooling of p D1

and p
D2

with p
31 produces �? as depicted

in Figure 2b. Finally, we use a softmax regression layer with the concatenation of �E1 and �E2 to
predict the aliasing relation between of E1 or E2. It is worth mentioning that we have experimented
with alternatives to mean-pooling in both cases (for computing embeddings of de�nitions and
uses) such as max pooling, weighted sum (i.e., soft attention), and none of which display a notable
improvement in either case. For graph models, after completion of the message-passing process,
we extract the embedding of nodes that correspond to the LHS of every de�nition in DefE1 and
DefE2 and every use point of DefE1 and DefE2 , then we follow the same procedure described above
for sequence models to predict the aliasing relation between E1 and E2.

Model Architecture for Equivalence Prediction. Given a tuple <F1, F2> representing the two
input programs (here F stands for the same meaning as in alias prediction), all models take the
same approach: computing the hidden vector of each token (resp., node) in the sequence (resp.,
graph), and then performing mean pooling over the hidden vectors of all tokens (resp., nodes) to
obtain a single embedding for F1 or F2. Again, Other methods such as max pooling or weighted sum
were also experimented with, but did not show notable improvement. Similar to alias prediction, we
add a one-layer softmax regression to predict the equivalence of F1 and F2 using the concatenation
of their embeddings.

5 THE DATASET

We compile three distinct datasets, including generalized pre-training dataset, specialized pre-
training dataset, and �ne-tuning dataset to suit our training approach. Regarding the programming
languages in which we build our datasets, we take into account the following factors: (1) the analysis
of source code, both dynamic and static, in the language to be chosen should be well-supported by
existing tool-chains, infrastructure, etc., such that the workload that we undertake in conducting
such a large-scale, extensive evaluation can be reduced to a minimum; (2) the source code in the
language to be chosen should present su�cient challenges in both prediction tasks. For example,
in the case of alias prediction, we require languages to be chosen to feature complicated pointer
operations (e.g., address-of assignment, load and store operations, pointer arithmetic). Because
C and C++ are likely the only languages that satisfy our criteria, and they are also foundational,
widely-used programming languages, we build our datasets with C/C++ code.

We select fourteen open-source software for our study: Linux Kernel, GCC, MySQL, Git, tmux,
Redis, curl, LevelDB, H2O, libgit2, The Silver Searcher, Protocol Bu�ers, aria2, and �sh. They range
from mid-scale (with tens of thousands lines of code) to large-scale programs (with hundreds of
thousands or even millions of lines of code), and all of them are well-established (with decades-long

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

112:10 Qian Chen, Chenyang Yu, Ruyan Liu, Chi Zhang, Yu Wang, Ke Wang, Ting Su, and Linzhang Wang

Table 1. Statistics of CodeSem.

Generalized
Pre-training

Alias Prediction Dataset Equivalence Prediction Dataset
Specialized Pre-training Fine-tuning Specialized Pre-training Fine-tuning

Functions Must. May. Must-not. Must. May. Must-not. Equiv. Inequiv. Equiv. Inequiv.

200,013 10,204 10,030 10,613 11,647 11,739 11,806 66,403 66,538 10,655 10,861

Table 2. The complexity of CodeSem evidenced by the length (resp., size) of token sequences (resp., graphs)

rendered by programs in the dataset. Overall, CodeSem is su�iciently complex to ensure the di�iculty of the

alias and equivalence prediction task.

Datasets
#tokens in sequences #nodes in graphs

min max mean median min max mean median

Generalized Pre-training 10 23192 127 68 10 75910 203 71

Alias
Specialized Pre-training 20 10858 730 335 36 25377 928 369

Fine-tuning 15 11078 738 349 38 23604 786 292

Equivalence
Specialized Pre-training 67 20129 1544 1036 40 45208 2451 1332

Fine-tuning 56 18729 1382 1131 40 40278 2158 1602

history). Table 1 in the supplemental material provides the details of each project. The source code
of those software implement a broad range of functionalities such as data transmission, memory
management, and cross-compilation, which makes our dataset diverse. All software contribute to
the generalized pre-training, the specialized pre-training, and the �ne-tuning dataset, in addition,
the three datasets are extracted from di�erent portions of the program of each software to avoid
duplicates. From each project, we collect roughly the same number of samples for each prediction
class for all three datasets. Table 1 gives an overview of CodeSem. In the subsequent sections, we
explain in detail how the three datasets are created.

5.1 Dataset of Generalized Pre-Training

The training data for all generalized pre-training tasks can be easily generated from any valid code.
Speci�cally, we extract all �les that can be parsed by Clang [Lattner 2008] from the codebase of
each software mentioned earlier, which resulted in 120,814 �les in total. From them, we randomly
pick 200,013 functions. Every function is used to generate data for all generalized pre-training tasks
for all evaluated models. The �rst row in Table 2 gives the length (resp., size) of token sequences
(resp., graphs) of the data used in the generalized pre-training tasks.

5.2 Dataset of Specialized Pre-Training and Fine-Tuning

5.2.1 Alias Prediction. We adopt a sound may- and must-alias analysis to obtain data points for the
specialized pre-training dataset. A sound may-alias analysis over-approximates aliasing relations,
ensuring that all potential alias pairs are found [Sridharan and Bodík 2006; Yong et al. 1999; Zheng
and Rugina 2008]. As a result, the results of a sound may-alias consist of ground-truth must-not-
alias and noisy may-alias which are almost certain to contain must-not-alias. In contrast, a sound
must-alias analysis computes an under-approximation of the aliasing relations that are guaranteed
to hold [Kastrinis et al. 2018]. In other words, the must-alias produced by the sound must-alias
analysis is a subset of all ground-truth must-alias pairs. Therefore, a combination of the may- and
must-alias analysis results in three types of aliasing pairs: ground-truth must-alias pairs (which are
directly found by the must-alias analysis), ground-truth must-not-alias pairs (which are directly
found by the may-alias analysis), and noisy may-alias pairs, in particular, noisy may-alias pairs are
obtained by the subtraction of must-alias pairs (found by the must-alias analysis) from may-alias
pairs (found by the may-alias analysis).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

Evaluating the E�ectiveness of Deep Learning Models for Foundational Program Analysis Tasks 112:11

As we explained above, may-alias pairs (found by the may-alias analysis) also include must-
not-alias pairs; and must-alias pairs (found by the must-alias analysis) only account for a subset
of all real must-alias pairs within may-alias pairs, therefore, the subtraction of must-alias pairs
from may-alias pairs results in a mixture of all three types of alias pairs. For this reason, we term
may-alias pairs “noisy”. The ground-truth must-alias, must-not-alias pairs, and noisy may-alias
directly constitute the specialized pre-training dataset. To obtain ground-truth data for the �ne-
tuning dataset, we begin by running the same set of analyses (on a di�erent portion of the program
of each selected software) used to generate the specialized pre-training dataset. From the results,
we select the must- and must-not-alias that are guaranteed to be correct, and then involve human
experts to label the may-alias that the analysis can not precisely determine.

Specialized Pre-training Dataset. For the may-alias analysis, we adopt the method proposed
by Zheng and Rugina [2008], which is implemented in LLVM [Lattner and Adve 2004] as an inter-
procedural, context-, �ow-, and �eld-insensitive analysis. This approach strikes a balance between
precision and scalability and is considered state-of-the-art in alias analysis. For the must-alias
analysis, we refer to the work of Kastrinis et al. [2018], who propose a novel data structure based on
equivalence classes as the backbone of their must-alias analysis. We realize their approach into an
inter-procedural, context-, �ow-, and �eld-sensitive must-alias analysis. Below, we give a detailed
presentation on how to create the specialized pre-training dataset based on those two analyses.
First, we run the must-alias analysis to identify must-alias relations. This step generates alias

classes, each of which contains variables that must alias with each other. Therefore, to create must-
alias pairs, we simply combine two variables from the same alias class. Second, we run the may-alias
analysis integrated in LLVM to obtain may-alias and must-not-alias information. Similarly, LLVM
generates alias sets where variables within each set may point to the same memory location. Thus,
combining two variables from di�erent aliasing sets results in must-not-alias pairs. To construct
may-alias pairs, we ensure that we do not reuse variables that are already identi�ed with must-alias
relation. Speci�cally, we �lter LLVM’s alias sets so that each set only contains one variable from
the same alias class generated by our must-alias analysis. Among the remaining variables in each of
LLVM’s alias sets, we combine two variables from the same set to create may-alias pairs. Regarding
the must-alias analysis, we analyzed 54,421 functions out of 120,814 �les. These functions do not
overlap with the 200,013 functions used to generate the generalized pre-training dataset. As a
result, we identi�ed 32,196 equivalence classes. On the same set of functions, LLVM produced
69,809 alias sets for the may-alias analysis. To maintain the diversity of our alias pairs, we make
each variable appear exactly once among the three classes of alias pairs. In addition, to avoid
duplication between the specialized pre-training and �ne-tuning dataset, we randomly selected
26,899 functions (out of 54,421) to construct the specialized pre-training dataset and held out the
rest for the �ne-tuning dataset. In the end, we collected 10,204 must-alias pairs, 10,030 may-alias
pairs, and 10,613 must-not-alias pairs in the specialized pre-training dataset for alias prediction.

Fine-tuning Dataset. To obtain ground-truth data for the �ne-tuning dataset, we utilize the results
of the sound may- and must-alias analysis on the holdout set of functions (27,522 in total), and
then manually label the data points that the two analysis can not precisely determine. Because the
must-alias and must-not-alias pairs are guaranteed to be correct, we focus on verifying the label of
may-alias pairs. We engaged the assistance of 32 PhD students for the labeling task, each of whom
is familiar with alias analysis. Below, we give the details of the manual labeling process.

We assigned every may-alias pair to two PhD students. When labeling a may-alias pair, human
raters see the entire codebase of the corresponding project for the sake of precision of the labeling
process. For di�cult alias pairs (e.g., those involving global information) where human raters
disagree, we design a separate procedure to resolve their labels. For circumstances where raters

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

112:12 Qian Chen, Chenyang Yu, Ruyan Liu, Chi Zhang, Yu Wang, Ke Wang, Ting Su, and Linzhang Wang

disagree whether an alias pair is may-alias or must-alias, we �rst instrument all program paths
that one rater (i.e., the one who gives the may-alias label) thinks the two pointers are not alias, in
particular, we log the memory locations that the two pointers point to on those paths. Then, we use
AFL [Zalewski 2016] to fuzz test the program. After the fuzzer �nishes, we check via the log if the
two pointers ever point to di�erent memories on any of these instrumented paths. If so, they are
may-alias, otherwise, we check if the fuzzer indeed covered all instrumented paths, if so, we label
them must-alias; if not, we simply discard this alias pair because its label can not be determined.
Similarly, when human raters disagree on whether an alias pair is may-alias or must-not-alias, we
check if the two pointers ever point to the same memories on the paths which one rater (the one
who gives the may-alias label) thinks they are alias. If we �nd that the two pointers point to the
same memory on at least one instrumented path, they are may-alias, otherwise, we label them
must-not-alias or discard them depending on whether the fuzzer has covered all instrumented
paths.

Based on the above-mentioned approach for determining the labels of alias data, we now validate
if the construction of ground truthmatches the prediction samples that models would work with.We
address each of the three classes of alias pairs separately for discussion. (1) For must-not-alias pairs
identi�ed by sound may-alias analysis, we con�gure LLVM to produce all intermediate analysis
steps. In particular, whatever code are used by the analysis will be included in the construction of
the data points, in other words, models consume the same information that the analysis does for
determining the must-not alias relations. (2) Similarly, for must-alias pairs identi�ed by the sound
must-alias analysis, we also include all code consumed by the analysis to construct the data points.
This means again models observe the same information in a data point that the analysis uses to
determine the must-alias relations. (3) For each noisy may-alias pair, human raters, assisted by
fuzzers, identify the scope of code from which the ground-truth can be determined. All code falling
within this scope will be included in the construction of the data point. Consequently, in all cases,
we ensure there is no mismatch between model predictions and the construction of ground truth.

The entire labeling process took approximately �ve months. Overall, the average inter-rater
reliability is good, with a kappa score of 0.86. In the end, we collected 11,647 must-alias pairs, 11,739
may-alias pairs, and 11,806 must-not-alias pairs for the �ne-tuning dataset. The second and third
rows of Table 2 present the length (resp., size) of token sequences (resp., graphs) for alias prediction.
Clearly, these data points are su�ciently complex to ensure the di�culty of the alias prediction
task. As shown in Table 1, the generalized pre-training dataset contains substantially more data
points than the specialized pre-training and �ne-tuning datasets because small programs that do
not contain any aliases are included in the generalized pre-training dataset but are ineligible for
the specialized pre-training and �ne-tuning datasets.

5.2.2 Equivalence Prediction. We build an automated data pipeline to create the specialized pre-
training dataset. The pipeline consists of two steps: (1) extracting code fragments from the program
of selected software; (2) testing their functional equivalence dynamically. Regarding the �ne-tuning
dataset, we �rst run the same data pipeline on a di�erent portion of the program of each selected
software, and then manually con�rm if the code tested to be functionally equivalent is semantically
equivalent, considering that functionally inequivalent code is knowingly semantically inequivalent.

Specialized Pre-training Dataset. In our e�orts to create a specialized pre-training dataset for
equivalence prediction, we seek out code that are functionally equivalent, meaning, they have the
same input-output pairs. To achieve this, we rely on EqMiner [Jiang and Su 2009], which adopts
a random-testing-based approach to extract code fragments that are functionally equivalent. For
all selected software programs, EqMiner generates 3,680 equivalent sets from 15,067 functions
in 120,814 C/C++ �les. Again, these functions do not overlap with any of the 200,013 functions

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

Evaluating the E�ectiveness of Deep Learning Models for Foundational Program Analysis Tasks 112:13

reserved for the generalized pre-training dataset. Code fragments within an equivalent set are
likely equivalent to each other, while code fragments from di�erent equivalent sets are known to be
inequivalent. Based on the output of EqMiner, collecting equivalent code pairs is straightforward:
combining any two elements in each equivalent set. To form inequivalent code pairs, we combine
elements from di�erent equivalent sets. Following our approach to creating the dataset for alias
prediction, we make each code fragment appear only once in either equivalent code pairs or
inequivalent code pairs to ensure the diversity of our dataset. To avoid duplicates between the
specialized pre-training and �ne-tuning datasets for equivalence prediction, we adopt a similar
approach as we did for alias prediction. Speci�cally, we randomly selected half of the equivalent sets
generated by EqMiner to construct the specialized pre-training dataset, while holding out the other
half for the �ne-tuning dataset. In total, we collected 66,403 equivalent and 66,538 inequivalent
code pairs in the specialized pre-training dataset.

Fine-tuning Dataset. For the remaining equivalent sets (1,840 in total), we check if code fragments
in each set are indeed semantically equivalent, considering that code fragments from di�erent sets
are certain to be semantically inequivalent. We enlisted the help of 130 undergraduate students from
the computer science department at our university for this task. Since code segments produced
by EqMinder are always self-contained, meaning, they include all the information needed to
determine the label, raters only need to inspect the code fragments as presented. Much like in
alias prediction, it’s important to emphasize that there is no mismatch between the construction
of ground truth and the presentation of prediction samples. This is because models deal with the
very same code fragments that EqMiner/human raters do when con�rming their labels. Each code
pair was inspected by 2 students, and the labeling process took just over two months to complete.
On average, the inter-rater reliability, as measured by the kappa score, is 0.72. In the end, we
obtained 10,655 equivalent code pairs and 10,861 inequivalent code pairs. Inequivalent code pairs
are collected in the same way as they are in the specialized pre-training stage. The last two rows in
Table 2 give the length (resp., size) of token sequences (resp., graphs) for equivalence prediction.
As with alias prediction, specialized pre-training and �ne-tuning datasets contain less data than
generalized pre-training dataset due to the exclusion of small functions.

6 EXPERIMENTS

In this section, we provide an overview of our experimental setup and describe the program
representations used by each code model in our evaluation. We then present the results of all
models in both alias and equivalence prediction tasks. Finally, we conduct an in-depth analysis of
the models’ results in these two prediction tasks and discuss our �ndings.

6.1 Experimental Setup

Vocabulary. Since CodeSem does not have a particularly large vocabulary size or frequent occur-
rence of rare words, we do not adopt BPE [Sennrich et al. 2016] to address the out-of-vocabulary
issue. Instead, we take a simpler approach by constructing the vocabulary at the word-level while
excluding rare words. Speci�cally, we consider tokens that appeared at least ten times among all
data points in CodeSem. For tokens that appear less than ten times, we replace them with [$$+]

in both the training and test datasets. The sequence model has a vocabulary size of 190,029, while
the graph model has a vocabulary size of 277,302.

Hyperparameters. To ensure the optimal performance of each code model, we tune their hyperpa-
rameters using Bayesian Optimization [Martinez-Cantin 2014], a common method for hyperparam-
eter tuning. We normalize all evaluated models w.r.t. the number of model parameters, which is

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

112:14 Qian Chen, Chenyang Yu, Ruyan Liu, Chi Zhang, Yu Wang, Ke Wang, Ting Su, and Linzhang Wang

Table 3. Important hyperparameters for each code model.

Models Patience Batch size #Attention heads #Layers Hidden size Learning rate Optimizer

CuBERT 20 32 4 4 256 5e-5 Adam

CodeBERT 20 32 4 4 256 5e-5 Adam

GGNN 20 72 / 5 192 0.001 Adam

Graph
Sandwiches

20 72 / 5 192 0.001 Adam

Table 4. The train-test split of CodeSem on which CuBERT achieves the median accuracy.

Generalized Pre-training
Training Validation
115,528 52,907

Alias Prediction
Specialized Pre-training Fine-tuning
Training Validation Training Validation Test
17,420 5,638 21,163 6,991 7,038

Equivalence Prediction
Specialized Pre-training Fine-tuning
Training Validation Training Validation Test
83,054 31,826 14,012 3,201 4,303

around 3M per model. Table 3 shows the value for some of the most important hyperparameters
for each code model.

Validity of Models. We validate all code models on their original tasks. The details are provided
in Section 2 of the supplemental material.

Prediction Se�ing. Given the high degree of similarity that can exist between code from the same
project, we evaluate the models in a cross-project prediction setting. Speci�cally, we perform 14
rounds of cross-validation, with each project left to the test set in turn, and the models trained
on the remaining projects. When a project is reserved for the test set, we �rst remove all its code
from the generalized and specialized pre-training dataset, then use only its data points on the
�ne-tuning dataset to construct the test set. This approach ensures that models do not observe any
code from the project reserved for the test set during the training process. To report our evaluation
results, we choose the train-test split where a model achieves the median accuracy among all splits
(hereinafter referred to as the median model). Table 4 presents the details about the train-test split
for the median model of CuBERT. Those for the other code models are left to the supplemental
material (Section 3).

Metric. First, we adopt accuracy, a standard metric, to evaluate the performance of models. In
order to provide a holistic view of models’ performance, we also report their accuracy for each
prediction class. In alias prediction, we report the accuracy of (median) models for must-, may-,
and must-not-alias, respectively (represented by the three numbers in parentheses in each cell in
Table 5). In equivalence prediction, we report the accuracy of (median) models for equivalent and
inequivalent code pairs (represented by the two numbers in parentheses in each cell in Table 6).
Additionally, we take con�dence intervals into account and use a common con�dence level of 95%
to compute them [Cao et al. 2022; Pantiuchina et al. 2021; Sun et al. 2022]. This provides a more
accurate representation of the performance of each (median) model.

Hardware. All experiments are carried out on a Ubuntu 18.04.6 LTS server, with 10 Intel Xeon
Gold 6248 CPUs @ 2.50GHz, 2 NVIDIA Tesla A100 GPUs (80GB GPU memory).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

Evaluating the E�ectiveness of Deep Learning Models for Foundational Program Analysis Tasks 112:15

6.2 Program Representations

We investigate the impact of di�erent code representations on graph models only since CuBERT
and CodeBERT simply take code as token sequences.

6.2.1 AST with Additional Edges. It is the original code representation designed for GGNN. To
represent both the syntactic and semantic structure of code, Allamanis et al. [2018] propose a
program graph that incorporates extra edges into ASTs (e.g., connecting each terminal node to its
successor, connecting a variable to others that the variable is data or control dependent on).

6.2.2 Leaves-Only Graph. Leaves-only graph, originally proposed by Hellendoorn et al. [2019] for
Graph Sandwiches, consists of exclusively the terminal nodes fromASTs. Speci�cally, after removing
standard AST edges (i.e., parent-child edge), it moves down other edges (inherited from Allamanis
et al. [2018] work) from non-terminal nodes – which typically represent a span of multiple tokens
– to terminal nodes that represent the starting token of that span. For example, an edge that is
used to connect AST nodes of two ForStatement will be moved down to connect the corresponding
for tokens. This representation has two advantages: (1) it is substantially more compressed than
AST-based graphs, and often uses fewer nodes while retaining most edges; additionally (2) it
accommodates sequence models better because all edges are directly connected among tokens.

6.2.3 Control Flow Graph. We adopt the Control Flow Graph (CFG)-based representation presented
by Wang et al. [2020]. Speci�cally, given a standard CFG, we �rst split a graph node representing a
basic block into multiple nodes, each of which is a single statement. Subsequently, we add additional
edges to connect every statement with its immediate successor within the same basic block. For
edges in the original control �ow graphs, we change their start (resp., end) nodes from a basic
block to its last (resp., �rst) statement after the split. Then, we design two statement representation
methods: (1) we replace each statement node with a sequence of nodes, among which each node
represents a token in the statement. Speci�cally, every token node is connected to its immediate
successor, and the �rst token node will become the new start or end node of edges that were
connecting the statement nodes before (hereinafter, this whole program representation scheme is
abbreviated to CFG+token seq); (2) we replace each statement node with its abstract syntax tree,
the method proposed by Si et al. [2018]. The root nodes of each AST are used to connect statements
in the CFG. In the remainder of this paper, we refer to this program representation as CFG+AST.

6.2.4 Program Dependence Graph. The last program representation is based on program depen-
dence graph (PDG) which makes explicit both the data and control dependence for each operation
in a program [Ferrante et al. 1987]. Like CFG-based graph representation, we represent every node
in a PDG, which is a single statement, by its token sequence (hereinafter denoted by PDG+toke seq)
or abstract syntax tree (hereinafter denoted by PDG+AST). Section 4 in the supplemental material
gives an example of this graph representation.

Inter-Procedure Code Representations. For sequence models, we concatenate the token sequence
of each function in the order it is called. For example, when Fun1 calls Fun2 which then calls Fun3 ,
we concatenate the token sequence of Fun1, Fun2 , and Fun3 in turn. For graph models, we �rst
construct the graph for each function as described above, and then connect the node representing
the callsite in the caller to the entry (or root) node in the CFG/PDG (or AST) of the callee.

6.3 Results of Alias Prediction

During training, we adopt a common approach — early stopping [Prechelt 1998] — to prevent
models from over�tting. As displayed in Table 3, the patience is set to be 20 (i.e., we wait 20 epochs
before early stop if no progress on the validation set). Figure 3 plots the training and validation

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

112:16 Qian Chen, Chenyang Yu, Ruyan Liu, Chi Zhang, Yu Wang, Ke Wang, Ting Su, and Linzhang Wang

0 20 40 60 80 100
0

20

40

60

80

100

Epochs

A
cc
u
ra
cy

(%
)

(a) the generalized pre-training

stage of sequence models

0 20 40 60 80 100
0

20

40

60

80

100

Epochs

A
cc
u
ra
cy

(%
)

(b) the specialized pre-training

stage of sequence models

0 20 40 60 80 100
0

20

40

60

80

100

Epochs

A
cc
u
ra
cy

(%
)

CuBERT training accuracy
CuBERT validation accuracy
CodeBERT training accuracy
CodeBERT validation accuracy

(c) the fine-tuning stage of se-

quence models

0 20 40 60 80 100
0

20

40

60

80

100

Epochs

A
cc
u
ra
cy

(%
)

(d) the generalized pre-training

stage of graph models

0 20 40 60 80 100
0

20

40

60

80

100

Epochs

A
cc
u
ra
cy

(%
)

(e) the specialized pre-training

stage of graph models

0 20 40 60 80 100
0

20

40

60

80

100

Epochs

A
cc
u
ra
cy

(%
)

GGNN training accuracy
GGNN validation accuracy
Sandwich training accuracy
Sandwich validation accuracy

(f) the fine-tuning stage of graph

models

Fig. 3. The trend of models’ accuracy on training and validation sets w.r.t. the number of epochs at each

training stage in alias prediction. For each code model, the curves correspond to the median model that

achieves the highest test accuracy among those adopting di�erent def-use configuration, and consuming

di�erent program representations. These median models (with the highest accuracies) are precisely the ones

that learned from the train-test split presented in Table 4 and Section 3 of the supplemental material.

accuracy of median models over training epochs for all code models, in particular, at each training
stage, models are saved at the point when their accuracies on the validation set reach the apex.
We compare the performance of models trained with our approach against those trained with
pre-training (using generalized pre-training dataset) and �ne-tuning (using �ne-tuning dataset).
Table 5 presents the results from which we summarize important �ndings below:

• With a con�dence level of 95%, we compute the con�dence interval for all models to fall in
the range of (-1.0%,+1.0%), strongly indicating our results provide an accurate representation
of models’ performance in alias prediction. In terms of accuracy, sequence models performed
notably better than graph models, with CuBERT and CodeBERT achieving the highest accuracy
of 89% and 84% while GGNN and Graph Sandwiches achieving the highest accuracy of 78% and
81%. The choice of program representation is crucial to the performance of graph models. The
accuracy of the same model can vary drastically with di�erent program representations. For
example, when GGNN switches from PDG+token seq to CFG+AST while keeping the other
factors unchanged (trained with our approach and adopting the con�guration of DEF+USE for
variable embedding), it experienced a 29% accuracy drop.

• In most cases, embedding variables with uses leads to a higher overall model accuracy than
without. Occasionally, incorporating uses can also hurt model accuracy. This may be caused by
complicated usage patterns of variables that negatively a�ect the precision of their embeddings.
After all, the way that variables are used does not fundamentally determine whether they are
alias or not. Regarding the comparison between our training approach and pre-training and
�ne-tuning, models trained with our approach are almost always more accurate than those
undergoing pre-train and �ne-tuning. In fact, with the same def-use con�guration for variable

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

Evaluating the E�ectiveness of Deep Learning Models for Foundational Program Analysis Tasks 112:17

Table 5. Results of alias prediction. All numbers in the table are percentages of accuracy and those in paren-

theses represent the accuracy of median models for must-alias, may-alias, and must-not-alias, respectively.

Numbers in bold are the highest accuracy of each model.

Models
Program

Representation

Generalized, Specialized
Pre-training + Fine-tuning

Pre-training +
Fine-tuning

DEF+USE DEF DEF+USE DEF

GGNN

AST+extra edges 63 (69, 95, 25) 62 (70, 88, 29) 66 (80, 92, 27) 65 (72, 79, 44)
CFG+token seq 74 (71, 68, 85) 60 (10, 87, 82) 72 (63, 69, 84) 57 (27, 53, 90)

CFG+AST 49 (62, 79, 41) 44 (10, 62, 48) 47 (48, 83, 40) 33 (44, 36, 31)
PDG+token seq 78 (74, 70, 90) 65 (62, 49, 89) 74 (66, 70, 87) 63 (57, 60, 74)

PDG+AST 77 (60, 84, 93) 66 (59, 55, 89) 75 (70, 78, 80) 59 (59, 46, 71)

Graph
Sandwiches

Leaves-only graph 55 (56, 69, 39) 55 (57, 73, 35) 54 (60, 66, 35) 52 (53, 80, 22)
CFG+token seq 69 (47, 78, 82) 66 (47, 70, 80) 69 (46, 73, 87) 65 (45, 71, 78)

CFG+AST 48 (51, 67, 44) 46 (57, 55, 42) 49 (47, 78, 44) 46 (58, 51, 42)
PDG+token seq 71 (59, 68, 88) 74 (64, 74, 88) 67 (39, 84, 84) 71 (62, 67, 84)

PDG+AST 81 (75, 78, 89) 72 (73, 86, 59) 79 (74, 91, 74) 77 (65, 85, 83)

CuBERT Token Seq 89 (88, 88, 89) 87 (86, 88, 89) 87 (89, 84, 89) 86 (85, 85, 89)

CodeBERT Token Seq 83 (73, 85, 89) 84 (75, 87, 89) 81 (71, 84, 89) 77 (66, 87, 89)

embedding and program representation, 18 out of 24 models achieve higher accuracies thanks
to our training work�ow. While the improvement may not be substantial, its consistency in
producing models with higher accuracies is a testament to its e�ectiveness.

• CuBERT, the most accurate model, also exhibits the most balanced accuracy across all three
labels. CodeBERT also achieves balanced accuracies to a certain extent. Graph models display a
wide range of results: on the one hand, GGNN and Graph Sandwiches achieve rather balanced
accuracies while achieving the highest accuracy; on the other hand, their accuracy heavily skew
towards a certain category, causing signi�cant disparity for all three labels. We suspect that
program representation is an important factor to how balanced models’ accuracies will be.

• Due to hardware constraints, code samples having more than 2,000 tokens, which amounts to
less than 5% of the alias data in CodeSem, do not �t into the attention windows of CuBERT or
CodeBERT [Kitaev et al. 2020]. For these code samples, we adopt the approach of prior work [Puri
et al. 2021] by truncating the code samples to the �rst 2,000 tokens. If the �rst 2,000 tokens do
not contain any live de�nition for either of the two variables, the code sample is discarded. As a
result of this truncation, almost all of the retained code samples only have partial information
about the predicted pointers (i.e., lacking either de�nition or use for at least one variable). Despite
this, both CuBERT and CodeBERT achieve approximately the same accuracy for the truncated
code as they do for the complete code. This �nding suggests that even partial information about
the pointers is su�cient to express their aliasing relations. Additionally, sequence models are
highly capable of capitalizing such partial information to solve the alias prediction task.

• The may-alias analysis [Zheng and Rugina 2008] that we rely on to construct CodeSem achieves
12.5% accuracy for must-not-alias. We note that classical may-alias analysis do not di�erentiate
must-alias frommay-alias, therefore they can not deal with may- andmust-alias pairs inCodeSem.
If may-alias and must-alias are combined into a single prediction class, the analysis would achieve
100% in this category thanks to its soundness guarantees. The must-alias analysis [Kastrinis et al.
2018] achieves 30.7% accuracy on must-alias pairs, and it can not handle the other two categories
in the alias prediction task. Similarly, when must-not-alias are combined with may-alias as a
single prediction class, the analysis would achieve 100% accuracy. To sum up, in terms of accuracy,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

112:18 Qian Chen, Chenyang Yu, Ruyan Liu, Chi Zhang, Yu Wang, Ke Wang, Ting Su, and Linzhang Wang

0 20 40 60 80 100
0

20

40

60

80

100

Epochs

A
cc
u
ra
cy

(%
)

(a) the generalized pre-training

stage of sequence models

0 20 40 60 80 100
0

20

40

60

80

100

Epochs

A
cc
u
ra
cy

(%
)

(b) the specialized pre-training

stage of sequence models

0 20 40 60 80 100
0

20

40

60

80

100

Epochs

A
cc
u
ra
cy

(%
)

CuBERT training accuracy
CuBERT validation accuracy
CodeBERT training accuracy
CodeBERT validation accuracy

(c) the fine-tuning stage of se-

quence models

0 20 40 60 80 100
0

20

40

60

80

100

Epochs

A
cc
u
ra
cy

(%
)

(d) the generalized pre-training

stage of graph models

0 20 40 60 80 100
0

20

40

60

80

100

Epochs

A
cc
u
ra
cy

(%
)

(e) the specialized pre-training

stage of graph models

0 20 40 60 80 100
0

20

40

60

80

100

Epochs

A
cc
u
ra
cy

(%
)

GGNN training accuracy
GGNN validation accuracy
Sandwich training accuracy
Sandwich validation accuracy

(f) the fine-tuning stage of graph

models

Fig. 4. The trend of models’ accuracy on training and validation sets w.r.t. the number of epochs at each

training stage in equivalence prediction. For each code model, the curves correspond to the median model

that achieves the highest test accuracy among those consuming di�erent program representations.

all deep learning models are far superior to the two alias analyses, however, alias analyses provide
theoretical guarantees on the correctness of certain alias pairs that deep learning models can not.

6.4 Results of Equivalence Prediction

Figure 4 plots the training and validation accuracy of median models over training epochs for all
code models. Similar to the approach taken in alias prediction, we save models at the point when
their accuracies on the validation set reach the apex at each training stage to prevent over�tting.
We present the results for all median models in Table 6. The key �ndings are summarized below.

• Similar to the results in the alias prediction task, all models achieved a con�dence interval
between -1.4% to +1.4% at a 95% con�dence level. Again, this strongly indicates our results are
an accurate re�ection of models’ performance in equivalence prediction. All models achieved
comparable high accuracy in this task. Speci�cally, CuBERT, which achieves the highest accuracy
at 84%. CodeBERT, GGNN, and Graph Sandwiches are close behind achieving the accuracy of
81%, 81%, and 79%, respectively. In general, all models achieve balanced accuracy.

• Compared to alias prediction, the role of program representation is less signi�cant in the per-
formance of graph models in equivalence prediction. Nevertheless, both GGNN and Graph
Sandwiches show a swing in accuracy of 5% to 10% depending on the program representation
used. Interestingly, both models achieve their highest accuracy with PDG+AST. Together with
the results of alias prediction, this demonstrates the power of PDG as a principled program
representation for learning code models for foundational program analysis tasks.

• In almost all cases, models undergoing our training work�ow are more accurate than those trained
with pre-training and �ne-tuning. These results and those of the alias prediction task con�rm
the role of the specialized pre-training stage in training models towards solving foundational
program analysis tasks.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

Evaluating the E�ectiveness of Deep Learning Models for Foundational Program Analysis Tasks 112:19

Table 6. Results of equivalence prediction. All numbers in the table are percentages of accuracy and those

in parentheses represent the accuracy of models for equivalent and inequivalent programs, respectively.

Numbers in bold denote the highest accuracy achieved by each model.

Models
Program

Representation
Generalized, Specialized
Pre-training + Fine-tuning

Pre-training +
Fine-tuning

GGNN

AST+extra edges 79 (83, 75) 76 (79, 74)
CFG+token seq 76 (81, 72) 71 (66, 76)

CFG+AST 79 (82, 77) 72 (67, 77)
PDG+token seq 80 (83, 77) 78 (79, 77)

PDG+AST 81 (84, 78) 80 (87, 73)

Graph
Sandwiches

Leaves-only graph 79 (83, 74) 77 (78, 77)
CFG+token seq 74 (75, 74) 73 (67, 78)

CFG+AST 69 (64, 74) 71 (69, 74)
PDG+token seq 78 (80, 76) 77 (78, 76)

PDG+AST 79 (86, 72) 77 (76, 78)

CuBERT Token Seq 84 (86, 82) 83 (86, 80)

CodeBERT Token Seq 81 (79, 82) 80 (80, 80)

• To ensure that all code samples can �t into the attention windows of CuBERT or CodeBERT,
we truncate larger programs, which make up around 4% of the equivalence data in our dataset,
to their �rst 2,000 tokens. When tested on these truncated programs, CuBERT and CodeBERT
achieve 72% and 67% accuracy, respectively. Both are signi�cantly lower than their accuracies on
the complete code. This is an expected result since semantic equivalence, a global code property,
requires models to reason about code in their entirety. This highlights a potential limitation of
BERT-based models in predicting global properties of large programs due to hardware constraints.

6.5 A Deep, Comprehensive Analysis of the Results of All Models

We conduct an in-depth analysis of the results of evaluated models to gain an insight into their
ability to solve the alias and equivalence prediction task. In particular, we focus on alias pairs (i.e.,
must-alias and may-alias pairs) and equivalent code pairs, which are also the point of study in alias
analysis and equivalence checking, in this qualitative evaluation. For GGNN and Graph Sandwiches,
we pick the model that achieved the best results (among di�erent program representations and
def-use con�guration) in our experiments previously for this qualitative analysis.

6.5.1 Analyzing Model Results in Alias Prediction.

Investigating the impact of NL-level information in code. To investigate the impact of natural
language-level (NL-level) information in code, such as comments and variable names, on model
performance, we devise the following experiment. First, our models do not consider comments in
the code, thus they do not have any impact on model performance. Second, to anonymize variable
identi�ers, we assign variables with randomly generated names (consisting of letters and digits) in
each code example. After these two steps, we retrain models on these code examples without any NL-
level information. Results show that for CuBERT or CodeBERT, the drop inmodel accuracy is around
2% on average across ten runs. For GGNN and Graph Sandwiches, the decrease in model accuracy
is around 4% on average across ten runs. Based on this observation, we conclude that the NL-level
information in code has a minimal impact on model performance in alias prediction. The reason
that NL-level information barely a�ects model accuracies is that NL-level information is unrelated
to the essence of the prediction task, speci�cally, the aliasing relation between pointer variables is
independent of their names. Also, our training data does not exhibit spurious correlations [Ribeiro

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

112:20 Qian Chen, Chenyang Yu, Ruyan Liu, Chi Zhang, Yu Wang, Ke Wang, Ting Su, and Linzhang Wang

Table 7. Model accuracy w.r.t. the distance of aliasing relations. The first/second number in every cell is the

accuracy of a code model for must-alias/may-alias pairs.

Models
Distance

0 1 ≤ � < 4 4 ≤ � < 7 7 ≤ � < 10 10 ≤ �

CuBERT 91%, 90% 91%, 93% 84%, 88% 84%, 85% 80%, 81%

CodeBERT 77%, 88% 74%, 92% 80%, 91% 72%, 86% 70%, 82%

GGNN 80%, 73% 75%, 69% 72%, 65% 72%, 66% 58%, 59%

Graph Sandwiches 80%, 80% 72%, 83% 73%, 82% 72%, 77% 63%, 65%

et al. 2016] pertaining to NL-level information (as veri�ed by human raters in the labeling process),
thus, models can not pick up NL artifacts in code examples to link with their labels.

Exploring model performance for alias pairs w.r.t. locality. In a systematic evaluation, we
examine how accuracies of code models vary with the locality of alias pairs. Speci�cally, we
investigate whether code models are only capable of handling local aliases or whether they can
also handle aliases that span several statements. To answer this question, we �rst de�ne a metric
called distance (�) that measures the number of statements between the de�nitions that make
two variables alias. Formally, let ? be a program path along which [31, 32, . . . 3=] are de�nitions
(executed in order) that make two variables alias. The distance metric counts the number of
statements between the execution of the �rst de�nition 31 and the last de�nition 3= . If two variables
become alias due to one de�nition such as int ∗?,∗@;? = @;, then their distance is 0. Next, we classify
must- and may-alias pairs in the test set of each code model into �ve categories based on the distance
metric: � = 0, 1 ≤ � < 4, 4 ≤ � < 7, 7 ≤ � < 10, and 10 ≤ � . We record the accuracy of each
code model in each category and report the results in Table 7. Although in most cases all models
become less accurate as the distance of alias pairs increases, they still achieve acceptable accuracy
in general. For example, no model has a decrease of more than 8% accuracy when � < 10 for either
must- or may-alias pairs, demonstrating a level of sustainability across the locality spectrum.

Last but not least, we also observe that all code models coped with di�erent types of assignments
that make variables aliases, such as address-of (? = &@), load (∗? = @), store (? = ∗@), indicating that
all models have learned a comprehensive set of semantic features for predicting aliasing relations.
Overall, our analysis shows that all models have adequately solved the alias prediction task.

6.5.2 Analyzing Model Results in Equivalence Prediction. We skip the analysis of the impact of
NL-level information on model performance. Because (1) like in alias prediction, models do not
take into account comments in the code either during training or test; and (2) code examples in
CodeSem, which are generated by EqMiner, are already anonymized.

Con�rming the Validity of CodeSem. First and foremost, we validate CodeSem for equivalence
prediction. As we explained at the very beginning of this paper, equivalence prediction task requires
models to predict whether or not two programs are semantically equivalent. This means that data
points in CodeSem should not be simple, syntax-level code clones that can be easily detected by
syntactic similarity. To con�rm this, we run a well-established, highly impactful clone detection
tool, Deckard [Jiang et al. 2007], on the test set of each code model. Our results show that in the
best case (on CuBERT’s test set) Deckard has 61% (resp., 63%) accuracy on pairs of equivalent
(resp., inequivalent) programs, which is marginally higher than the chance-level accuracy. We have
experimented with a wide range of Deckard’s hyperparameters and the results above are the optimal
in balancing the precision (aiming to avoid reporting false clones) and recall (aiming to capture all
real clones). The experiments con�rm the validity of CodeSem for equivalence prediction.
Since semantic clone detection [Roy et al. 2009] shares some similarities with the equivalence

prediction task, we choose Tailor [Liu et al. 2023], the most recent tool for semantic clone detection,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

Evaluating the E�ectiveness of Deep Learning Models for Foundational Program Analysis Tasks 112:21

to evaluate on CodeSem. Tailor exhibits outstanding performance on BigCloneBench [Svajlenko
et al. 2014] and OJClone [Mou et al. 2016], achieving close to 100% accuracy on both benchmarks.
Like our models, Tailor is deployed to predict in a cross-project setting: we evaluate Tailor on each
train-test split of CodeSem and report the median accuracy that Tailor achieves. We note that we
have tuned Tailor’s hyperparameters using Bayesian Optimization to ensure that it achieves its
optimal performance on CodeSem. We �nd that Tailor attains a median accuracy of 68% (47% and
88% on pairs of equivalent and inequivalent programs respectively), which is signi�cantly lower than
its accuracy on BigCloneBench and OJClone. The degradation of Tailor’s performance highlights a
substantial disparity between equivalence prediction and semantic clone detection. In particular,
Tailor’s struggle against equivalent programs (which is the main subject of equivalence prediction)
strongly indicates the advantages of CodeSem over existing benchmarks. Since CodeSem’data is
extracted from well-established, real-world programs, it poses a bigger challenge to code models
compared to the simpler programs often found on coding platforms.

Refuting a Template-Matching Approach. Next, we investigate whether code models have
relied solely on a simple, template-matching approach for recognizing equivalent programs. That is,
given a pair of code examples (U, V) in the test set, do models merely attempt to �nd another pair
(G,~) that they memorized from the training set such that U and V are syntactically similar to G and
~ (or ~ and G) respectively. To answer this question, we aim to quantify the number of code pairs in
the test set that models would have predicted correctly if they had successfully memorized all code
pairs from the training set. Again, we use Deckard, set up with the optimal hyperparameters, to
conduct this experiment. Results show that in the best case (i.e., on CodeBERT’s test set,) less than
11% of equivalent code pairs in the test set have a syntactically similar counterpart in the training
set. This suggests that this simple, template-matching approach is insu�cient for recognizing
equivalent programs in CodeSem.

Comparing Models with Equivalence Checkers. Moving on, we now seek to understand what
models have learned in equivalence prediction task. For this purpose, we evaluate state-of-the-art
equivalence checkers on CodeSem as baselines for comparison with code models. This experiment
can reveal challenges posed by CodeSem that are beyond state-of-the-art equivalence checkers.
Thus, by analyzing how well models cope with those challenges, we can gain a deep understanding
of their capability in the equivalence prediction task. We pick trace alignment [Churchill et al.
2019], ARDIFF [Badihi et al. 2020], and Rêve [Felsing et al. 2014], which are prominent equivalence
checking tools in the literature, to analyze all code pairs in the �ne-tuning dataset. As shown
in Table 8, none of the tools perform adequately on CodeSem. In fact, the most accurate tool,
trace alignment, achieves an accuracy of below 25%. Therefore, we conclude that CodeSem presents
signi�cant challenges that current equivalence checkers are not equipped to handle. Next, we
discuss the speci�c challenges that the three equivalence checkers face, and how code models have
successfully addressed these challenges, respectively.
Trace alignment checks the equivalence of two programs based on the alignment of their concrete

execution traces. It starts by generating test cases to execute the two programs and then aligns
their execution traces using a linear function: c1v1 − c2v2 = k, where 21, 22 ∈ {1, 2, 4, 8, 16}, : ∈ Z

are parameters, and E1, E2 are registers or stack-allocated locations in the two programs. Next, it

Table 8. Accuracy of state-of-the-art equivalence checkers on CodeSem. Values in parentheses represent

the accuracy of each tool for equivalent, and inequivalent program pairs in the fine-tuning set of CodeSem

respectively. We count the result of a tool to be incorrect if it timed out. Increasing the timeout parameter to

around ten times its value does not help improve the performance of any tool.

trace alignment ARDIFF Rêve

Accuracy 24.6% (16.9%, 27.4%) 12.5% (6.8%, 18.1%) 3.7% (3.1%, 4.2%)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

112:22 Qian Chen, Chenyang Yu, Ruyan Liu, Chi Zhang, Yu Wang, Ke Wang, Ting Su, and Linzhang Wang

1 static enum cmd_retval cmd_list_keys_exec (...) {

2 ...

3 tmp = xmalloc(tmpsize);

4 while (table != NULL) { ...

5 while (bd != NULL) { ...

6 while (tmpused + cplen + 1 >= tmpsize) {

7 tmpsize *= 2;

8 tmp=xrealloc(tmp , tmpsize);

9 ...

10 tmpsize += pow(diff , 2); ...

11 } ...

12 }}}

1 static enum cmd_retval list_keys (...) {

2 ...

3 buf = xmalloc(bufsize); ...

4 for (; table != NULL;) { ...

5 for (; bd != NULL;) { ...

6 for (; bufsize - 1 <= tmpused + len;) {

7 bufsize <<= 1;

8 buf=xrealloc(buf , bufsize);

9 ...

10 bufsize += pow(diff , 2); ...

11 } ...

12 }}}

Fig. 5. Two equivalent programs that trace alignment considers inequivalent. In contrast, all four models

correctly predict them to be equivalent. Code omi�ed by · · · is not related to the weakness of the tool.

constructs an automaton using the aligned traces to simulate the behavior of the combination of the
two programs. Finally, the method determines the equivalence between the two programs by veri-
fying the satis�ability of the synthesized constraints from the automaton. Among all shortcomings
of trace alignment (e.g., simplistic alignment predicate, insu�cient coverage of the generated test
cases), the major weakness that accounts for most of its wrong results is the simplistic alignment
predicate. Speci�cally, when reasoning about memory allocations in the heap or using non-linear
functions is required to align the execution traces of the two programs, trace alignment would fail.
Figure 5 shows an example of equivalent programs in CodeSem that trace alignment considers in-
equivalent. To establish the alignment of the execution traces of the two programs, trace alignment

must consider variable tmp in the left hand side of Figure 5 and buf in the right hand side, which are
both allocated on the heap. In addition, trace alignment also needs to deal with non-linear function
pow(). Since trace alignment can only reason with local variables (allocated on the stack) and linear
functions, the tool fails to recognize that the two programs are semantically equivalent. In fact,
we �nd 4,591 pairs of equivalent programs in the �ne-tuning set of CodeSem that trace alignment

fails to recognize precisely due to its overly simplistic alignment predicates. In contrast, for those
(among the 4,591 pairs of equivalent programs) that are included in the test sets of models, CuBERT,
CodeBERT, GGNN, and Graph Sandwiches achieve 85.6%, 83.1%, 74.5%, and 77.9% accuracy respec-
tively, indicating that all models are capable of recognizing the equivalence between programs even
if their execution traces denote rather di�erent semantics which trace alignment can not align.
Badihi et al. [2020] propose ARDIFF for enhancing the scalability of equivalence checking

techniques based on symbolic execution. At the core ofARDIFF is a series of heuristics for identifying
the parts of a program that can be pruned out to simplify the analysis. Despite a notable step
forward, ARDIFF does not solve a fundamental issue with symbolic execution in handling large
programs: the path constraints can be too complex (e.g., size, nonlinearity) for the underlying
SMT solver to solve. In total, we �nd 5,113 pairs of equivalent programs in the �ne-tuning set of
CodeSem on which ARDIFF timed out due to this limitation. An example is provided in Figure 4
in the supplemental material. In contrast, CuBERT, CodeBERT, GGNN, and Graph Sandwiches
achieve 83.7%, 86.2%, 80.1%, and 75.9% accuracy on those (among the 5,113 pairs) that are in their
respective test sets. These �ndings suggest that models are signi�cantly more e�ective in handling
larger programs with more complicated path constraints.
Rêve converts two programs into logical veri�cation conditions (VC) and employs an SMT solver

to determine their equivalence. Like ARDIFF , Rêve su�ers from signi�cant scalability issues, in
addition, Rêve is limited to integer programs and does not support arrays. All of these are signi�cant
contributors to Rêve’s poor performance. We �nd 5,385 wrong results that Rêve produced on
equivalent programs in the �ne-tuning set of CodeSem are due to the aforementioned weaknesses.
In contrast, CuBERT, CodeBERT, GGNN, and Graph Sandwiches achieved 85.1%, 81.3%, 77.4%, and

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

Evaluating the E�ectiveness of Deep Learning Models for Foundational Program Analysis Tasks 112:23

79.8% accuracy, respectively, on the subset of these 5,385 program pairs that are in their respective
test sets. This demonstrates that the models are not restricted to certain types of programs, such as
integer or �oating-point, with or without arrays.

1 static char *url_normalize_1(

2 const char *url, ...) {

3 ...

4 spanned = strspn(url, URL_SCHEME_CHARS);

5 if (! spanned || !isalpha(url [0]) ||

6 spanned + 3 > url_len ||

7 url[spanned] != ':' ||

8 url[spanned + 1] != '/' ||

9 url[spanned + 2] != '/')

10 ...

11 while (spanned --)

12 strbuf_addch (&norm , tolower (*url ++));

13 ...

14 while (url < colon_ptr){

15 strbuf_addch (&norm , tolower (*url ++));

16 url_len --;} ... }

Fig. 6. Aliases that all models fail to recognize. url

(highlighted in shadow box) and colon_ptr (un-

derlined) are aliases when exiting from the while

loop (from line 14-16) in which case url equals

colon_ptr .

6.5.3 The Weaknesses of Models. We also thor-
oughly analyze the mispredictions made by all mod-
els to identify their weaknesses. In alias prediction,
we �nd that models often struggle with pointers that
have many de�nition and use points, possibly due
to a lack of precision in identifying the exact point
at which alias occurs. Figure 6 shows an example
where url is the pointer that has many de�nition
and use points, and all models fail to identify it as
an alias of colon_ptr when the execution exits from
the second while loop (from line 14 to 16).

For equivalence prediction, we discover a special-
ized class of equivalent programs in CodeSem that
pose signi�cant challenges to all models, as their
equivalence relies on important assumptions about
the structure of input data. Consider the programs
in Figure 7, which are equivalent only if the input string (represented by the parameter 2ℎ0A ∗line)
conforms with a speci�c format that involves two-level delimiters: semicolons as the �rst and com-
mas as the second (e.g., “0, 1; 2, 3 ; 4, 5 ; ”). If the input string fails the format check (i.e., regex_match()

function), both programs return NULL, otherwise, they extract the 9 th sub-element (with commas as
the separator) within the 8 th element of the string (with semicolons as the separator). The program
on the left takes a natural approach of �rst splitting the string with semicolons to obtain the 8Cℎ

element, and then splitting the 8Cℎ element with commas to obtain the 9Cℎ sub-element. The program
on the right uses the two delimiters in a reversed order: commas �rst and then semicolons. As a
necessary processing step, the original index (8, 9) is adjusted in the following manner: when 9 is 1,
the index (8, 9) becomes (8, 9 + 1) (i.e., (8, 2)); when 9 is 2, the index becomes (8 + 1, 1) (line 8 and 9).
After the index adjustment, the (new) 9Cℎ sub-element within the (new) 8Cℎ element, obtained by
splitting the string with commas and then semicolons refers to the same character as the output
of the program on the left. However, there is an exception to this rule when the character to be
found is located at the very beginning of the input string, in which case the input string is split
exactly once (with commas), and the �rst element is directly returned (line 5 to 7). Overall, the two

1 #include <regex >

2 const char* getfield(char* line , int i, int j) {

3 char* tok; regex reg("(. ,.;)+\\n");

4 if (! regex_match(line , reg))

5 return NULL;

6 for (tok = strtok(line , ";");

7 tok && *tok;

8 tok = strtok(NULL , ";\n")) {

9 if (--i) continue;

10 for (tok = strtok(tok , ",");

11 tok && *tok;

12 tok = strtok(NULL , " ,\n")) {

13 if (!--j)

14 return tok;

15 }}

16 return NULL;

17 }

1 #include <regex >

2 const char* getfield(char* line , int i, int j) {

3 char* tok; regex reg("(. ,.;)+\\n");

4 if (! regex_match(line , reg)) return NULL;

5 if (i == j && j == 1) {

6 tok = strtok(line , ","); return tok;

7 }

8 j++;

9 if (j == 3) {i++; j = 1;}

10 for (tok = strtok(line , ","); tok && *tok;

11 tok = strtok(NULL , " ,\n")) {

12 if (--i) continue;

13 for (tok = strtok(tok , ";"); tok && *tok;

14 tok = strtok(NULL , ";\n")) {

15 if (!--j) return tok ;}}

16 return NULL;

17 }

Fig. 7. Two semantically equivalent programs that all four models incorrectly predict as inequivalent.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

112:24 Qian Chen, Chenyang Yu, Ruyan Liu, Chi Zhang, Yu Wang, Ke Wang, Ting Su, and Linzhang Wang

programs are indeed semantically equivalent, but recognizing their equivalence requires a complex
reasoning procedure that models may not be capable of.

6.5.4 Outlook for Future Research. In light of the weaknesses of models, we suggest some directions
for future research. Firstly, to mitigate the decrease in model accuracy caused by variables with
a high number of de�nition and use points in alias prediction, more �ne-grained embedding
methods could be explored. For instance, the precision of variable embeddings could bene�t from
the interaction between the two variables aliased with each other. The enhanced precision of
variable embeddings could ultimately help to improve the model accuracy in alias prediction task.
For equivalence prediction, training models to formally reason about program behavior can be a
pathway forward. For example, pre-training models towards objectives pertaining to pre- or post-
conditions (e.g., predict post-conditions given the pre-condition and the statement to be executed)
could help models to capture the semantics of program statements at a deeper level. This, in turn,
could improve their overall model accuracy in equivalence prediction task.

7 THREATS TO VALIDITY

Threats to External Validity. Our work is subject to certain external threats that may impact its
validity. Firstly, due to limitations in the available tool-chain and infrastructure, our study focuses
exclusively on programs written in C/C++. It is therefore reasonable to question the generalizability
of our �ndings to other programming languages. However, given that C/C++ remain widely used
languages and are often the subject of programming language research, we believe that our �ndings
are still signi�cant and relevant. As for the choice of models, �rst, models used in our evaluation are
not the latest which are built upon large language models, however, our primary goal is to compare
di�erent neural architectures and traditional static analysis methods in alias and equivalence
prediction. Also, we believe that our �ndings are likely to hold for the latest code models given
their higher capability. Second, Graph Sandwiches has a particularly larger design space based on
the type of sequence models’ layers and how they interleave with GGNN layers. In our evaluation,
we use RNN Sandwich, which wraps every message-passing layer in GGNN with an RNN, since
it is one of the most accurate models according to the evaluation reported in [Hellendoorn et al.
2019].

Threats to Internal Validity. Human errors represent a threat to the internal validity of our study
since the labeling process involves humans in the loop. Speci�cally, validating the results of LLVM
and EqMiner is a rather tedious and error-prone task that could potentially a�ect the correctness of
our �ndings. Despite these challenges, we have taken great care to minimize the impact of human
errors by paying close attention to details. Given the practical limitations of our study, we believe
that the potential risk of human errors is acceptable and should be tolerated.

8 RELATED WORK

In this section, we discuss three strands of related work: alias analysis, equivalence checking, and
benchmarks for code models.

8.1 Alias Analysis

Thiessen and Lhoták [2017] introduce a context-sensitive analysis by combining the CFL-reachability
and :-limited context strings, so that it obtains advantages of both methods. Phulia et al. [2020]
design a sound must-not alias analysis to explore the optimization opportunity enabled by non-
deterministic expression evaluation semantics. Wilson and Lam [1995] describe a �ow-, context-
sensitive pointer analysis algorithm for C programs that summarizes the behavior of procedures to
increase its e�ciency. Hardekopf and Lin [2009] present an inter-procedural, �ow-sensitive pointer

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

Evaluating the E�ectiveness of Deep Learning Models for Foundational Program Analysis Tasks 112:25

analysis that combines the idea of partial static single assignment and a heavy-analysis. Zhang
et al. [2013] present two fast algorithms for Dyck-CFL-reachability on bidirected trees and graphs,
and apply the algorithms to a context-insensitive alias analysis for Java [Yan et al. 2011]. Guo et al.
[2019] propose a neural architecture to enhance the capability of Value Set Analysis to perform
alias analysis at the binary level.

8.2 Equivalence Checking

Churchill et al. [2019] introduce a method of building a trace alignment for two given functions in
the case of a set of user-provided test cases and constructing a product program for equivalence
checking. Sharma et al. [2013] present a data-driven algorithm for checking the equivalence of
loops written in x86 assembly, in particular, it solves an over-approximated relationship of input
states to output states of the two loops. Dahiya and Bansal [2017] present a black-box equivalence
checker to verify transformations produced by modern compilers. Gupta et al. [2018] propose an
equivalence checking algorithm that allows the inference of the required invariants through the
generation of counter-examples using SMT solvers. On the machine learning side, Kommrusch
et al. [2023] aim to �nd semantically-preserving rewrite rules to convert one program to another.
Regarding compiler optimization which is also related to equivalence checking, Tro�n et al. [2021]
propose a framework called MLGO1 to integrate machine learning techniques including Policy
Gradient and Evolution Strategies into industrial compilers.

8.3 Benchmarks for Code Models

The work closest to ours is CodeXGLUE [Lu et al. 2021], which presents a benchmark of 10
tasks for model evaluation. CodeSem di�ers from CodeXGLUE in three ways. First, CodeSem is
extracted from real-world programs while CodeXGLUE is a collection of programming solutions to
algorithmic problems. Second, the prediction tasks CodeSem uses to evaluate models correspond
to foundational program analysis tasks compared to those in CodeXGLUE (e.g., clone detection,
code translation). Third, CodeXGLUE features only sequential models whereas CodeSem also
considers graph models. Another recent work, CodeNet [Puri et al. 2021], presents a large-scale
dataset CodeNet. Like Lu et al. [2021], Puri et al. [2021] collect their data from online programming
platforms while we assemble CodeSem from large-scale real-world programs. In addition, we
propose two new tasks: alias prediction and equivalence prediction. Another related dataset is
CodeSearchNet [Husain et al. 2019], which is used for semantic code search task. Wang and
Christodorescu [2019] propose COSET, a benchmark for evaluating machine learning models in
learning the semantics rather than syntax of code.

9 CONCLUSION

In this paper, we present CodeSem, a �rst-of-its-kind large-scale, real-world, and high-quality
dataset designed to evaluate deep learning models in two foundational tasks in program analysis:
alias prediction and equivalence prediction. We also propose a general, novel learning approach
that makes it possible for models to leverage results of static analysis methods. With this learn-
ing approach, we train four in�uential code models — CuBERT, CodeBERT, GGNN, and Graph
Sandwiches — towards the two prediction tasks. Our evaluation shows that, in general, all models
display satisfactory performance in both tasks. However, we also identify the speci�c weaknesses
of each model that should be addressed in future work. We release all the code and evaluation
data for public access, and hope that the scale, diversity, and authenticity of CodeSem will o�er
unprecedented opportunities in this interdisciplinary area of research.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

112:26 Qian Chen, Chenyang Yu, Ruyan Liu, Chi Zhang, Yu Wang, Ke Wang, Ting Su, and Linzhang Wang

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their comments and suggestions.
This work was partially supported by the National Natural Science Foundation of China under
Grant No. 62232001, No. 62032010, No. 62202220, and No. 62172200, the Collaborative Innovation
Center of Novel Software Technology and Industrialization, Jiangsu Funding Program for Excellent
Postdoctoral Talent, the Fundamental Research Funds for the Central Universities (No. 2023300180),
and the Leading-edge Technology Program of Jiangsu Natural Science Foundation (No. BK20202001).

REFERENCES

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2018. Learning to Represent Programs with Graphs. In

International Conference on Learning Representations (ICLR ’18). https://doi.org/10.48550/arXiv.1711.00740

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learning Distributed Representations of Code.

Proceedings of the ACM on Programming Languages 3, POPL (2019), 1–29. https://doi.org/10.1145/3290353

Rita Z. Altucher and William Landi. 1995. An Extended Form of Must Alias Analysis for Dynamic Allocation. In Proceedings

of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Francisco, California, USA)

(POPL ’95). Association for Computing Machinery, New York, NY, USA, 74–84. https://doi.org/10.1145/199448.199466

Sahar Badihi, Faridah Akinotcho, Yi Li, and Julia Rubin. 2020. ARDi�: scaling program equivalence checking via iterative

abstraction and re�nement of common code. In Proceedings of the 28th ACM JointMeeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering. 13–24. https://doi.org/10.1145/3368089.3409757

George Balatsouras, Kostas Ferles, George Kastrinis, and Yannis Smaragdakis. 2017. A Datalog Model of Must-Alias Analysis.

In Proceedings of the 6th ACM SIGPLAN International Workshop on State Of the Art in Program Analysis (Barcelona, Spain)

(SOAP 2017). Association for Computing Machinery, New York, NY, USA, 7–12. https://doi.org/10.1145/3088515.3088517

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009. Curriculum Learning. In Proceedings of the 26th

Annual International Conference on Machine Learning (Montreal, Quebec, Canada) (ICML ’09). Association for Computing

Machinery, New York, NY, USA, 41–48. https://doi.org/10.1145/1553374.1553380

Junming Cao, Bihuan Chen, Chao Sun, Longjie Hu, Shuaihong Wu, and Xin Peng. 2022. Understanding performance

problems in deep learning systems. In Proceedings of the 30th ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. 357–369. https://doi.org/10.1145/3540250.3549123

Zimin Chen, Steve James Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys Poshyvanyk, andMartin Monperrus. 2019.

Sequencer: Sequence-to-sequence learning for end-to-end program repair. IEEE Transactions on Software Engineering

(2019). https://doi.org/10.1109/TSE.2019.2940179

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua

Bengio. 2014. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. In

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). https://doi.org/10.485

50/arXiv.1406.1078

Berkeley Churchill, Oded Padon, Rahul Sharma, and Alex Aiken. 2019. Semantic program alignment for equivalence

checking. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation.

1027–1040. https://doi.org/10.1145/3314221.3314596

Berkeley Churchill, Rahul Sharma, JF Bastien, and Alex Aiken. 2017. Sound Loop Superoptimization for Google Native

Client. In Proceedings of the Twenty-Second International Conference on Architectural Support for Programming Languages

and Operating Systems (Xi’an, China) (ASPLOS ’17). Association for Computing Machinery, New York, NY, USA, 313–326.

https://doi.org/10.1145/3037697.3037754

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. 2020. ELECTRA: Pre-training Text Encoders as

Discriminators Rather Than Generators. In International Conference on Learning Representations. https://doi.org/10.485

50/arXiv.2003.10555

Manjeet Dahiya and Sorav Bansal. 2017. Black-box equivalence checking across compiler optimizations. In Asian Symposium

on Programming Languages and Systems. Springer, 127–147. https://doi.org/10.1007/978-3-319-71237-6_7

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding. In NAACL-HLT (1). 4171–4186. https://aclweb.org/anthology/papers/N/N19/

N19-1423/

Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang. 2019. Hoppity: Learning Graph Transforma-

tions to Detect and Fix Bugs in Programs. In International Conference on Learning Representations (ICLR ’19).

Dennis Felsing, Sarah Grebing, Vladimir Klebanov, Philipp Rümmer, and Mattias Ulbrich. 2014. Automating regression

veri�cation. In Proceedings of the 29th ACM/IEEE international conference on Automated software engineering. 349–360.

https://doi.org/10.1145/2642937.2642987

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

https://doi.org/10.48550/arXiv.1711.00740
https://doi.org/10.1145/3290353
https://doi.org/10.1145/199448.199466
https://doi.org/10.1145/3368089.3409757
https://doi.org/10.1145/3088515.3088517
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/3540250.3549123
https://doi.org/10.1109/TSE.2019.2940179
https://doi.org/10.48550/arXiv.1406.1078
https://doi.org/10.48550/arXiv.1406.1078
https://doi.org/10.1145/3314221.3314596
https://doi.org/10.1145/3037697.3037754
https://doi.org/10.48550/arXiv.2003.10555
https://doi.org/10.48550/arXiv.2003.10555
https://doi.org/10.1007/978-3-319-71237-6_7
https://aclweb.org/anthology/papers/N/N19/N19-1423/
https://aclweb.org/anthology/papers/N/N19/N19-1423/
https://doi.org/10.1145/2642937.2642987

Evaluating the E�ectiveness of Deep Learning Models for Foundational Program Analysis Tasks 112:27

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin

Jiang, and Ming Zhou. 2020. CodeBERT: A Pre-Trained Model for Programming and Natural Languages. In Findings of

the Association for Computational Linguistics: EMNLP 2020. Association for Computational Linguistics, Online, 1536–1547.

https://doi.org/10.48550/arXiv.2002.08155

Jeanne Ferrante, Karl J Ottenstein, and Joe DWarren. 1987. The program dependence graph and its use in optimization. ACM

Transactions on Programming Languages and Systems (TOPLAS) 9, 3 (1987), 319–349. https://doi.org/10.1145/24039.24041

Stephen Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay. 2006. E�ective Typestate Veri�cation in the

Presence of Aliasing. In Proceedings of the 2006 International Symposium on Software Testing and Analysis (Portland,

Maine, USA) (ISSTA ’06). Association for Computing Machinery, New York, NY, USA, 133–144. https://doi.org/10.1145/

1146238.1146254

Yaroslav Golubev, Viktor Poletansky, Nikita Povarov, and Timofey Bryksin. 2021. Multi-threshold token-based code clone

detection. In 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 496–500.

https://doi.org/10.1109/SANER50967.2021.00053

Wenbo Guo, Dongliang Mu, Xinyu Xing, Min Du, and Dawn Song. 2019. {DEEPVSA}: Facilitating Value-set Analysis with

Deep Learning for Postmortem Program Analysis. In 28th USENIX Security Symposium (USENIX Security 19). 1787–1804.

Shubhani Gupta, Aseem Saxena, Anmol Mahajan, and Sorav Bansal. 2018. E�ective use of SMT solvers for program

equivalence checking through invariant-sketching and query-decomposition. In International Conference on Theory and

Applications of Satis�ability Testing. Springer, 365–382. https://doi.org/10.1007/978-3-319-94144-8_22

Ben Hardekopf and Calvin Lin. 2009. Semi-Sparse Flow-Sensitive Pointer Analysis (POPL ’09). Association for Computing

Machinery, New York, NY, USA, 226–238. https://doi.org/10.1145/1480881.1480911

Vincent J Hellendoorn, Charles Sutton, Rishabh Singh, Petros Maniatis, and David Bieber. 2019. Global relational models of

source code. In International conference on learning representations.

Susan Horwitz. 1990. Identifying the Semantic and Textual Di�erences between Two Versions of a Program. In Proceedings of

the ACM SIGPLAN 1990 Conference on Programming Language Design and Implementation (White Plains, New York, USA)

(PLDI ’90). Association for Computing Machinery, New York, NY, USA, 234–245. https://doi.org/10.1145/93542.93574

Susan Horwitz. 1997. Precise �ow-insensitive may-alias analysis is NP-hard. ACM Transactions on Programming Languages

and Systems (TOPLAS) 19, 1 (1997), 1–6. https://doi.org/10.1145/239912.239913

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. 2019. CodeSearchNet challenge:

Evaluating the state of semantic code search. arXiv preprint arXiv:1909.09436 (2019). https://doi.org/10.48550/arXiv.1909.

09436

Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007. DECKARD: Scalable and Accurate Tree-

Based Detection of Code Clones. In 29th International Conference on Software Engineering (ICSE’07). 96–105. https:

//doi.org/10.1109/ICSE.2007.30

Lingxiao Jiang and Zhendong Su. 2009. Automatic mining of functionally equivalent code fragments via random testing. In

Proceedings of the eighteenth international symposium on Software testing and analysis. 81–92. https://doi.org/10.1145/15

72272.1572283

T. Kamiya, S. Kusumoto, and K. Inoue. 2002. CCFinder: a multilinguistic token-based code clone detection system for large

scale source code. IEEE Transactions on Software Engineering 28, 7 (2002), 654–670. https://doi.org/10.1109/TSE.2002.101

9480

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. 2020. Learning and Evaluating Contextual Embedding

of Source Code. In Proceedings of the 37th International Conference on Machine Learning (Proceedings of Machine Learning

Research, Vol. 119). PMLR, 5110–5121.

George Kastrinis, George Balatsouras, Kostas Ferles, Nefeli Prokopaki-Kostopoulou, and Yannis Smaragdakis. 2018.

An E�cient Data Structure for Must-Alias Analysis. In Proceedings of the 27th International Conference on Com-

piler Construction (Vienna, Austria) (CC 2018). Association for Computing Machinery, New York, NY, USA, 48–58.

https://doi.org/10.1145/3178372.3179519

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. 2020. Reformer: The E�cient Transformer. In International Conference

on Learning Representations. https://openreview.net/forum?id=rkgNKkHtvB

Steve Kommrusch, Martin Monperrus, and Louis-Noël Pouchet. 2023. Self-Supervised Learning to Prove Equivalence

Between Straight-Line Programs via Rewrite Rules. IEEE Transactions on Software Engineering 49, 7 (2023), 3771–3792.

https://doi.org/10.1109/TSE.2023.3271065

Chris Lattner. 2008. LLVM and Clang: Next generation compiler technology. In The BSD conference, Vol. 5.

Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transformation. In

International Symposium on Code Generation and Optimization, 2004. CGO 2004. IEEE, 75–86. https://doi.org/10.1109/CG

O.2004.1281665

Jiahao Liu, Jun Zeng, Xiang Wang, and Zhenkai Liang. 2023. Learning Graph-based Code Representations for Source-level

Functional Similarity Detection. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

https://doi.org/10.48550/arXiv.2002.08155
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/1146238.1146254
https://doi.org/10.1145/1146238.1146254
https://doi.org/10.1109/SANER50967.2021.00053
https://doi.org/10.1007/978-3-319-94144-8_22
https://doi.org/10.1145/1480881.1480911
https://doi.org/10.1145/93542.93574
https://doi.org/10.1145/239912.239913
https://doi.org/10.48550/arXiv.1909.09436
https://doi.org/10.48550/arXiv.1909.09436
https://doi.org/10.1109/ICSE.2007.30
https://doi.org/10.1109/ICSE.2007.30
https://doi.org/10.1145/1572272.1572283
https://doi.org/10.1145/1572272.1572283
https://doi.org/10.1109/TSE.2002.1019480
https://doi.org/10.1109/TSE.2002.1019480
https://doi.org/10.1145/3178372.3179519
https://openreview.net/forum?id=rkgNKkHtvB
https://doi.org/10.1109/TSE.2023.3271065
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665

112:28 Qian Chen, Chenyang Yu, Ruyan Liu, Chi Zhang, Yu Wang, Ke Wang, Ting Su, and Linzhang Wang

345–357. https://doi.org/10.1109/ICSE48619.2023.00040

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin Clement, Dawn Drain, Daxin

Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou, Michele Tufano, MING GONG, Ming Zhou, Nan Duan,

Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie LIU. 2021. CodeXGLUE: A Machine Learning Benchmark

Dataset for Code Understanding and Generation. In Thirty-�fth Conference on Neural Information Processing Systems

Datasets and Benchmarks Track (Round 1). https://doi.org/10.48550/arXiv.2102.04664

Ruben Martinez-Cantin. 2014. BayesOpt: A Bayesian Optimization Library for Nonlinear Optimization, Experimental

Design and Bandits. arXiv preprint arXiv:1405.7430 (2014). https://doi.org/10.48550/arXiv.1405.7430

Lili Mou, Ge Li, Lu Zhang, TaoWang, and Zhi Jin. 2016. Convolutional neural networks over tree structures for programming

language processing. In Proceedings of the Thirtieth AAAI Conference on Arti�cial Intelligence. 1287–1293.

George C Necula. 2000. Translation validation for an optimizing compiler. In Proceedings of the ACM SIGPLAN 2000 conference

on Programming language design and implementation. 83–94. https://doi.org/10.1145/349299.349314

Jevgenija Pantiuchina, Bin Lin, Fiorella Zampetti, Massimiliano Di Penta, Michele Lanza, and Gabriele Bavota. 2021. Why

Do Developers Reject Refactorings in Open-Source Projects? ACM Transactions on Software Engineering and Methodology

(TOSEM) 31, 2 (2021), 1–23. https://doi.org/10.1145/3487062

Ankush Phulia, Vaibhav Bhagee, and Sorav Bansal. 2020. OOElala: order-of-evaluation based alias analysis for compiler

optimization. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation.

839–853. https://doi.org/10.1145/3385412.3385962

Lutz Prechelt. 1998. Early stopping-but when? In Neural Networks: Tricks of the trade. Springer, 55–69. https://doi.org/10.1

007/3-540-49430-8_3

Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladimir Zolotov, Julian Dolby, Jie Chen,

Mihir Choudhury, Lindsey Decker, et al. 2021. CodeNet: A large-scale AI for code dataset for learning a diversity of

coding tasks. arXiv preprint arXiv:2105.12655 (2021). https://doi.org/10.48550/arXiv.2105.12655

David A Ramos and Dawson R Engler. 2011. Practical, low-e�ort equivalence veri�cation of real code. In International

Conference on Computer Aided Veri�cation. Springer, 669–685. https://doi.org/10.1007/978-3-642-22110-1_55

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why should i trust you?" Explaining the predictions of

any classi�er. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining.

1135–1144. https://doi.org/10.1145/2939672.2939778

Chanchal K Roy, James R Cordy, and Rainer Koschke. 2009. Comparison and evaluation of code clone detection techniques

and tools: A qualitative approach. Science of Computer Programming 74, 7 (2009), 470–495. https://doi.org/10.1016/j.scic

o.2009.02.007

David E. Rumelhart and James L. McClelland. 1987. Learning Internal Representations by Error Propagation. 318–362.

Hitesh Sajnani, Vaibhav Saini, Je�rey Svajlenko, Chanchal K. Roy, and Cristina V. Lopes. 2016. SourcererCC: Scaling Code

Clone Detection to Big-Code. In Proceedings of the 38th International Conference on Software Engineering (Austin, Texas)

(ICSE ’16). Association for Computing Machinery, New York, NY, USA, 1157–1168. https://doi.org/10.1145/2884781.2884

877

Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic Superoptimization (ASPLOS ’13). Association for Computing

Machinery, New York, NY, USA, 305–316. https://doi.org/10.1145/2451116.2451150

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine Translation of Rare Words with Subword

Units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).

Association for Computational Linguistics, Berlin, Germany, 1715–1725. https://doi.org/10.18653/v1/P16-1162

Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein. 2013. Translation Validation for a Veri�ed OS

Kernel. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Seattle, Washington, USA) (PLDI ’13). Association for Computing Machinery, New York, NY, USA, 471–482. https:

//doi.org/10.1145/2491956.2462183

Rahul Sharma, Eric Schkufza, Berkeley Churchill, and Alex Aiken. 2013. Data-driven equivalence checking. In Proceedings

of the 2013 ACM SIGPLAN international conference on Object oriented programming systems languages & applications.

391–406. https://doi.org/10.1145/2509136.2509509

Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and Charles Zhang. 2018. Pinpoint: Fast and precise sparse

value �ow analysis for million lines of code. In Proceedings of the 39th ACM SIGPLAN Conference on Programming

Language Design and Implementation. 693–706. https://doi.org/10.1145/3192366.3192418

Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song. 2018. Learning Loop Invariants for Program

Veri�cation. In Proceedings of the 32nd International Conference on Neural Information Processing Systems (Montréal,

Canada) (NIPS ’18). 7762–7773.

Manu Sridharan and Rastislav Bodík. 2006. Re�nement-based context-sensitive points-to analysis for Java. ACM SIGPLAN

Notices 41, 6 (2006), 387–400. https://doi.org/10.1145/1133255.1134027

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

https://doi.org/10.1109/ICSE48619.2023.00040
https://doi.org/10.48550/arXiv.2102.04664
https://doi.org/10.48550/arXiv.1405.7430
https://doi.org/10.1145/349299.349314
https://doi.org/10.1145/3487062
https://doi.org/10.1145/3385412.3385962
https://doi.org/10.1007/3-540-49430-8_3
https://doi.org/10.1007/3-540-49430-8_3
https://doi.org/10.48550/arXiv.2105.12655
https://doi.org/10.1007/978-3-642-22110-1_55
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1016/j.scico.2009.02.007
https://doi.org/10.1016/j.scico.2009.02.007
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1145/2451116.2451150
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1145/2509136.2509509
https://doi.org/10.1145/3192366.3192418
https://doi.org/10.1145/1133255.1134027

Evaluating the E�ectiveness of Deep Learning Models for Foundational Program Analysis Tasks 112:29

Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J. Fink, and Eran Yahav. 2013. Alias Analysis for Object-Oriented

Programs. Springer Berlin Heidelberg, Berlin, Heidelberg, 196–232. https://doi.org/10.1007/978-3-642-36946-9_8

Eric Stoltz, Michael P Gerlek, and Michael Wolfe. 1994. Extended SSA with factored use-def chains to support optimization

and parallelism. In HICSS (2). 43–53. https://doi.org/10.1109/HICSS.1994.323280

Zhensu Sun, Li Li, Yan Liu, Xiaoning Du, and Li Li. 2022. On the importance of building high-quality training datasets

for neural code search. In Proceedings of the 44th International Conference on Software Engineering. 1609–1620. https:

//doi.org/10.1145/3510003.3510160

Je�rey Svajlenko, Judith F Islam, Iman Keivanloo, Chanchal K Roy, and Mohammad Mamun Mia. 2014. Towards a big

data curated benchmark of inter-project code clones. In 2014 IEEE International Conference on Software Maintenance and

Evolution. IEEE, 476–480. https://doi.org/10.1109/ICSME.2014.77

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality Saturation: A New Approach to Optimization.

In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Savannah,

GA, USA) (POPL ’09). Association for Computing Machinery, New York, NY, USA, 264–276. https://doi.org/10.1145/1480

881.1480915

Rei Thiessen and Ondřej Lhoták. 2017. Context Transformations for Pointer Analysis. In Proceedings of the 38th ACM

SIGPLAN Conference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017). Association

for Computing Machinery, New York, NY, USA, 263–277. https://doi.org/10.1145/3062341.3062359

Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, and Salvatore Guarnieri. 2013. Andromeda: Accurate and scalable

security analysis of web applications. In International Conference on Fundamental Approaches to Software Engineering.

Springer, 210–225. https://doi.org/10.1007/978-3-642-37057-1_15

Mircea Tro�n, Yundi Qian, Eugene Brevdo, Zinan Lin, Krzysztof Choromanski, and David Li. 2021. Mlgo: a machine learning

guided compiler optimizations framework. arXiv preprint arXiv:2101.04808 (2021). https://doi.org/10.48550/arXiv.2101.04

808

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. 2017. Attention is all you need. In Advances in neural information processing systems. 5998–6008.

Ke Wang and Mihai Christodorescu. 2019. COSET: A Benchmark for Evaluating Neural Program Embeddings. arXiv preprint

arXiv:1905.11445 (2019). https://doi.org/10.48550/arXiv.1905.11445

Ke Wang and Zhendong Su. 2020. Blended, Precise Semantic Program Embeddings. In Proceedings of the 41st ACM SIGPLAN

International Conference on Programming Language Design and Implementation (PLDI ’20). https://doi.org/10.1145/3385

412.3385999

PengchengWang, Je�rey Svajlenko, Yanzhao Wu, Yun Xu, and Chanchal K. Roy. 2018. CCAligner: A Token Based Large-Gap

Clone Detector. In Proceedings of the 40th International Conference on Software Engineering (Gothenburg, Sweden) (ICSE

’18). Association for Computing Machinery, New York, NY, USA, 1066–1077. https://doi.org/10.1145/3180155.3180179

Yu Wang, Ke Wang, Fengjuan Gao, and Linzhang Wang. 2020. Learning Semantic Program Embeddings with Graph Interval

Neural Network. Proceedings of the ACM on Programming Languages 4, OOPSLA, Article 137 (Nov. 2020), 27 pages.

https://doi.org/10.1145/3428205

Hu Weihua, Liu Bowen, Gomes Joseph, Zitnik Marinka, Liang Percy, Pande Vijay, and Leskovec Jure. 2020. Strategies for

Pre-training Graph Neural Networks. In International Conference on Learning Representations. https://doi.org/10.48550/a

rXiv.1905.12265

Robert P. Wilson and Monica S. Lam. 1995. E�cient Context-Sensitive Pointer Analysis for C Programs. In Proceedings of

the ACM SIGPLAN 1995 Conference on Programming Language Design and Implementation (La Jolla, California, USA)

(PLDI ’95). Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/207110.207111

Dacong Yan, Guoqing Xu, and Atanas Rountev. 2011. Demand-driven context-sensitive alias analysis for Java. In Proceedings

of the 2011 International Symposium on Software Testing and Analysis. 155–165. https://doi.org/10.1145/2001420.2001440

Suan Hsi Yong, Susan Horwitz, and Thomas Reps. 1999. Pointer analysis for programs with structures and casting. ACM

SIGPLAN Notices 34, 5 (1999), 91–103. https://doi.org/10.1145/301631.301647

Yang Yuan and Yao Guo. 2012. Boreas: An Accurate and Scalable Token-Based Approach to Code Clone Detection. In

Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering (Essen, Germany) (ASE

2012). Association for Computing Machinery, New York, NY, USA, 286–289. https://doi.org/10.1145/2351676.2351725

Michał Zalewski. 2016. American Fuzzy Lop-Whitepaper. https://lcamtuf. coredump. cx/a�/technical_details. txt. (2016).

Qirun Zhang, Michael R Lyu, Hao Yuan, and Zhendong Su. 2013. Fast algorithms for Dyck-CFL-reachability with applications

to alias analysis. In Proceedings of the 34th ACM SIGPLANConference on Programming Language Design and Implementation.

435–446. https://doi.org/10.1145/2491956.2462159

Xin Zheng and Radu Rugina. 2008. Demand-driven alias analysis for C. In Proceedings of the 35th annual ACM SIGPLAN-

SIGACT symposium on Principles of programming languages. 197–208. https://doi.org/10.1145/1328438.1328464

Received 20-OCT-2023; accepted 2024-02-24

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 112. Publication date: April 2024.

https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1109/HICSS.1994.323280
https://doi.org/10.1145/3510003.3510160
https://doi.org/10.1145/3510003.3510160
https://doi.org/10.1109/ICSME.2014.77
https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1145/3062341.3062359
https://doi.org/10.1007/978-3-642-37057-1_15
https://doi.org/10.48550/arXiv.2101.04808
https://doi.org/10.48550/arXiv.2101.04808
https://doi.org/10.48550/arXiv.1905.11445
https://doi.org/10.1145/3385412.3385999
https://doi.org/10.1145/3385412.3385999
https://doi.org/10.1145/3180155.3180179
https://doi.org/10.1145/3428205
https://doi.org/10.48550/arXiv.1905.12265
https://doi.org/10.48550/arXiv.1905.12265
https://doi.org/10.1145/207110.207111
https://doi.org/10.1145/2001420.2001440
https://doi.org/10.1145/301631.301647
https://doi.org/10.1145/2351676.2351725
https://doi.org/10.1145/2491956.2462159
https://doi.org/10.1145/1328438.1328464

	Abstract
	1 Introduction
	2 Prediction Tasks
	2.1 Alias Prediction
	2.2 Equivalence Prediction

	3 Training Approach
	3.1 Models of Code
	3.2 Training Workflow

	4 Model Architectures for Alias and Equivalence Prediction
	5 The Dataset
	5.1 Dataset of Generalized Pre-Training
	5.2 Dataset of Specialized Pre-Training and Fine-Tuning

	6 Experiments
	6.1 Experimental Setup
	6.2 Program Representations
	6.3 Results of Alias Prediction
	6.4 Results of Equivalence Prediction
	6.5 A Deep, Comprehensive Analysis of the Results of All Models

	7 Threats to Validity
	8 Related Work
	8.1 Alias Analysis
	8.2 Equivalence Checking
	8.3 Benchmarks for Code Models

	9 Conclusion
	References

