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ABSTRACT
Mobile apps are ubiquitous, operate in complex environments and
are developed under the time-to-market pressure. Ensuring their
correctness and reliability thus becomes an important challenge.
This paper introduces Stoat, a novel guided approach to perform
stochastic model-based testing on Android apps. Stoat operates in
two phases: (1) Given an app as input, it uses dynamic analysis
enhanced by a weighted UI exploration strategy and static analysis
to reverse engineer a stochastic model of the app’s GUI interac-
tions; and (2) it adapts Gibbs sampling to iteratively mutate/refine
the stochastic model and guides test generation from the mutated
models toward achieving high code and model coverage and ex-
hibiting diverse sequences. During testing, system-level events are
randomly injected to further enhance the testing effectiveness.

Stoat1 was evaluated on 93 open-source apps. The results show
(1) the models produced by Stoat cover 17∼31% more code than
those by existing modeling tools; (2) Stoat detects 3X more unique
crashes than two state-of-the-art testing tools, Monkey and Sapienz.
Furthermore, Stoat tested 1661 most popular Google Play apps, and
detected 2110 previously unknown and unique crashes (including
several crashes in such apps with billions of installations as Wechat,
Gmail and Google+). So far, 50 developers have responded that
they are investigating our reports. 30 of reported crashes have been
confirmed or fixed.

1 INTRODUCTION
Mobile apps have become ubiquitous and drastically increased in
number over the recent years. As recent statistics [9] shows, over
50K new Android apps are submitted to Google Play each month.
However, it is challenging to guarantee their quality. First, they are
event-centric programs with rich graphical user interfaces (GUIs),
and have complex environment interplay (e.g., with users, devices,
and other apps). Second, they are typically developed under the
time-to-market pressure, thus may be inadequately tested before
releases. When performing testing, developers tend to exercise
those functionalities or usage scenarios that they believe to be
important, but maymiss bugs that their designed tests fail to expose.

To tackle this challenge, we developed a guided, stochastic model-
based testing approach, Stoat (STOchastic model App Tester)2, to

1Stoat and its demo video are available at https://tingsu.github.io/files/stoat.html. This
paper is presented at the Research Tool Competition track in NASAC 2017 (held by
CCF, China Computer Federation), Harbin, China.
2This work has been published in [15, 16].
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Figure 1: Stoat’s workflow.

improve GUI testing of Android apps. It aims to thoroughly test the
functionalities of an app from the GUI model, and validate the app’s
behavior by enforcing various user/system interactions [20]. Given
an app as input, Stoat operates in two phases. First, it generates a
stochasticmodel from the app to describe its GUI interactions. In our
setting, a stochastic model for an app is a finite state machine (FSM)
whose edges are associated with probabilities for test generation. In
particular, Stoat takes a dynamic analysis technique, enhanced by
a weighted UI exploration strategy and static analysis, to explore
the app’s behaviors and construct the stochastic model.

Second, Stoat iteratively mutates the stochastic model and gener-
ates tests from the model mutants. By perturbing the probabilities,
Stoat is able to generate tests with various compositions of events
to sufficiently test the GUI interactions, and purposely steers testing
toward less travelled paths to detect deep bugs. In particular, Stoat
takes a guided search algorithm, inspired by Markov Chain Monte
Carlo (MCMC) sampling, to search for “good" models (explained in
Section 2) — the derived tests are expected to be diverse, as well as
achieve high code and model coverage.

Moreover, Stoat adopts a simple yet effective strategy to enhance
MBT: randomly inject various system-level events into UI tests
during MCMC sampling. It avoids the complexity of incorporating
system-level events into the behavior model, and further imposes
the influence from outside environment to detect intricate bugs.

https://tingsu.github.io/files/stoat.html


Insert Preferences

IngredientsRecipe Method

(a) Recipes

add shopping list

Recipe MethodIngredients

Insert Send

Preferences

Eggs

Tomatoes

(b) Ingredients

Recipe Ingredients Method

Insert

1   Wash Tomatoes

(c) Method

(e) Insert Method

Insert Method

Crack Eggs

OK Cancel

(d)Insert Method 

Insert Method
2

Slice Tomatoes

OK Cancel

(f) Exception

Ok

Unfortunately, Bites has
Stopped.

Step number

(a) Screenshots of a cookbook app Bites.

Recipes Ingredients Method

Method
Menu

Insert
Method

Ingredient
MenuRecipes

Menu

Recipe 
Name

entry

e4
(p4)

e5
(p5)

e1
(p1)

e3
(p3)

e2
(p2)

…

e18
(p18)

e17
(p17)

… …

e6 e7
(p7)

e10
(p10)

e8
(p8)

e9
(p9)

e12
(p12)e13

(p13)

e11
(p11)

…

e16
(p16)

e15
(p15)

e14
(p14)

(b) App model of Bites.

Figure 2: Example app Bites and its app model.

2 APPROACH OVERVIEW
Stoat operates in a unique two-phase process to test an app. Figure 1
shows its high-level workflow.
Phase 1: Model construction. Stoat first constructs a stochastic
Finite State Machine (FSM) to describe the app’s behaviors, where
each node represents an app state (abstracted as an app page, see
details in Section 3), and each transition denotes an input event.
It uses a dynamic analysis technique, enhanced by a weighted UI
exploration strategy (step 2 in Figure 1), to efficiently explore an
app’s GUIs. It infers the input events by (1) analyzing the GUI layout
information of each app page; and (2) using a static analysis (step
1) to scan the events that are programmed in the app code, which
may be missed in (1). To efficiently construct the app model, Stoat
dynamically prioritizes the executions of these events to cover as
many app behaviors as possible. In detail, Stoat uses three key ele-
ments to improve the UI exploration performance, which constitute
the basis of the weighted UI exploration strategy:
• Frequency of Event Execution. All events are given opportunities
to be executed. The less frequently an event is executed, the
more likely it will be selected during subsequent exploration.
• Type of Events. Different types of events are not equally selected.
For instance, compared with normal UI events (e.g., click), nav-
igation events (e.g., back, scroll, and menu), are given different
priorities to ensure they are triggered at right timing, otherwise
they may drastically undermine the exploration efficiency.
• Number of Unvisited Children Widgets. If an event solicits more
new UI widgets on the next page, it will be prioritized since more
efforts should be spent on pages with new functionalities.

During exploration, Stoat records the execution frequencies of all
events, and later uses them to compute the initial probability values
of the transitions in the model.
Phase 2: Model mutation, test generation, and execution. To
thoroughly test an app, Stoat leverages the model from Phase 1
to iteratively mutate the transitions’ probabilities and guide test
generation. In detail, it exploits Gibbs Sampling [19], one of Markov
Chain Monte Carlo (MCMC) methods [4], to guide the GUI testing.
In our setting, we intend to find “good” model samples, from which

the test suites can achieve our desired goal, i.e., achieving high
coverage and containing diverse event sequences. Since such test
suites are expected to trigger more program states and behaviors,
and thus increase the chance of detecting bugs.

Typically, Stoat works as a loop: randomly mutate the transition
probabilities of the current stochastic model (step 4), generate the
tests from the model w.r.t. the probabilities (step 5), randomly inject
system-level events (analyzed by static analysis in step 3) into these
UI-level tests to enhance MBT (step 6), replay them on the app (step
7) and collect test results, such as code andmodel coverage and event
sequence diversities (step 8).

Informed by the test results, Stoat exploits Gibbs sampling to
decide whether the newly proposed model should be accepted or
rejected (step 9), the model with better objective value (it implies it
can generate better test suites) will be accepted for the next iteration
of mutations and samplings; otherwise, it will be rejected with
certain probability to avoid local optimal (if rejected, the original
model will be reused). Once any bug is detected (i.e., crash or non-
responding), further analysis will be performed to diagnose the bug
with the corresponding test (step 10).

3 AN ILLUSTRATIVE EXAMPLE
Bites [6] is a simple cookbook app (shown in Figure 2a) that supports
recipe creation and sharing. A user can create a recipe by clicking
the insert menu item in the Recipes page (page a). When the user
taps the name of a recipe, the app navigates to the Ingredients page
(page b), where he/she can view or add ingredients, share them via
SMS, or add them into a shopping list. The user can also switch
to the Method page (page c), where the cooking methods can be
viewed. By clicking the insert menu item, the user can fill in Step
number and Method (page d).
Model construction. Figure 2b shows a part of the constructed
behavior model of Bites, where each node denotes an app state s
and each transition an input event e (associated with a probability
value p). Stoat drives the app from one state s to another state s ′
by emitting an input event e (e.g., click, edit). For example, Stoat
presses themenu key on the Recipes page, a menu will pop up, and a
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Figure 3: View hierarchy of the Ingredient page in Bites.

new app state (corresponding to Recipes Menu) is created. By doing
in this way, Stoat constructs the app model by connecting the states
and the events. For example, Recipes can be navigated to Ingredients
when e6 occurs (i.e., click a recipe item on the Recipes page) with
the probability p6.

Here, an app state s is abstracted as an app page, which is rep-
resented as a widget hierarchy tree. Figure 3 shows such a tree
of the Ingredient page, where the non-leaf nodes in white denote
layout widgets (e.g., LinearLayout), the leaf nodes in blue denote
(executable) widgets (e.g., Button). Each node has its own index
value and a description of its widget type and other properties (e.g.,
text, clickable, long-clickable, scrollable, etc.). These information
can be used to encode an page as a string to differ app states. When
a page’s structure (and properties) changes, a new state is created.
For example, in Figure 2a, the Recipes page and the Ingredients page
correspond to two app states since they have different view hierar-
chy trees. If the app exits/crashes, the ending state is treated as a
final state (e.g., page f).

A probability value p is assigned to each transition e , denoting
the selection weight of e in test generation. The initial probability
values are determined by the execution frequency of each event
during model construction — p is initially assigned the ratio of
e’s observed execution times over the total execution times of all
events w.r.t. s (e ∈ s). For example, if e1 and e6 have been executed
4 and 6 times during model construction, their initial probability
values, i.e., p1 and p6, will be 0.4 and 0.6.
Guided, Stochastic Model-based Testing. Stoat adopts the Gibbs
sampling technique to guide model mutation and test generation.
Figure 4 illustrates this procedure. Starting from the initial model
M0, Stoat works as follows: assume the model Mi is the current
model, to generate a new model mutant Mi+1, Stoat randomly
decides which states should be mutated. Assume Stoat chooses the
two states s0 and s3 to mutate, take s0 as an example, it will mutate
its two transition probabilities p1 and p2 to p′1 and p

′
2 by randomly

increasing or decreasing them by ∆ (∆ is a constant between 0 and
1, e.g., 0.1), but ensure p′1 + p

′
2 = 1 holds.

After the mutation, Stoat generates a test suite Ti+1 from the
new model Mi+1 by following a probabilistic strategy: It starts
from the entry state s0, and follows the probability values to select
an event from the corresponding app state until the maximum
sequence length or the ending state is reached. The higher the
event probability value is, the more likely the event will be selected.
For example, if p′1 is 0.4 and p′2 is 0.6, Stoat will choose e1 with
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Figure 4: Gibbs sampling-guided model mutation and test
generation.

40% while e2 with 60%. To decide whetherMi+1 is a better model,
Stoat executes Ti+1 on the app, and collect the objective value Fi+1
(the results of code and model coverage and test diversity). If Fi+1
is higher than Fi from Mi , Mi+1 will be accepted and Mi will be
discarded, and the next mutation will start on Mi+1. Otherwise,
Mi + 1 will be accepted with the probability of Fi+1/Fi , if rejected,
Mi will be reused. By continuing this working loop, the test suites
can be optimized towards our desired goal.

During this procedure, Stoat also randomly injects system-level
events into UI-level tests from the model. For example, Bites can
be activated by SMS and Browser to read the recipes shared by
others. During testing, Stoat simulates these system-level events
by sending specific Broadcast Intents to Bites.

In Bites, Stoat finally found four unique crashes, two are detected
inmodel construction, and the other two in guided test optimization.
One is NumberFormat, two are CursorIndexOutOfBounds, and the
last one is NullPointer exception.

4 TOOL IMPLEMENTATION
Stoat is implemented as a fully automated app testing framework,
which reuses and extends several tools: Android UI Automator [8,
12] and Android Debug Bridge (ADB) for automating test execution;
Soot [7] for static analysis to identify potential input events; An-
droguard [17] for analyzing the system-level events that the apps
are particularly interested in.

Currently, Stoat supports three sources of system-level events:
(1) 5 user actions (i.e., screen rotation, volume control, phone calls,
SMSs, app switch); (2) 113 system-wide broadcast intents (e.g.,
battery level change, connection to network) to simulate system
messages; (3) the events that the apps are particularly interested
in, which are usually declared by the tags <intent-filter> and
<service> in their AndroidManifest.xml files.

Stoat supports click, touch, edit (generate random texts of
numbers or letters), and navigation (e.g., back, scroll, menu) for
model construction. During Gibbs sampling, Stoat generates a test
suite with the maximum size of 30 tests and each with a maximum
length of 20 events at each sampling iteration. Stoat instruments
open-source apps by Emma [14] to collect line coverage; closed-
source apps by Ella [2] to collect method coverage; and extends
cosine similarity [18] to compute the diversity of a test suite. To
improve scalability, Stoat is designed as a server-client mode, where
the server can parallelly control multiple Android devices.

3



5 EVALUATION RESULTS
Stoat runs on a 64-bit Ubuntu 14.04 physical machine with 12 cores
(3.50GHz Intel Xeon(R) CPU) and 32GB RAM, and uses Android
emulators to run tests. Each emulator is configured with 2GB RAM
and X86 ABI image (KVM powered), and the KitKat version (SDK
4.4.2, API level 19). To evaluate effectiveness, we run Stoat on 93
open-source Android apps from F-droid [10], and compare it with
the state-of-the-arts in terms of model construction, code coverage
and fault detection.
Model Construction. Stoat is compared withMobiGUITAR [1] and
PUMA [11]. Both tools produce similar FSM models. We run each
tool on one emulator, and test each app for 1 hour, and measure the
code coverage to approximate the completeness of the constructed
models, which is the basis ofmodel-based testing.We also record the
number of states and edges in the models to measure the complexity.
Intuitively, the higher the code coverage, the more compact the
model is, the more effective the tool is.
Results: Stoat is more effective than MobiGUITAR and PUMA. On
average, it covers 17∼31% more code than MobiGUITAR, and 23%
more than PUMA. The models produced by Stoat are more compact
without state explosion, which is more effective for Gibbs sampling.
CodeCoverage and Fault Detection.We compare Stoat with these
GUI testing tools: (1) Monkey (random fuzzing), (2) A3E [3] (system-
atic UI exploration), and (3) Sapienz (genetic algorithm) [13]. They
have the best performance in their own approach categories [5].
Specifically, Monkey emits a stream of random input events, includ-
ing both UI and system-level events, to maximize code coverage.
A3E systematically explores app pages and emits events by a depth-
first strategy, which is also widely adopted in other GUI testing
tools. Sapienz uses Monkey to generate the initial test population,
and adapts genetic algorithms to optimize the tests to maximize
code coverage while minimizing test lengths. We allocate 3 hours
for each tool to thoroughly test each app on one single emulator.
Results: Stoat is more effective than Monkey, A3E and Sapienz
in code coverage and fault detection. On average, A3E, Monkey,
Sapienz, and Stoat achieve 25%, 52%, 51%, and 60% line coverage,
respectively. In detail, Stoat achieves nearly 35% higher coverage
than A3E. Stoat has detected 68 buggy apps with 249 unique crashes,
which is much more effective than A3E (8 crashes), Monkey (76
crashes), and Sapienz (87 crashes). Stoat has detected all the crashes
that were found by A3E. We find the crashes detected by Stoat have
much less overlap with Monkey and Sapienz — Stoat detected ex-
clusive 227 and 224 crashes than Monkey and Sapienz, respectively.

To further evaluate the usability and effectiveness of Stoat in test-
ing real-world apps, we run Stoat on 1661 most popular commercial
apps from Google Play with various categories.
Usability and Effectiveness. Stoat was run on 3 physical machines
with 18 emulators and 6 phones (allocate 3 hours per app). It takes
nearly one month to test all these apps, and detected 2110 unique
previously-unknown crashes from 691 apps: 452 crashes frommodel
construction, 1927 crashes from Gibbs sampling, and 269 crashes
are detected in both phases. We have sent all the bug reports to
the developers. So far, 50 developers have replied that they are
investigating our reports (excluding auto-replies). 30 of the reported
crashes have been confirmed or fixed. In particular, Stoat detected

total 4 crash bugs inWeChat, Gmail, and Google+ that affect billions
of users — all of these bugs have been confirmed and fixed.

6 CONCLUSION
We have introduced Stoat, a novel, automated model-based testing
approach to improving GUI testing. Stoat leverages the behavior
models of apps to iteratively refine test generation toward high
coverage as well as diverse event sequences. Our evaluation results
on large sets of apps show that Stoat is more effective than state-
of-the-arts. We believe that Stoat’s high-level approach is general
and can be fruitfully applied in other testing domains.
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