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Abstract—Modern symbolic execution techniques face the
challenge of handling closed-box (CB) functions (e.g., system
calls, library functions) whose source code is unavailable. One
interesting solution in the literature is deferred concretization
with fuzz solving. However, no open-source implementation of
such techniques exists, and thus it is difficult to evaluate and
investigate the effectiveness. In this paper, we present IFSE
(Integrating Fuzz Solving into Symbolic Execution), an open-
source tool implementing the relevant techniques on top of KLEE
to handle the CB functions in symbolic execution. We evaluated
IFSE on GNU Coreutils. The results show that IFSE achieves
the line and branch code coverage improvement by 28.3% and
12.2% respectively compared to vanilla KLEE. The satisfaction
rate of fuzz solver achieves 80.2%, demonstrating its ability to
reason CB function related constraints. IFSE is publicly available
at https://github.com/ecnusse/ifse and a demonstration video is at
https://youtu.be/xMv6_MOlE-I.

Index Terms—symbolic execution, fuzzing, closed-box function.

I. INTRODUCTION

Symbolic execution (SE) is a classic program analysis tech-
nique to automate test generation [1]. However, when handling
real-world programs, SE is difficult to analyze closed-box (CB)
functions (e.g., system calls, library functions) whose source
code is usually not available and can only be accessed by
feeding certain inputs and receiving corresponding outputs.

To overcome this difficulty, modern SE engines (e.g.,
KLEE [2]) employ the concretization policy [3]: when en-
countering a CB function, the policy assigns concrete values to
the symbolic arguments of this CB function, natively executes
this CB function and binds the concrete output value to the
return variable. This policy enables SE to continue the analysis
without knowing this CB function’s formal semantics, but may
unfortunately lead to coverage loss and path divergence [4].

We use the example in Listing 1 to illustrate the con-
cretization policy [3] and the consequence. Listing 1 shows
a simplified code snippet from the pwd program in GNU
Coreutils [5], a widely used core tool program collection in
Unix-like operating system. It parses the arguments argc and
argv in parse_option() (lines 1-9), and invokes different
functions (e.g., logical_getcwd() at line 25). Assume
strcmp() at line 5 is a CB function. The concretization policy
in KLEE will assign a concrete value "" (an empty string)
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1 int parse_option(int argc, char **argv) {
2 if (argc == 2) {
3 if (strcmp(argv[0], "--physical") == 0)
4 return ’P’;
5 if (strcmp(argv[1], "--logical") == 0)
6 return ’L’;
7 }
8 return -1;
9 }

10

11 int main(int argc, char **argv) {
12 make_symbolic(argc); // Make argc symbolic
13 make_symbolic(argv); // Make argv symbolic
14 bool logical = false;
15 int c = parse_option (argc, argv);
16 switch (c) {
17 // Set physical mode
18 case ’P’: logical = false; break;
19 // Set logical mode
20 case ’L’: logical = true; break;
21 // Invalid option, show usage
22 default: usage (EXIT_FAILURE);
23 }
24 // Get logical working directory
25 if (logical) wd = logical_getcwd();
26 else wd = physical_getcwd();
27 // ... Rest of program
28 }

Listing 1. An illustrative example on the concretization policy

to the symbolic argument argv[1] based on the current path
constraint (i.e., argc==2). It then natively executes strcmp()
and binds the concrete output value -1 to the return variable.
Since the return variable of strcmp() has been fixed to
-1, KLEE cannot explore the true branch of line 5, thus
missing the chance of exploring function logical_getcwd()

at line 25. But the true branch is actually satisfiable when
argv[1]=="--logical". This consequence is caused by the
limitaiton of concretization — the constraints between the
symbolic arguments and the return variable of CB functions
(strcmp() in this case) are not maintained.

One interesting solution to mitigating the preceding lim-
itation is deferred concretization [4] with fuzz solving [6]–
[8]. Deferred concretization preserves the CB function signa-
ture and the associated symbolic and concrete values within
the path constraints. Fuzz solving is employed to solve the
constraints related to the CB functions since existing SMT
solvers are difficult to solve such constraints. Specifically,
the constraints are translated to a program which contains an

https://github.com/ecnusse/ifse
https://youtu.be/xMv6_MOlE-I


abort() statement. This abort() statement is reachable only
when a satisfiable assignment of the constraints is found.

However, to our knowledge, none of these techniques is
open-sourced1. As a result, it is difficult for researchers and
engineers to evaluate and explore their effectiveness. To this
end, we took the substantial effort to implement the techniques
of deferred concretization and fuzz solving on top of KLEE.
We have made our realization (named IFSE) publicly available
to benefit the community in investigating the effectiveness of
such techniques to tackle the challenge of closed-box functions
in symbolic execution. We compared IFSE and the vanilla
KLEE on GNU Coreutils by treating C string library functions
as CB functions. The results show that IFSE achieve the line
and branch code coverage improvement by 28.3% and 12.2%
respectively. It also demonstrates the remarkable ability of our
fuzz solver to reason CB function-related constraints and the
notable impact of the optimizations we implemented in IFSE.

II. OUR TOOL IFSE

A. Workflow Overview

Figure 1 illustrates the workflow of IFSE, comprising three
main components: the symbolic execution (SE) engine, an
SMT solver, and a fuzz solver. IFSE also includes several
auxiliary components to enhance its performance in differ-
ent aspects: filter (filtering CB functions related constraints),
predictor (estimating constraint satisfiability), and splitter (ex-
cluding irrelevant constraints), which will be detailed later.

Fig. 1. Workflow of IFSE

Given a program, the SE engine collects path constraints
along program paths. Upon a CB function call, it utilizes
deferred concretization to maintain both the concrete and
symbolic information of the CB function within the path
constraint. When encountering a branch, IFSE first employs
the SMT solver for constraint solving. When the SMT solver
returns UNSAT, IFSE does not discard the path as regular SE.
Instead, IFSE tries to solve the constraint with a fuzz solver.

B. Core Algorithm

IFSE integrates various existing techniques [4], [8], [9] to
address the CB function challenge. As shown in Algorithm 1,
IFSE starts from an initial program state represented as
(pc0, π0, σ0): where pc points to the next program instruction;
π denotes the path constraint of current path; and σ maps
program variables to their symbolic values or concrete values
(lines 1-2). IFSE then repetitively picks a state (pc, π, σ) from

1We contacted the authors of [4] but they did not plan to release the tool.

Algorithm 1 Core Algorithm of IFSE
1: pc0 = l0, π0 = true, σ0 = ∅
2: W ← (pc0, π0, σ0)
3: while W ̸= ∅ do
4: (pc, π, σ)←W
5: instr = getInstruction(pc)
6: if instr is a CB function call (r = f(a1, a2, ...)) then
7: c1, c2, . . . = getConcrete(π, σ, a1, a2, . . . )
8: c = execute(f, c1, c2, . . . )
9: Assume σ[a1] = s1, σ[a2] = c2, . . .

10: σ′ ← (σ[r → ⟨s, c⟩, a1 → ⟨s1, c1⟩, a2 → c2, . . . ])
11: ϕ = (⟨s, c⟩ == f(⟨s1, c1⟩, c2, . . . ))
12: W ← (next(pc), π ∧ ϕ, σ′)
13: else if instr is a branch on condition p then
14: if SMTSolve(filter(π ∧ p)) then ▷ true branch
15: W ← (next(pc), (π ∧ p), σ)
16: else
17: π′ = optimize(π, p)
18: (res, τ ) = FuzzSolve(π′ ∧ p)
19: if res == SAT then
20: W ← (next(pc), (π ∧ p), σ[τ ])
21: end if
22: end if
23: if SMTSolve(filter(π ∧ ¬p)) then ▷ false branch
24: W ← (next(pc), (π ∧ ¬p), σ)
25: else
26: π′ = optimize(π,¬p)
27: (res, τ ) = FuzzSolve(π′ ∧ ¬p)
28: if res == SAT then
29: W ← (next(pc), (π ∧ ¬p), σ[τ ])
30: end if
31: end if
32: else
33: ... ▷ handle other types of instructions as traditional SE
34: end if
35: end while

the worklist (lines 3-5) and handles the state as traditional
SE. However, IFSE executes differently when encountering
CB function calls and branch statements.

When encountering a CB function call r = f(a1, a2, ...),
IFSE provides concrete values ci for each argument ai through
solving path constraint π, natively executes f with these
concrete values and gets a concrete result c (lines 6-8) as
traditional SE does. To address the problems caused by con-
cretization, instead of directly assigning c to variable r in σ,
IFSE introduces a new symbolic value s for r and retains s
and c simultaneously in a tuple ⟨s, c⟩, which is proposed as
symcrete value in deferred concretization [4]; it also updates
symbolic arguments of f to symcrete values, thereby recording
all concrete values of arguments used to natively execute f
(lines 9-10); finally, it creates a CB function expression ϕ
which retains the function signature of f with related symcrete
values and inserts ϕ into π (lines 11-12).

When encountering a branch on condition p, IFSE attempts
to explore both arms of the branch (lines 13-31). To keep
performance, IFSE first attempts to satisfy the path constraint
π ∧ p with existing concrete values by the SMT solver. This
involves replacing all symcrete values with their concrete
values and removing all CB function expressions ϕ in π∧p by
the filter(). If the SMT solver deems the filtered constraint
satisfiable, it indicates existing concrete values satisfy π ∧ p
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Fig. 2. Process of IFSE in handling the path constraint at line 5 in Listing 1

(lines 14-15). Otherwise, IFSE invokes optimize() to opti-
mize π to π′ (line 17) by predictor and splitter successively,
detailed in section II-C. IFSE then solves π′∧p using the fuzz
solver (line 18). The fuzz solver translates π′∧p into a program
containing an abort() statement, which is reachable only
when the program input corresponds to a satisfying assignment
of the path constraint. It then keeps mutating the input until
satisfying π′∧p or reaching timeout. If the fuzz solver returns
SAT, IFSE will create a new program state and update the
satisfying assignment τ in σ (lines 19-21). The other arm of
the branch is handled similarly (lines 23-31).
Exmaple Explanation. Now we explain how IFSE handles
the CB function strcmp() at line 5 in Listing 1. As shown
in Figure 2, when encountering strcmp() in line 5, IFSE
provides a concrete value "" (an empty string) for the symbolic
argument argv[1]. It then natively executes strcmp() using
"" and gets -1 as the result. As mentioned before, IFSE will
introduce a fresh symbolic value s2 for the return variable
of strcmp(), retain them in a symcrete value ⟨s2,-1⟩ and
update symbolic argument argv[1] as ⟨argv[1],""⟩. As a
result, the CB function expression strcmp(⟨argv[1],""⟩,
"--logical") == ⟨s2,-1⟩ containing both function signa-
ture and related symcrete values is added into path constraint.

After the above process, IFSE encounters a branch with con-
dition ⟨s2,-1⟩ == 0 in line 5. The filter() first replaces
all symcrete values with their concrete values. For example,
⟨argv[1],""⟩ is replaced by "" and ⟨s2,-1⟩ is replaced by
-1. Then all CB function expressions will be removed, with
the remaining constraint as (argc == 2 ∧ -1 != 0 ∧ -1

== 0). The SMT solver returns UNSAT because the concrete
value -1 of s2 (highlighted in red) cannot fulfill the constraint.

Before invoking the fuzz solver, IFSE tries to reduce the
scale of path constraint by only including relevant constraints
of branch condition. As shown in Figure 2, IFSE splits
the path constraint and only retains strcmp(⟨argv[1],""⟩,
"--logical") == ⟨s2,-1⟩ which is related to the branch
condition ⟨s2, -1⟩ == 0. Then IFSE discards those old
concrete values by replacing symcrete values to their symbolic
values. The fuzz solver then encodes the optimized constraints
into a program (the grey part of Figure 2) with argv[1]

as input and keeps mutating argv[1] until encountering
the abort() statement or reaching timeout. If the former
occurs, it returns SAT with the corresponding assignments of
argv[1] and s2 as a satisfiable assignment of the constraint
(highlighted in green); otherwise, it returns UNSAT.

C. Optimizations

We have adopted various optimizations to enhance the
practical viability of IFSE:
Constraint Splitter. Many constraint terms are irrelevant
to the current branch condition as they lack variables that
determine its satisfiability and thus do not affect constraint
satisfiability [8], [9]. Hence, We simplify the path constraint by
excluding those terms irrelevant with current branch condition.
Unsat Predictor. If the fuzz solver fails to solve a path
constraint at a certain branch multiple times, the constraint
is likely unsatisfiable. To avoid unnecessary solving, we im-
plement the unsat predictor mentioned in deferred concretiza-
tion [4] to track historical results of the fuzz solver at each
branch and directly return UNSAT at a branch if the fuzz solver
consistently returns UNSAT before.
Memory Tracker. The program generated by constraints
translation runs independently within its own memory space
which is isolated from SE engine. Thus, correctly collecting
and transferring the memory-related data in the SE engine to
the program is a considerable challenge. To address this, IFSE
tracks memory-related data and injects memory manipulating
statements with the data into the program. This enables IFSE
to handle CB functions with complex data types like pointers.
Others. We also implemented other optimizations to further
improve the performance of IFSE, including constraint sim-
plification and conflict detection.

III. IMPLEMENTATION AND EVALUATION

We built IFSE on KLEE [2] (version 3.0, commit dfa53ed),
used Z3 [10] (version 4.8.15) as the SMT solver and im-
plemented a fuzz solver KRPK based on LIBFUZZER [11].
KRPK now supports core, array, bit vector and floating point
theories and can also support other fuzzers. The implementa-
tion of IFSE includes 4,600 lines of C++ in KLEE and 11,000
lines of Rust for KRPK. We took around ten months to build,
optimize and validate the implementation of IFSE.

A. Evaluation Design and Setup

We evaluated IFSE and vanilla KLEE on 79 GNU Core-
utils programs [5], a common SE benchmark with many CB
function calls. We measured the line and branch coverage to
assess IFSE’s path exploration ability, and the satisfaction rate
( #SAT

#Fuzz Solving ) to eavlaute the performance of our fuzz solver.
We also investigated the correlation between the satisfaction
rate and IFSE’s coverage improvement over KLEE, as well as
the impact of two major optimizations, constraint splitter and
unsat predictor. We chose C string library functions as CB
functions in our experiment and compiled the tested programs
with uclibc support while holding back the definitions of
these string functions. These string functions are frequently
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Fig. 4. Correlation between line
coverage impr. and satisfaction rate

used in GNU Coreutils and contain complex features like
pointers. IFSE and KLEE were set with a 4-hour timeout
and the fuzz solver was set with an 8-second timeout per
program. We repeated the experiment ten times and averaged
the results. The evaluation was performed on 64-bit Ubuntu
22.04 equipped with a 64-core AMD Ryzen Threadripper PRO
3995WX CPU and 128 GB of RAM. Detailed experimental
data is available in the IFSE GitHub repository.

B. Evaluation Results
Code Coverage. Figure 3 compares the line coverage achieved
by IFSE (x-axis) and KLEE (y-axis) across the 79 tested pro-
grams (represented by blue points). The points below the line y
= x indicate that IFSE outperforms KLEE in line coverage. On
63 programs, IFSE improved line coverage by 0.7∼357.9%.
On average, IFSE achieved a line coverage of 54.8%, a
28.3% improvement over KLEE’s 42.7%. Meanwhile, IFSE
achieved the average branch coverage of 64.2%, while KLEE
achieved 57.2%, with 12.2% coverage improvement. These
results show the effectiveness of IFSE. We further unioned
the achieved line coverage of IFSE and KLEE, and obtained
the average line coverage of 55.9%. This union result achieved
the line coverage improvement by 30.9% compared to KLEE.
It indicates that the majority of new program paths are indeed
explored by IFSE rather than KLEE.
Satisfaction Rate. The fuzz solver KRPK in IFSE achieves
an average satisfaction rate of 80.2%. Figure 4 shows the
correlation between KRPK’s satisfaction rate and IFSE’s line
coverage improvement over KLEE on each tested program. It
shows that KRPK’s satisfaction rate has a positive impact on
the performance of IFSE (most points situate at the upper right
corner). We also notice some points at the lower right corner.
This is because such programs may not contain branches
with string functions on which KLEE has achieved saturated
coverage without any room for further exploration by IFSE.
Optimization. We studied the impact of two optimizations,
constraint splitter and unsat predictor, on the performance of
IFSE. The results show that splitter improves the average line
coverage by 37.3%, the predictor 2.9%, and their combina-
tion yields a 43.8% improvement. It indicates that the two
optimizations are complementary as predictor may assess the
satisfiability of large constraints more accurately when these
constraints are first scaled down by splitter.

IV. RELATED WORK

Pandey et al. [4] propose the idea of deferred concretization
to tackle the challenge of closed-box functions in symbolic

execution. Specifically, they use fuzz solving [6] to solve the
path constraints related to closed-box functions when tradi-
tional SMT solvers fail. Unfortunately, their tool COLOSSUS
is not publicly available. Our tool IFSE follows their basic idea
and has been made publicly available to allow replication and
further investigation. IFSE has also been optimized during our
evaluation. For example, we optimize fuzz solving by splitting
path constraints [8], [9], which is shown to be important
in practice. IFSE also allows the evaluation of some new
constraint solving techniques like SADHAK [8] for closed-
box functions, which otherwise is impossible. There are also
some other tools (e.g., JFS [6], FUZZY-SAT [7], FUSE [9])
using fuzz solving to build dedicated constraint solvers for
symbolic execution. But none of them targets closed-box
functions related constraints. For example, JFS [6] targets
floating-point related constraints; FUSE [9] targets floating-
point and non-linear related constraints.

V. CONCLUSION

To tackle the challenge of CB functions in symbolic exe-
cution, we propose IFSE, an open-source tool following the
idea of deferred symbolic execution and fuzz solving. IFSE
show its effectiveness in handling CB functions in real-world
programs from GNU Coreutils. We have made IFSE publicly
available to benefit the community and future research.
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