
Deep Differential Testing of JVM Implementations

Yuting Chen∗ Ting Su† Zhendong Su‡§

∗Department of Computer Science and Engineering, Shanghai Jiao Tong University, China
†Nanyang Technological University, Singapore

‡ETH Zurich, Switzerland
§University of California, Davis, USA

Email: ∗chenyt@sjtu.edu.cn, †tsuletgo@gmail.com, ‡zhendong.su@inf.ethz.ch

Abstract—The Java Virtual Machine (JVM) is the cornerstone
of the widely-used Java platform. Thus, it is critical to ensure
the reliability and robustness of popular JVM implementations.
However, little research exists on validating production JVMs.
One notable effort is classfuzz, which mutates Java bytecode
syntactically to stress-test different JVMs. It is shown that
classfuzz mainly produces illegal bytecode files and uncovers
defects in JVMs’ startup processes. It remains a challenge to
effectively test JVMs’ bytecode verifiers and execution engines
to expose deeper bugs.

This paper tackles this challenge by introducing classming, a
novel, effective approach to performing deep, differential JVM
testing. The key of classming is a technique, live bytecode
mutation, to generate, from a seed bytecode file f , likely valid,
executable (live) bytecode files: (1) capture the seed f ’s live
bytecode, the sequence of its executed bytecode instructions; (2)
repeatedly manipulate the control- and data-flow in f ’s live
bytecode to generate semantically different mutants; and (3)
selectively accept the generated mutants to steer the mutation
process toward live, diverse mutants. The generated mutants are
then employed to differentially test JVMs.

We have evaluated classming on mainstream JVM implemen-
tations, including OpenJDK’s HotSpot and IBM’s J9, by mutat-
ing the DaCapo benchmarks. Our results show that classming
is very effective in uncovering deep JVM differences. More than
1,800 of the generated classes exposed JVM differences, and
more than 30 triggered JVM crashes. We analyzed and reported
the JVM runtime differences and crashes, of which 14 have
already been confirmed/fixed, including a highly critical security
vulnerability in J9 that allowed untrusted code to disable the
security manager and elevate its privileges (CVE-2017-1376).

Keywords—Differential JVM testing; live bytecode mutation;
semantically different mutants

I. INTRODUCTION

The Java platform has been in widespread use, and the

Java Virtual Machine (JVM) is its cornerstone to run Java

applications safely and portably [1] [2]. Defects in JVM

implementations can lead to unexpected behavior or security

breaches, since a JVM implementation runs bytecode generated

by (Java) compilers, but also any bytecode, including byte-

code-engineered variants or even ones from attackers. However,

few techniques exist to help systematically validate production

JVMs (e.g., HotSpot [3] [4], IBM’s J9 [5], Azul’s Zing [6]

and Zulu [7], and the Jikes RVM [8] [9]) and improve their

robustness. One promising approach is to differentially testing
JVMs — running the same Java bytecode (*.class) on

different JVMs to expose their differences.

The state-of-the-art technique is classfuzz [10], which

mutates Java classes syntactically (e.g., by changing its mod-

ifiers or the type of a variable) to differentially test JVMs’

startup processes (i.e., loading, linking, and initialization).

Despite its effectiveness in exposing differences in the JVMs’

startup processes, classfuzz cannot adequately exercise JVMs’

bytecode verifiers and execution engines at the backend.
Figure 1 illustrates the high-level process of how a JVM

runs a class — the bytecode verifier ensures that each class

satisfies the necessary constraints at link time [2] [11], and

subsequently the execution engine is responsible for just-in-

time (JIT) compiling and executing Java bytecode [2]. Few

classfuzz-generated classfiles can be used for deep JVM testing

— most of the mutated classes are rejected by the startup

processes. Rarely can the accepted ones be used because

the mutated program constructs (variables and their types,

methods, etc.) are likely dead, i.e., not reached during execution.

Additional program constructs, such as methods and call chains,

would need to be carefully designed for the mutated constructs

to be involved during bytecode verification and execution.

To this end, we introduce live bytecode (LBC) mutation,

a novel, practical technique for generating valid, executable

bytecode from seed classes. The key insight behind LBC

mutation is to systematically manipulate and alter a bytecode

file’s live bytecode, its sequence of executed instructions on a

JVM. Deep JVM differences/bugs can then be exposed using

the resulting mutants since JVMs may (1) mistakenly analyze

a mutant’s dataflow during bytecode verification, or (2) verify

bytecode with invalid stackmap frames1 or execute uncommon

bytecode instruction sequences in different manners. Two

technical difficulties exist in realizing effective LBC mutation.

Difficulty 1: Live Mutant Generation. LBC mutation needs

to be designed to generate live mutants for testing JVMs.

A simple naı̈ve strategy is to mutate a seed by arbitrarily

inserting, deleting, or modifying instructions in its live bytecode.

However, this leads to mostly illegal mutants (i.e., those rejected

in a JVM’s startup process) as Java bytecode needs to satisfy

intricate syntactic and structural constraints. For instance, an

invokestatic instruction should not be inserted unless its

first operand refers to a static method, etc.

1A stackmap frame defines the expected types of local variables and the
operand stack of a method during the method’s execution [2] [12].

1257

2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)

1558-1225/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE.2019.00127

Fig. 1: Simplified process of JVM running classes.

Difficulty 2: Bytecode File Selection. For LBC mutation and

effective JVM testing, it is important to select suitable seeds and

mutants. In the case of classfuzz (or other coverage-directed

fuzz testing techniques, e.g., AFL [13]), it iteratively mutates

a seed and retains a mutant if its coverage statistics on the

target software system is unique. However, mutants cannot

be similarly selected for testing JVMs’ execution engines due

to non-determinism at runtime. For instance, a JIT compiler

allows methods to be compiled in parallel, garbage can be

collected as needed, etc. All these situations can occur in

practice, making the coverage statistics on a JVM’s execution

engine vary. Thus, coverage uniqueness adopted by classfuzz
is unsuited for our purpose.

This paper overcomes these difficulties by introducing

classming, a novel realization of LBC mutation for practical

differential JVM testing. It operates as follows. First, it records

the seed classfile’s live bytecode. Second, it systematically

manipulates and alters both the control- and data-flow in the

seed’s live bytecode to generate semantically different mutants

from the seed. Finally, the generated mutants are utilized for

differentially testing JVMs to expose their differences and thus

potential defects.

More importantly, classming takes an iterative process of

mutant generation. It iteratively generates classfile mutants and

selects them using an acceptance choice. The choice guides

the whole process toward generating live, diverse mutants.

In summary, we make the following main contributions:

• Objective. We tackle the challenge of deep validation of

production JVMs by testing their bytecode verifiers and

execution engines. Different from classfuzz, deep JVM

testing requires abundant runnable, diverse test classes.

Our work is the first that aims at systematically generating

such tests.

• Approach. We introduce the LBC mutation approach and

a novel, practical realization, classming, for effective

differential JVM testing. Given a seed, classming can

create a large number of test classes with diverse behaviors

to help explore deep JVM differences.

• Evaluation and defect reporting. We have evaluated

classming on mature JVMs such as OpenJDK’s HotSpot

and IBM’s J9. Using the 14 DaCapo benchmarks as seeds,

classming created about 70K test classes, of which more

than 1,800 exposed JVM runtime differences and more

than 30 triggered JVM crashes. We have analyzed and

reported these differences and crashes, of which 14 have

already been confirmed as JVM defects and fixed (e.g.,
dataflow may be incorrectly analyzed, race conditions

may prevent JVMs from shutting down cleanly). The IBM

Product Security Incident Response Team (PSIRT) has

also confirmed a critical security vulnerability in J9 that

allowed untrusted code to disable the security manager

and elevate its privileges.

II. AN ILLUSTRATIVE EXAMPLE

This section uses a concrete example to motivate and

illustrate LBC mutation, which intervenes a class’s normal

execution by rewriting its executed bytecode. Our realization of

LBC mutation, classming, employs the Soot framework [14]

[15] [16] to analyze dataflow and bidirectionally transform

between a class and its Jimple code (Soot’s intermediate

representation of a Java class) — transforming a classfile into

its Jimple code and dumping a Jimple file into a classfile.

Figure 2a shows the Jimple code of a seed class seed. In

its main() method, entermonitor r0 (line 8) and exit-

monitor r0 (line 10) denote, respectively, the monitor enter

and exit on object r0, and synchronize the code block between

them. Note that when entermonitor r0 is executed, r0 is

null (line 7).

When the class is run on HotSpot and J9, both JVMs

strictly conform to the JVM specification [2] and throw a

NullPointerException, as the JVM specification states that

“if objectref is null, monitorenter throws a NullPointerException”

(§6.5). The instructions after line 8 are nonlive, that is, the

monitor on r0 is not entered/exited at runtime.

Next, we show three example mutants of seed. Each reveals

a specific JVM difference when it is run on HotSpot and J9.

Mutant 1. In the first example, classming changes the control

flow of the seed class, thus altering its semantics. As Figure 2b

shows, two goto statements (lines 9 and 15) are inserted into

seed. It is clear that the resulting class mutant1 is semantically

different from seed. In particular, when entermonitor r0 is

executed, r0 is an initialized object, rather than null; enter-

monitor r0 will be run for 20 times, while exitmonitor

r0 only once.

When it is run on HotSpot and J9, mutant1 triggers a

difference between the two JVMs — HotSpot throws a runtime

exception, while J9 runs the class normally. This difference is

caused by the existence of structured locking, which occurs

during a method invocation when every exit on a given monitor

matches a preceding entry on that monitor [2] [17]. If a

JVM “enforces the rules on structured locking” and if some

“rule is violated during invocation of the current method,” the

return instruction throws an IMSE (IllegalMonitorState-

Exception) (§6.5 in the JVM specification). HotSpot enforces

the rules on structured locking, throwing an exception because

when main() returns, the number of monitor entries performed

does not equal the number of monitor exits. J9 does not enforce

the rules and allows main() to return normally.

1258

1 class seed{
2 public static void main(){
3 String r0;
4
5 r0 = new String;
6 specialinvoke r0.<String: void init()>();
7 r0 = null;
8 entermonitor r0; //code after is nonlive
9 ... //code block to synchronize

10 exitmonitor r0;
11 return;
12
13
14
15 }}

(a) Jimple code of a seed class. Both HotSpot and J9 throw a
NullPointerException for this class.

1 class mutant2{
2 public static void main(){
3 String r0;
4
5 r0 = new String;

6 + goto label1;

7 specialinvoke r0.<String: void init()>();
//skip

8 r0 = null; //skip

9 +label1:

10 entermonitor r0;
11 ...
12 exitmonitor r0;
13 return;
14 }}

(c) Jimple code of mutant2. HotSpot runs the class normally, while
J9 throws a VerifyError.

1 class mutant1{
2 public static void main(){
3 String r0;

4 + int loopcount;

5 + loopcount = 20;

6
7 r0 = new String;
8 specialinvoke r0.<String: void init()>();

9 + goto label1;

10 r0 = null; //skip

11 +label1:

12 entermonitor r0;
13 ...

14 + loopcount = loopcount - 1;

15 + if loopcount>0 goto label1;

16 exitmonitor r0;
17 return;
18 }}

(b) Jimple code of mutant1. HotSpot throws an IllegalMonitor-
StateException, and J9 runs the class normally.

1 class mutant3{
2 public static void main(){
3 String r0;
4
5 r0 = new String;
6 specialinvoke r0.<String: void init()>();

7 + goto label1;

8 +label2:

9 r0 = null;

10 + goto label3:

11 +label1:

12 entermonitor r0;
13 ...

14 + goto label2;

15 +label3:

16 exitmonitor r0;
17 return;
18 }}

(d) Jimple code of mutant3, which causes HotSpot to throw
an IllegalMonitorStateException and J9 a NullPointer-
Exception.

Fig. 2: A seed class and its three classming-generated classes.

Mutant 2. As Figure 2c shows, we create mutant2 by inserting

a goto statement into seed at line 6. In mutant2, when

entermonitor r0 is executed, r0 is uninitialized.

When mutant2 is run on HotSpot and J9, it triggers another

JVM difference. HotSpot runs the class normally, while J9

throws a VerifyError as J9 detects that r0, an uninitialized

object reference, is monitored.

The HotSpot developers explained that it should be valid

to allow an uninitialized reference to be monitored, and there

would no potential harm in invoking a monitorenter/exit on

an uninitialized instance, although application developers may

find the result confusing since the JVM specification states

that “the verifier rejects code that uses the new object before
it has been initialized” (§4.10). At the end, the J9 developers

agreed with this explanation, and confirmed the difference to

be a defect in J9 and fixed it.

Mutant 3. The final example is mutant3. As Figure 2d shows,

after three goto statements (lines 7, 10, 14) are inserted, the

program invokes monitorenter on object r0, sets r0 to null,

and invokes monitorexit on r0.

HotSpot and J9 throw different exceptions on mutant3,

which can be propagated if the exceptions are caught and

handled respectively. J9 throws a NullPointerException

at line 16 as the specification states that “if objectref is null,
monitorexit throws a NullPointerException” (§6.5). HotSpot,

on the other hand, makes a rarely known optimization (even to

HotSpot developers): when the method completes abruptly and

the rules on structured locking are violated, the JVM throws

an IMSE, and disposes the other exceptions.

Summary. The three illustrative examples clearly demonstrate

the strength of LBC mutation. Mutating a seed class, in

particular, changing its control- and data-flow, can help create

mutants with diverse semantics. When run on multiple JVM

implementations, these mutants may expose JVM behavior dif-

ferences and thus potential defects. Note that some differences

can only be exposed by classes generated via two or more

1259

iterations of mutation, assuming that each iteration inserts one

goto statement. Our realization classming provides an iterative

process in which live mutants can be continuously created for

differential JVM testing.

III. APPROACH

classming takes an iterative process to generate test bytecode

files. As Figure 3 shows, given a seed bytecode file f ,

classming aims at creating a mutant of f by manipulating

f ’s live bytecode (Section III-A), and iteratively creates and

selectively accepts f ’s mutants (Section III-B) — during each

iteration, an acceptance choice chooses either the resulting

mutant or its seed for the next iteration.

The generated classfile mutants are then employed to

differentially test JVMs and uncover differences. Any JVM

differences, if exposed, become oracles for finding flaws in the

tested JVMs. Interesting differences include (1) JVM crashes,

(2) verification differences (e.g., JVMs verify mutant2 in

Section II differently), and (3) execution differences (e.g.,
HotSpot and J9 throw different exceptions for mutant1).

A. Live Bytecode Mutation

Live bytecode of a classfile f refers to, when f is run on

a JVM, a sequence of executed bytecode instructions L : [I0,
I1, . . . , Im]. Similarly, we use live mutants and live methods to

denote those that can be executed at runtime.

An LBC mutation is performed on f by instrumenting a

hooking instruction (HI) at a program point before I0≤i≤m. As

Figure 4 shows, a hooking instruction hijacks control flow, and

alters f ’s execution to L ′ : [I0, I1, . . . , Ii−1, I j, . . . , In]. Here we

call the program point after Ii−1 a hooking point (hp), and that

before I j a target point (tp). The resulting mutant, say g (with

the live bytecode instructions L ′), can become a corner case

for triggering JVM differences, since it may contain abnormal

stackmaps or unusual dataflow that can confuse a JVM or even

crash it at runtime.

Algorithm 1 shows a process of LBC mutation, including

three main steps: (1) select LBC mutators, (2) select methods

to mutate, and (3) insert hooking instructions.

Step 1: Select LBC Mutators. We leverage the five Soot’s

Jimple instructions ((1) goto, (2) return, (3) throw, (4)

lookupswitch, and (5) tableswitch) as HIs — Soot uses

15 Jimple instructions and only five can alter a program’s

control-flow. As LBCMUTATION() in Algorithm 1 shows, an

LBC mutation picks up an HI by random and instruments it

into the seed classfile, altering the control- and data-flow at

runtime (e.g., enforcing the execution to jump, an exception

to be thrown, or an invoked method to return).

1 loopcount = M; // M is a positive integer
2 ...
3 label0: //insert a label at a target point
4 ...
5 loopcount = loopcount - 1;
6 if loopcount >0 goto label0; //insert an HI at a

hooking point
7 ...

Each HI, as shown in the above code segment, is supple-

mented with a condition (e.g., if loopcount>0), which is to

bound the possible iterations for each introduced loop. This

avoids the occurrences of infinite loops as well as enables

additional altering of control-flow.

An instrumented HI can also be deleted. It helps create

mutants with diverse HI combinations or prevent them from

getting stuck (e.g., a mutant may be run slowly if it contains

a computation-intensive loop).

Step 2: Select methods to mutate. During each iteration,

classming selects one class method to mutate. Random

selection offers no guidance — some methods need to be

more frequently mutated than others because of their more

complex structures and richer instructions. Thus, we select

methods by a potential function:

potential(m) =
#inst

#mutation
,

where a method m’s potential relies on its size (#inst) and how

many times it has already been mutated (#mutation).

Intuitively, the higher a method’s potential, the more likely

it needs to be mutated. A method’s potential decreases after

it is mutated. To capture this intuition, we choose methods

with probabilities meeting a geometric distribution that allows

methods with higher potentials to be selected with higher

probabilities.

Let M denote an array where all the live methods in f are

stored and sorted in descending order of their potentials. Let

size denote the size of M. Let the kth method in M be chosen

with probability (1− p)k p, where p is the success probability.

Obviously, the sum of the probabilities needs to reach 1, i.e.,
1− (1− p)(size−1)+1

≈ 1. Here we let (1− p)size = ε , where ε
is a very small value (e.g., 0.05).

A method can then be chosen from M using rand, a random

real value between 0.0 and 1.0. The kth method is selected to

be mutated when

1− (1− p)k ≤ r < 1− (1− p)k+1

Since k is an integer denoting an array index, we have

k = �logε(1− rand)size�,
indicating that method selection relies only on rand.

Step 3: Insert hooking instructions. LBC mutation alters a

program’s dataflow, which is carefully analyzed by JVMs dur-

ing bytecode verification. Here, dataflow is mainly introduced

via data dependencies established among variable definitions

(defs) and uses (uses) [18] [19].
• Select hooking points. An HI deliberately destroys a seed’s

data dependencies for creating corner cases. To simplify our

discussion, we assume that, after an HI is instrumented,

all data dependencies (i.e., def-use, def-def, use-use,
and use-def) that pass through the hooking point will be

intercepted, which may result in abnormal data-flow (e.g., an

object is redefined or undefined). The more data dependencies

are intercepted, the more likely the mutant contains abnormal

dataflow that a JVM may fail to analyze.

1260

Fig. 3: An overview of the classming approach.

Fig. 4: Mutating a seed file with live bytecode L to a mutant

with L ′.

In order to intercept as many data dependencies as possible,

classming selects a hooking point judiciously during each

iteration. As SELECTHOOKINGPOINT() in Algorithm 1 shows,

classming randomly chooses n program points as candidates

(in this algorithm, n = 2). It then calculates the potential data

dependency interceptions w.r.t. these candidates respectively

(lines 23∼ 32), and chooses the one with the most interceptions

as a hooking point (line 33). Existing data dependencies are

obtained by analyzing the seed’s live bytecode.

• Select target points. An LBC mutation can require one or

more labels to be inserted into the bytecode, along with an

insertion of a goto or a switch instruction.

In order to generate a mutant semantically different from

the previously generated mutants, classming favors inserting

labels before instructions missed from previous runs. As

SELECTTARGETPOINT() in Algorithm 1 shows, it chooses

at random a target point candidate, say tp, and (1) accepts

tp if the successive instruction (say I) has never been hit

in the previous runs, (2) accepts it with a high probability

(e.g., 0.8) if I is not hit by the last mutant, or (3) accepts it

with a low probability (e.g., 0.2). This strategy allows seed

coverage, a fitness function for guiding mutant acceptance (see

Section III-B), to increase during the mutation process.

B. Mutant Acceptance

As explained in Section I, distinct coverage statistics w.r.t.
a JVM cannot be used to accept classfile mutants. Thus

classming employs seed coverage as the fitness function, and

adopts the Metropolis-Hastings (MH) algorithm [20] [21] for

accepting mutants during the mutation process.

Seed coverage. Seed coverage is a metric denoting how many

instructions in the initial seed are covered by its mutants, as

the fitness function for accepting mutants for further mutations.

This fitness function directs the mutation process in two

respects: (1) Mutants with different seed coverage values have

different semantics (runtime behaviors), and (2) Live mutants

can be more easily created from (intermediate) seeds with

higher seed coverage.

To this end, we record the live bytecode of each mutant.

Assume f has x instructions, y of which can be hit when a

mutant, say g, is run on a JVM. The seed coverage of g w.r.t.
f is calculated by

covseed(g) =
y
x
×100%

A sampling process. classming adopts the MH algorithm, an

MCMC (Markov Chain Monte Carlo) sampling method, for

selecting mutants as intermediate seeds. The MH algorithm

aims to accept a sequence of samples whose distribution closely

approximates the desired distribution [20] [21].

In our setting, we let each sample be the seed coverage of

a mutant, and let the exponential distribution be the desired

distribution. The desired distribution facilitates choosing of

mutants with high seed coverage for further mutations, since

these mutants have the more vitalities than those with low seed

coverage. A mutant with low seed coverage may easily lead

to cases that cannot be further mutated.

For MCMC sampling, we begin with a transformation of the

fitness function into a probability density function [22] [23]

P(f) =
1

Z
exp(−β (covseed(f)))

where β is a constant (in our setting β = 0.08× x), and Z a

partition function that normalizes the distribution.

We assume that the proposal distribution is symmetric.

classming uses Metropolis choice for sampling acceptance [22]

A(f → g) = min(1,
P(g)
P(f)

)

= min(1,exp(β (covseed(f)− covseed(g)))

The Metropolis choice directs the mutation process. As

Algorithm 2 shows, we run and collect the seed coverage

of each mutant, and accept live, diverse mutants using the

acceptance probability (lines 9 ∼ 14); we reject the nonlive

1261

Algorithm 1 LBC Mutation

Input: f : a seed classfile; livecodeset:{L0, . . . ,Ln}, a set of live bytecode
of the previously generated mutants

Output: g: a classfile mutant
1: function LBCMUTATION(f , livecodeset)
2: method ← SELECTMETHODTOMUTATE(Ln)
3: t ← select an LBC mutator by random
4: if t is to instrument a goto instruction then
5: hp← SELECTHOOKINGPOINT(method,Ln)
6: insert if (...) goto newlabel; at hp
7: t p← SELECTTARGETPOINT(method, livecodeset)
8: insert newlabel: at t p
9: else if t is to instrument a lookupswitch or a tableswitch

instruction then
10: . . .// similar to goto but with multiple target points
11: else if t is to instrument a return or a throw instruction then
12: . . .// similar to goto but without any target points
13: else
14: . . .// select from method a live HI and remove it

15: g← UPDATE(f) // replace method in f with its mutant
16: return g

17: function SELECTMETHODTOMUTATE(Ln)
18: M ← GETLIVEMETHODS(Ln)
19: M ← SORT(M) // sort methods using their potentials
20: rand ← NEW RAND()
21: return M.GET(�logε (1− rand)size�)

22: function SELECTHOOKINGPOINT(method,Ln)
23: let the live bytecode on method be [I0, I1, . . . , Im]
24: // choose α and compute γα (i.e., the data dependency interceptions

w.r.t. α)
25: let α , a program point after Ii−1, be chosen
26: set s0 ← s1 ← /0
27: for I : [I0, . . . , Ii−1] do // DEF(I) and USE(I) compute the
28: s0 ← s0∪DEF(I)∪USE(I) // variables defined and used in I,

29: for I : [Ii, . . . , Im] do // respectively
30: s1 ← s1 ∪DEF(I)∪USE(I)
31: set γα ← s0 ∩ s1

32: . . .// choose β and compute γβ
33: return (γα .size≥ γβ .size?α : β)

34: function SELECTTARGETPOINT(method, livecodeset)
35: while true do
36: select t p, a target point candidate before an instruction I in method
37: if I /∈ (L0.ASSET()∪·· ·∪Ln.ASSET()) then return t p
38: rand ← NEW RAND()
39: if I /∈Ln.ASSET()&& rand < probhigh then return t p

40: if I ∈Ln.ASSET()&& rand < problow then return tp

bytecode files (line 16), since it is unlikely to obtain a live

bytecode file through mutating a nonlive seed.

All the generated mutants (including those accepted and

rejected, and the nonlive ones) will be employed as tests in

differential JVM testing.

IV. EVALUATION

We evaluated classming on two mainstream JVM imple-

mentations, i.e., HotSpot and J9. Our evaluation is aimed at

answering three research questions:

• RQ1: Can classming generate sufficient valid test bytecode

files for JVM testing?

• RQ2: How effective are the classming-generated mutants in

testing JVMs?

• RQ3: What are the root causes of detected JVM differences?

Algorithm 2 Iteratively creating and selectively accepting mutants

Input: f : a seed bytecode file; iter: the number of iterations
Output: set MUTANT , ACC, REJ, NONLIVE

/*MUTANT = ACC∪REJ ∪NONLIV E contains classfile mutants for
JVM testing, ACC and REJ contain live ones that are accepted and
rejected, respectively, and NONLIV E contains nonlive ones rejected by
a JVM’s startup process.*/

1: MUTANT ← ACC← REJ ← NONLIVE← /0
2: set livecodeset ←{ f .livecode}
3: for i : 1 to iter do
4: g← LBCMUTATION(f , livecodeset)
5: if (g is created successfully) then
6: MUTANT ←MUTANT ∪{g}
7: if covseed(g)> 0 then
8: rand← NEW RAND()
9: if rand < A(f → g) then

10: ACC← ACC∪{g}
11: livecodeset ← livecodeset ∪{g.livecode}
12: f ← g
13: else
14: REJ ← REJ∪{g}
15: else
16: NONLIVE← NONLIVE∪{g}
17: return MUTANT , ACC, REJ, NONLIVE

A. Evaluation Setup

Approaches for comparison. We compared classming with

the following approaches to investigate the benefits of each of

classming’s strategies.

• classfuzz’ is a mutant of classfuzz [10]. It alters classfiles

using six instruction-level mutators provided by classfuzz
(i.e., inserting, replacing, deleting, exchanging, duplicating,

and cloning bytecode instructions). Note that classfuzz itself

was not included in our evaluation since it does not aim for

deep JVM testing.

• clrandom manipulates at random control- and data-flow.

• clgreedy employs a greedy strategy in accepting mutants —

a mutant is accepted only when it allows the accumulative

seed coverage to increase.

The table below summarizes the differences of the four

evaluated approaches, including the mutators and the strategies

for creating and accepting mutants.

Approach Mutators How to create a
mutant?

How to accept a
mutant?

classming HI insertions/deletions LBC mutation The MH algorithm

classfuzz’ 6 classfuzz mutators LBC mutation The MH algorithm

clrandom HI insertions/deletions Random mutation The MH algorithm

clgreedy HI insertions/deletions LBC mutation A greedy algorithm

Benchmarks and Configurations. We mutated the DaCapo

benchmarks, a collection of open-source, real-world applica-

tions, such as eclipse, lusearch, and pmd [24].

As Table I shows, for each benchmark, classming mutated

its initial classfile, creating mutants of this benchmark. Note

the non-initial classfiles were not used as seeds, as they are

not definitely linked at runtime. For each seed, the number

of iterations (#iter) was set about 14× of the lines of Jimple

instructions (#inst), allowing the seed to be sufficiently mutated.

These benchmarks have been mutated for 88K times.

HotSpot (Java 9) was used as the reference JVM for

generating classfile mutants and collecting coverage statistics.

HotSpot (build 9-ea+172) and J9 (build 2.9) were chosen for

1262

TABLE I: Seeds, iteration times, and numbers of test classfiles generated. In this table, we use V , L and N to denote the

numbers of generated mutants, live mutants and nonlive ones, respectively. Here we have V = L+N.

Benchmark Initial class (seed) #inst #iter classming classfuzz’ clrandom clgreedy
V L N sbr(%) V L N sbr(%) V L N sbr(%) V L N sbr(%)

avrora .../avrora/Main.class 279 5000 4105 3063 1042 17.9 2534 2243 291 49.3 4512 3638 874 9.8 3997 2787 1210 20.1

batik .../rasterizer/Main.class 428 8000 6511 4421 2090 18.6 3140 2823 317 60.7 7115 5368 1747 11.1 6451 4442 2009 19.4

eclipse .../EclipseStarter.class 2005 20000 16405 8448 7957 18.0 8749 7805 944 56.3 17581 11081 6500 12.1 18113 13167 4946 9.4

fop .../fop/cli/Main.class 174 3000 2484 2271 213 17.2 1203 977 226 59.9 2735 2678 57 8.8 2317 1599 718 22.8

h2 .../h2/TPCC.class 1022 15000 12102 7559 4543 19.3 5861 5114 747 60.9 13244 9729 3515 11.7 13034 8748 4286 13.1

jython .../python/util/jython.class 351 6000 4851 2784 2067 19.1 2615 2316 299 56.4 5531 4348 1183 7.8 5159 2536 2623 14.0

luindex .../luindex/Index.class 74 2000 1688 1198 490 15.6 1100 968 132 45.0 1794 1229 565 10.3 1677 1112 565 16.1

lusearch .../lusearch/Search.class 144 2500 2102 1495 607 15.9 1453 1228 225 41.9 2380 1965 415 4.8 2076 1123 953 17.0

pmd .../pmd/PMD.class 821 10000 8261 4725 3536 17.4 3191 2931 260 68.1 9042 6307 2735 9.6 8337 4334 4003 16.6

sunflow .../sunflow/Benchmark.class 248 4000 3142 2219 923 21.4 1141 1020 121 71.5 3502 2987 515 12.4 3238 1903 1335 19.0

tomcat .../tomcat/Control.class 42 2000 1732 1515 217 13.4 1078 905 173 46.1 1885 1672 213 5.7 1745 1348 397 12.7

tradebeans .../daytrader/Launcher.class 251 4000 3161 1833 1328 21.0 1884 1530 354 52.9 3441 2210 1231 14.0 3487 2511 976 12.8

tradesoap .../daytrader/Launcher.class 251 4000 3200 1972 1228 20.0 1979 1676 303 50.5 3436 2166 1270 14.1 3346 1830 1516 16.3

xalan .../xalan/XSLTBench.class 129 2500 2101 1364 737 16.0 1235 1093 142 50.6 2291 1689 602 8.4 2233 1297 936 10.7

Total 6219 88000 71845 44867 26978 18.4 37163 32629 4534 57.8 78489 57067 21422 10.8 75210 48737 26473 14.5

differential testing. The evaluation was run on the Ubuntu

16.04 machines with Intel Core i7-6700 CPU@3.40HZ and

8GB RAM. The time of executing each mutant was constrained

within 20 seconds.

Metrics. We repeated each approach five times and chose the

test suite with the most mutants for comparison. Four metrics

were taken to evaluate classming against the other approaches.
• Stillborn rate To quantitatively measure whether an approach

can generate sufficient valid tests, we computed the stillborn
rate of each approach

sbr = 1− |MUTANT |
#iter

×100%

where MUTANT (cf. Algorithm 2) is the test suite for JVM

testing, and |MUTANT | is its size.

This rate is widely-used in mutation testing to evaluate

the applicability and effectiveness of mutant generation tech-

niques [25] [26]. In this paper, stillborn mutants are Jimple files

that are syntactically invalid and thus cannot be transformed

into test classfiles. The higher the rate is, the more stillborn

mutants are created.
• Accumulative seed coverage To measure whether a seed

has been fully exploited for generating mutants, we computed

the accumulative seed coverage w.r.t. a test suite MUTANT :

{g1,g2, . . .} by running the mutants on a JVM (e.g., HotSpot)

asc = covseed(g1)⊕ covseed(g2)⊕ . . .

where ⊕ is an operator that merges two mutants’ (e.g., g1 and

g2) seed coverages. Intuitively, the higher the coverage, the

more thoroughly the original seed is exploited by its mutants.
• JVM code coverage The seed coverage and JVM’s code

coverage are combined to direct exploring the input space and

triggering JVMs’ functionalities (e.g., error handling). Thus it

is still interesting to investigate how the coverage is improved

by the mutants.

We ran the seeds and the classming test suites on HotSpot

and collected their JVM statement coverage statistics (say Jcov).

We computed the coverage increment achieved by each test

suite MUTANT , using

Jinc = Jcov(MUTANT)⊕ Jcov(seed)− Jcov(seed),

where ⊕ merges the coverage statistics.

• JVM differences We counted the JVM differences found

by each approach, analyzed each difference we found, and

reported any potential defects to JVM developers.

B. RQ1: Sufficiency of classming-generated mutants
Stillborn rate. Table I compares the sizes of the test suites. In

88K mutations, classming, clrandom, and clgreedy generated

71,845, 78,489, and 75,210 bytecode files, with the stillborn

rates of 18.4%, 10.8%, and 14.5%, respectively. In contrast,

classfuzz’ generated 37,163 bytecode files, with a stillborn

rate of 57.8% — about 40% higher than those of the other

approaches.
Table I clearly demonstrates that the LBC mutators taken by

classming, clrandom, and clgreedy can help generate many

more test bytecode files than the mutators taken by classfuzz’.

The main reason is that bytecode mutation is performed on

Jimple code. classfuzz’ manipulates a Jimple file by inserting

and/or deleting some arbitrary instructions, which frequently

results in invalid Jimple files that cannot be transformed into

classfiles. The LBC mutators, on the other hand, are less likely

to destroy the file’s syntactical integrity, although 10.8∼ 18.4%

of the resulting Jimple files still violate Soot’s constraints (e.g.,
a method must return a value if it has a return type, a label

cannot be inserted before variable declarations, etc.).
These results lead to our first finding:

Finding 1: classming achieved a stillborn rate nearly 40%

lower than that of classfuzz’; the LBC mutators allow test

bytecode files to be sufficiently generated.

C. RQ2: Effectiveness of classming-generated mutants
Accumulative seed coverage. Table II shows the seed coverage

achieved by the test suites. Let the DaCapo benchmarks be used

as the baseline for measuring coverage improvement. When the

seeds were run, 2,852 of 6,219 statements were covered. When

the mutants were run, the seed coverage could be improved

by 15∼ 31%. The improvement on seed coverage is obvious.

These approaches take mutators that can alter control-flow and

employ seed coverage as a guidance, allowing nonlive bytecode

instructions to be run and the accumulative seed coverage to

increase. However, many test suites could not achieve 100%

of seed coverage, as some seed methods may not be reachable.
Furthermore, the classming/clrandom test suites obtained

higher seed coverage than the clgreedy ones, demonstrating

1263

TABLE II: Seed coverage achieved by the test suites and JVM differences uncovered by the four approaches. Here each

number inside “()” denotes the number of unique execution differences.

Benchmark #inst asc classming classfuzz’ clrandom clgreedy

ba
se

lin
e

cl
as

sm
in

g

cl
as

sf
uz

z’
cl

ra
nd

om

cl
gr

ee
dy

#c
ra

sh
es

#e
xe

c.d
iff

s

#v
er

if.
di

ffs

#c
ra

sh
es

#e
xe

c.d
iff

s

#v
er

if.
di

ffs

#c
ra

sh
es

#e
xe

c.d
iff

s

#v
er

if.
di

ffs

#c
ra

sh
es

#e
xe

c.d
iff

s

#v
er

if.
di

ffs

avrora 279 0.51 0.95 0.86 0.94 0.79 2 6(6) 0 3 0 0 0 0 0 0 0 0
batik 428 0.81 0.97 0.96 0.97 0.82 29 - 0 0 - 0 0 - 0 0 - 0
eclipse 2005 0.43 0.75 0.58 0.72 0.49 0 - 8 0 - 0 0 - 0 0 - 0
fop 174 0.16 0.24 0.23 0.21 0.24 0 0 24 0 0 0 0 0 0 0 0 0
h2 1022 0.32 0.73 0.5 0.68 0.59 0 - 0 0 - 0 0 - 0 0 - 0
jython 351 0.3 0.85 0.34 0.5 0.45 0 4(2) 0 0 4(2) 0 0 1453(3) 0 0 0 0
luindex 74 0.82 1 0.99 1 0.99 0 0 0 0 0 0 0 0 0 0 0 0
lusearch 144 0.81 0.98 0.88 0.97 0.88 0 - 0 0 - 0 0 - 0 0 - 0
pmd 821 0.38 0.67 0.63 0.66 0.56 0 - 0 0 - 0 0 - 0 0 - 0
sunflow 248 0.2 0.53 0.47 0.55 0.69 0 1805(31) 0 0 56(5) 0 0 2227(19) 0 0 107(1) 0
tomcat 42 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
tradebeans 251 0.77 0.94 0.93 0.89 0.85 0 - 0 0 - 0 0 - 0 0 - 0
tradesoap 251 0.65 0.92 0.84 0.92 0.86 0 - 0 0 - 0 0 - 0 0 - 0
xalan 129 0.76 1 0.79 1 1 0 - 0 0 - 0 0 - 0 0 - 0

Total 6219 0.46 0.77 0.63 0.73 0.61 1878(102) 63(10) 3680(22) 107(1)

that the MH algorithm works better than the greedy algorithm

in exploring these seeds. The greedy algorithm usually fails in

constructing live bytecode for hitting deep instructions. These

results lead to our second finding:

Finding 2: The classming test suites achieved higher seed

coverage than the clgreedy ones; the MH algorithm enables

more effective exploration of the mutant space w.r.t. a seed

than the greedy algorithm.

JVM code coverage. In real circumstance, it is expensive to

run all of the mutants and collect their JVM code coverage.

Thus we picked up the last 100 classfiles in each classming
test suite to compose a mini test suite and ran it to collect

JVM code coverage statistics.
In the evaluation, the initial classfiles (i.e., the seeds) covered

117,744∼ 135,118 lines of JVM’s source code. Comparatively,

the mini test suites covered 112,660∼ 136,095 lines of code,

with increments of 694∼ 8555 lines (3,668 lines on average).

It denotes that the mutants supplement the seeds in covering

additional JVM’s source code during testing. Although the

coverage increments appear relatively low (considering that

HotSpot has 260K lines of code), the classming approach is

promising in exploring JVM’s code because only the initial

classfiles were mutated and only a small number of mutants

were run for coverage analysis. Additional seeds and techniques

may be used to maximize JVM’s code coverage, which makes

interesting future work.
Table III enumerates the top 10 source packages that

contribute to the coverage increment (i.e., 3,668 lines on

average). The source packages w.r.t. the optimizing JIT com-

piler (“opto”), the shared objects (“libjvm/objs”), and

the bytecode verifier (“classfile”) contribute to 72.1%

(= 2603
3608 ×100%) of the coverage increment. The results lead

to our third finding:

Finding 3: The classming mutants indeed facilitate deep

testing of JVMs’ bytecode verifiers and execution engines.

JVM differences. We used the test suites to differentially test

JVMs and summarized the JVM differences in Table II. In

this table, the accepted and rejected test classfiles generated

from the benchmarks “batik”, “eclipse”, “h2”, “lusearch”,

“pmd”, “tradebeans”, “tradesoap”, and “xalan” were not

used in differential JVM testing. The main reason for this is

that user threads exist in these seed classfiles and differences,

if revealed, may not expose JVM defects.

The results clearly demonstrate that classming and clrandom
uncover more JVM differences/crashes than classfuzz’ and

clgreedy. In addition, only classming-generated test suites

revealed verification differences, indicating classming is the

most effective in creating classfiles having abnormal dataflow.

However, the numbers of execution differences in Table II

can be bloated: If a seed can trigger an execution difference, its

mutants tend to trigger the same type of differences. Thereafter,

we counted the unique execution differences in this way: Let g
be a mutant mutated directly from f . Let g trigger an execution

difference (say di f f) when it is run on HotSpot and J9. di f f
is unique if f cannot trigger di f f . Specifically, we find that

(1) most of the execution differences uncovered by clrandom
were redundant, and (2) the classming test suites triggered

10× and 4.6× as many unique differences as those uncovered

by the classfuzz’ and clrandom test suites, respectively. The

results lead to our fourth finding:

Finding 4: Only the classming test suites revealed verifica-

tion differences; they also exposed 10× and 4.6× as many

unique JVM differences as those exposed by the classfuzz’

and clrandom test suites, respectively;

D. RQ3: Difference analysis and bug report

We analyzed and reported a number of JVM differences

to the JVM developers, 14 of which have been confirmed as

JVM defects and/or fixed. We summarize below some typical

defects and differences.

Security vulnerability in J9. The IBM Product Security Inci-

dent Response Team (PSIRT) has confirmed a critical security

vulnerability in J9 that was easy to exploit, and allowed

untrusted code to disable the security manager and elevate

its privileges (a CVE with a CVSS base score 9.8). Next,

1264

TABLE III: Top 10 HotSpot’s source packages that contribute

to the coverage increment.

package main use Jinc

opto Opto compiler (i.e., the C2 compiler, a
highly optimizing bytecode compiler)

1271

libjvm/objs Shared objects (in libjvm.so) 757
classfile Manipulation of Java classes 575
runtime VM’s runtime management 211
cpu/x86/vm Facilities for supporting the execution of

JVM on x86 cpus
201

c1 C1 compiler 114
ci Internal JVM compiler interfaces 89
oops Manipulation of objects 86
utilities HotSpot’s source utilities 70
code Management of code stubs 54

we present a simplified mutant that can expose this security

vulnerability.

1 abstract interface A extends java.lang.Object{
2 public void go() ;
3 }
4 class Search extends java.lang.Object implements

A {
5 public void go() {
6 Search $r2;
7 $r2 := @this: Search;
8 ...//J9 allows to use $r2 here
9 return;

10 }
11 public static void main(){
12 Search $r2;
13 $r2 = new Search;

14 + goto label1:

15 ...//$r2 is initialized here

16 +label1:

17 interfaceinvoke $r2.<A: void go()>();
18 } }

In this program, an insertion of an HI (line 14) leads to a use

of an uninitialized object, $r2, at line 17. J9 can run the class

Search normally, which clearly indicates that its verifier fails

to reject code that uses an object before it has been initialized.

More seriously, this program shows that $r2 can be

transferred, through invoking an interface method go() (line

17), outside of main(). Since a verifier verifies bytecode

only at the method level, assuming that all of the arguments

transferred into a method have been initialized, the verifier

also fails to reject go(), even if $r2 is used in it. The

JVM instruction invokeinterface (corresponding to the

Jimple instruction interfaceinvoke) becomes a backdoor

that allows uninitialized objects to be transferred and used in

other methods, incurring high risks.

Defects in bytecode verifiers. J9’s verifier may miscalculate

dataflow, making it incorrectly accept or reject bytecode files.

For example, J9 incorrectly throws verifier errors due to

miscalculating local variables in stackmap frames. J9 developers

fixed the defect using a mutant of fop. The patch is to ensure

that the verifier checks long/double type only when there are

still local variables left in the stackmap frames.

J9 may incorrectly verify code with uninitialized objects.

For example, Section II shows that J9 can mistakenly reject

monitorenter/monitorexit r0 when r0 is uninitialized.

In some extreme cases, J9 can make mistakes when verifying

code segments containing instructions such as if acmpeq,

if acmpne, ifnull, ifnonnull, and aastore. For example,

J9 verifies the two code segments below differently, but

they are in fact semantically equivalent (corresponding to if

(this==o) and if (o==this)).

/*J9 may verify the next two bytecode segments
differently , while HotSpot verifies them
consistently.*/

(1) 0: new #2 (2) 0: aload_0
3: aload_0 1: new #2
4: if_acmpeq 7 4: if_acmpeq 7

JVM crashes. J9 developers have fixed a race condition using

a small test suite reported by us. J9 can crash frequently,

with a report indicating there exists a double free problem. J9

developers confirmed the cause of the crash to be a flaw in

the JIT compiler that prevented the JVMs from shutting down

cleanly. The IBM developers also communicated to us that

they used this test suite to expose a VM issue happening on

old Linux kernels.
J9 may crash when generating the messages for operand

stack underflows. Its developers found that it would be too late

to check stack underflow as they did before. They fixed J9 by

enforcing extra checking of stack underflow. In addition, J9

creates crash-dump files when throwing OutOfMemoryErrors,

while HotSpot does not.
Other execution differences. The execution differences re-

vealed by the jython mutants (see Table II) have been

eliminated since OpenJDK (build 9+181) was released. In

addition, those revealed by the sunflow mutants were raised

due to certain non-determinism in the mutants.

V. RELATED WORK

We discuss two strands of related work: JVM testing and

mutation-based fuzz testing.

JVM testing. A number of test suites and benchmarks have

been designed for JVM testing. Among them, the suite most

widely-used is the Java Compatibility Kit (JCK) [28], an

extensive test suite provided by Oracle to ensure the compatible

implementation of the Java platform. JVMs are required to

meet JCK in case of any changes or fixes. Many other

Java benchmarks, such as the DaCapo benchmark suite [24],

SPECjvm2008 [29], SPECjbb2013 [30], SciMark 2.0 [31],

CDx [32], and Stanford SecuriBench [33], have been developed

for different purposes. Despite their importance in testing and

regression testing, these tests were not designed to expose

defects in released JVMs. Instead, classming allows a large

number of live tests to be created from existing classes and

applications, significantly enhancing JVM testing.
Efforts have been spent on automated test generation for

JVM testing. Sirer and Bershad propose lava, enabling users

to use a production grammar to produce test classes [34].

Yoshikawa et al. propose to generate classes by producing

a class’s control flow and filling the bytecode into control

flow edges [35]. Freund and Mitchell introduce a type system

that can be applied to generate faulty classes and look for

inconsistencies among bytecode verifiers [12]. Calvagna et al.
model a JVM as a finite state machine for deriving classes [36]–

[38]. Compared with these techniques, classming generates test

1265

TABLE IV: Technical comparison among classming, classfuzz [10], and Hermes [27].

Technical difference classming classfuzz Hermes
1. The general process of test generation
1.1 Process An iterative mutation process An iterative mutation process A random mutation process

1.2 How is the mutation
process directed? Mutants are selectively accepted. Mutators are selectively employed. /

2. Each iteration in the mutation process

2.1 Mutation objective The resulting mutant is live and
semantically different from its seed.

The JVM’s startup processes for the
resulting mutant and its seed are
different.

The resulting mutant is semantically
equivalent to its seed w.r.t. provided
inputs.

2.2 Type of seed/mutant Java bytecode file Java bytecode file C source code

2.3 Mutators Inserting/deleting HIs for manipulating
control- and data-flow in the seed

129 mutators for mutating Java
bytecode syntactically

Inserting EMI snippets (FCB, TG, and
TCB)

2.4 What needs to be altered? Live bytecode Any construct of the seed Live and dead code regions

2.5 How is the resulting
mutant accepted?

Mutant has high seed coverage and is
semantically different from the seed.

Mutant is different from the seed in
their JVM’s code coverage.

Mutant is an EMI mutant of its seed.

3. Testing/differential testing
3.1 Test subjects JVMs’ verifiers and execution engines JVMs’ startup processes C Compilers

3.2 Test oracle Verification/execution differences among
JVMs

Differences among JVMs’ startup
processes

Inconsistent outputs between a seed and
its EMI mutant

classfiles by manipulating live bytecode of existing classfiles,

rather than leveraging grammars or formal models.

Similar to classming, classfuzz [10], Java* Fuzzer [39],

and DexFuzz [40] advocate domain aware binary fuzzing to

aid VM testing. As we have observed, classfuzz is effective

in testing JVMs’ startup processes, but much less effective in

deep JVM testing. Java* Fuzzer [39] is also syntax directed,

aiming to generate tests that can cover more syntax features

(class inheritance, complex loop patterns, improved exception

throwing patterns, etc.). DexFuzz supports random alterations

of a seed’s control flow, which is close to clrandom in our

evaluation. classming differs from these techniques in that it

deliberately accepts live, diverse class mutants.

Mutation-based testing. Program mutation, which takes pro-

grams as seeds, and then performs mutations, becomes in-

creasingly more important for validating compilers, program

execution engines, and virtual machines [10] [40] [41] [42]. Le

et al. introduce the concept of equivalence modulo inputs (EMI)

for testing C compilers [43]. Lidbury et al. adapt EMI to fuzz

test OpenCL compilers [44]. Sun et al. propose Hermes that

creates equivalent modulo inputs on live code [27]. Although

classming also mutates live bytecode, a mutant and its seed are

enforced to be semantically different, rather than equivalent.

Table IV provides a detailed comparison among classming,

classfuzz [10], and Hermes [27]. Clearly, the three approaches

take their respective strategies and follow their respective

processes to generate program mutants. As for the runtime

optimization-based JVMs, a set of live, diverse tests can be

much more suitable for deep, differential testing them. To

the best of our knowledge, classming is the first effort that

systematically generates tests for this purpose.

American fuzzy lop (AFL) is a well-known security-oriented

fuzzer. It employs compile-time instrumentation and genetic

algorithms to discover test cases that trigger new internal states

in software binaries [13]. AFL has been extended to fuzz

execution engines. Skyfire [45] leverages the vast amount

of samples to learn grammar and semantic rules, and then

generates seed inputs that can be fed to AFL to fuzz XSLT,

XML, JavaScript and rendering engines. Kelinci is an adapation

of AFL to fuzz Java programs [46]. It may also be promising

to adapt AFL to fuzz JVMs, e.g., by equipping it with domain-

specific libraries such as ASM [47] and Soot [14]. Our work

on classming still differs as it focuses on manipulating and

altering control- and data-flow of seed classes.

The effectiveness of mutation-based testing can be enhanced

by the MCMC sampling methods [20] [21] [23] [48] [49]. In

terms of JVM testing, both classming and classfuzz adopt

the Metropolis-Hastings algorithm to guide their respective

mutation processes. The difference is that classfuzz utilizes

the algorithm to prioritize its mutators, while classming to

effectively produce live, diverse mutants.

VI. CONCLUSION

Effective, deep JVM testing is an important and challenging

task. We have presented LBC mutation and its realization

classming to tackle this challenge. The main objective is to

generate abundant, diverse, executable classes, and classming
achieves this via novel systematic manipulation of the control-

and data-flow of live bytecode. Our extensive evaluation

results have clearly demonstrated classming’s effectiveness and

practicality in stress-testing production JVMs and exposing

deep JVM differences/defects. Besides continuing our own

testing efforts, we plan to make classming publicly available

to aid JVM developers in their routine development.

ACKNOWLEDGMENTS

Ting Su is the corresponding author. We would like to

thank the anonymous ICSE reviewers for valuable feedback on

earlier drafts of this paper. We would also like to thank JVM

developers for analyzing our reported issues. This research

was sponsored in part by 973 Program in China (Grant No.

2015CB352203), the National Nature Science Foundation of

China (Grant No. 61572312). Zhendong Su was supported in

part by United States NSF Grants 1528133 and 1618158, and

Google and Mozilla Faculty Research awards. Yuting Chen was

also partially supported by Shanghai Municipal Commission

of Economy and Informatization (No. 201701052).

1266

REFERENCES

[1] J. E. Smith and R. Nair, Virtual machines - versatile platforms for systems
and processes. Elsevier, 2005.

[2] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The Java virtual
machine specification - Java SE 9 edition, 2017. [Online]. Available:
https://docs.oracle.com/javase/specs/jvms/se9/html/index.html

[3] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell,
and D. Cox, “Design of the Java HotSpot client compiler for Java 6,”
TACO, vol. 5, no. 1, pp. 7:1–7:32, 2008.

[4] Oracle, “JDK 9.0.4 general-availability release,” 2018. [Online].
Available: http://jdk.java.net/9/

[5] IBM, “Ibm developer kits,” 2018. [Online]. Available: https:
//developer.ibm.com/javasdk/

[6] Azul, “Zing: a better JVM,” 2018. [Online]. Available: http:
//www.azulsystems.com/products/zing/

[7] ——, “Zulu: 100% OpenJDK,” 2018. [Online]. Available: http:
//www.azulsystems.com/products/zulu/

[8] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J. Choi,
A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber,
V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano,
J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley,
“The jalapeño virtual machine,” IBM Systems Journal, vol. 39, no. 1, pp.
211–238, 2000.

[9] B. Alpern, S. Augart, S. M. Blackburn, M. A. Butrico, A. Cocchi,
P. Cheng, J. Dolby, S. J. Fink, D. Grove, M. Hind, K. S. McKinley,
M. F. Mergen, J. E. B. Moss, T. A. Ngo, V. Sarkar, and M. Trapp, “The
Jikes research virtual machine project: building an open-source research
community,” IBM Systems Journal, vol. 44, no. 2, pp. 399–418, 2005.

[10] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao, “Coverage-directed
differential testing of JVM implementations,” in Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2016), 2016, pp. 85–99.

[11] F. Yellin, “Low level security in Java,” World Wide Web Journal, vol. 1,
no. 1, 1996.

[12] S. N. Freund and J. C. Mitchell, “A type system for the Java bytecode
language and verifier,” J. Autom. Reasoning, vol. 30, no. 3-4, pp. 271–321,
2003.

[13] M. Zalewski, “American fuzzy lop,” 2015. [Online]. Available:
https://lcamtuf.coredump.cx/afl/

[14] R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam, and V. Sundare-
san, “Soot - a Java bytecode optimization framework,” in Proceedings of
the 1999 conference of the Centre for Advanced Studies on Collaborative
Research, 1999, p. 13.

[15] E. Bodden, “Inter-procedural data-flow analysis with IFDS/IDE and Soot,”
in Proceedings of the ACM SIGPLAN International Workshop on State
of the Art in Java Program analysis (SOAP 2012), 2012, pp. 3–8.

[16] Sable Research Group, “Soot: A framework for analyzing and
transforming java and android applications,” 2012. [Online]. Available:
https://sable.github.io/soot/

[17] O. Agesen, D. Detlefs, A. Garthwaite, R. Knippel, Y. S. Ramakrishna,
and D. White, “An efficient meta-lock for implementing ubiquitous
synchronization,” in Proceedings of the 1999 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages & Applications
(OOPSLA ’99), 1999, pp. 207–222.

[18] R. Johnson and K. Pingali, “Dependence-based program analysis,”
in Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’93), 1993, pp. 78–89.

[19] T. Su, K. Wu, W. Miao, G. Pu, J. He, Y. Chen, and Z. Su, “A survey
on data-flow testing,” ACM Comput. Surv., vol. 50, no. 1, pp. 5:1–5:35,
2017.

[20] D. Huang, J. Tristan, and G. Morrisett, “Compiling Markov chain Monte
Carlo algorithms for probabilistic modeling,” in Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2017), 2017, pp. 111–125.

[21] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan, “An introduction
to MCMC for machine learning,” Machine Learning, vol. 50, no. 1-2,
pp. 5–43, 2003.

[22] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic superoptimization,”
in Proceedings of Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2013), 2013, pp. 305–316.

[23] Y. Chen and Z. Su, “Guided differential testing of certificate validation
in SSL/TLS implementations,” in Proceedings of the 2015 10th Joint

Meeting on Foundations of Software Engineering (ESEC/FSE 2015),
2015, pp. 793–804.

[24] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. L. Hosking, M. Jump, H. B. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanovic, T. VanDrunen, D. von Dincklage,
and B. Wiedermann, “The DaCapo benchmarks: Java benchmarking
development and analysis,” in Proceedings of the 21th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2006), 2006, pp. 169–190.
[Online]. Available: http://www.dacapobench.org/

[25] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Trans. Software Eng., vol. 37, no. 5, pp. 649–678,
2011.

[26] M. L. Vásquez, G. Bavota, M. Tufano, K. Moran, M. D. Penta,
C. Vendome, C. Bernal-Cárdenas, and D. Poshyvanyk, “Enabling
mutation testing for android apps,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017,
Paderborn, Germany, September 4-8, 2017, 2017, pp. 233–244.

[27] C. Sun, V. Le, and Z. Su, “Finding compiler bugs via live code mutation,”
in Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2016), 2016, pp. 849–863.

[28] Sun Microsystems, Inc, “Tck project planning and development guide,”
2003. [Online]. Available: https://jcp.org/aboutJava/communityprocess/
ec-public/TCK-docs/ppg.pdf

[29] K. Shiv, K. Chow, Y. Wang, and D. Petrochenko, “SPECjvm2008
performance characterization,” in Proceedings of Computer Performance
Evaluation and Benchmarking (SPEC Benchmark Workshop 2009), 2009,
pp. 17–35.

[30] Standard Performance Evaluation Corporation (SPEC), “SPECjbb2013
design document,” 2013. [Online]. Available: http://www.spec.org/
jbb2013/docs/designdocument.pdf

[31] R. Pozo and B. Miller, “SciMark 2.0 benchmark,” 2004. [Online].
Available: http://math.nist.gov/scimark2/

[32] T. Kalibera, J. Hagelberg, P. Maj, F. Pizlo, B. L. Titzer, and J. Vitek, “A
family of real-time java benchmarks,” Concurrency and Computation:
Practice and Experience, vol. 23, no. 14, pp. 1679–1700, 2011.

[33] B. Livshits, “Stanford SecuriBench,” 2006. [Online]. Available:
http://suif.stanford.edu/∼livshits/securibench

[34] E. G. Sirer and B. N. Bershad, “Using production grammars in software
testing,” in Proceedings of the Second Conference on Domain-Specific
Languages (DSL’99), 1999, pp. 1–13.

[35] T. Yoshikawa, K. Shimura, and T. Ozawa, “Random program generator
for Java JIT compiler test system,” in Proceedings of the 3rd International
Conference on Quality Software (QSIC 2003), 2003, p. 20.

[36] A. Calvagna and E. Tramontana, “Combinatorial validation testing of
Java Card byte code verifiers,” in Proceedings of the 2013 Workshops
on Enabling Technologies: Infrastructure for Collaborative Enterprises,
2013, pp. 347–352.

[37] ——, “Automated conformance testing of Java virtual machines,” in
Proceedings of the 7th International Conference on Complex, Intelligent,
and Software Intensive Systems (CISIS 2013), 2013, pp. 547–552.

[38] A. Calvagna, A. Fornaia, and E. Tramontana, “Combinatorial interaction
testing of a Java Card static verifier,” in Proceedings of the 7th IEEE
International Conference on Software Testing, Verification and Validation
(ICST 2014), 2014, pp. 84–87.

[39] M. R. Haghighat, D. Khukhro, A. Yakovlev, N. Rinskaya, and
I. Popov, “Java* fuzzer for android*,” 2016. [Online]. Available:
https://github.com/AzulSystems/JavaFuzzer

[40] S. C. Kyle, H. Leather, B. Franke, D. Butcher, and S. Monteith,
“Application of domain-aware binary fuzzing to aid Android virtual
machine testing,” in Proceedings of the 11th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE 2015),
2015, pp. 121–132.

[41] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments,” in
Proceedings of the 21th USENIX Security Symposium (SEC 2012), 2012,
pp. 445–458.

[42] Y. Chen, A. Groce, C. Zhang, W. Wong, X. Fern, E. Eide, and
J. Regehr, “Taming compiler fuzzers,” in ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2013), 2013,
pp. 197–208.

1267

[43] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence mod-
ulo inputs,” in ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’14), 2014, pp. 216–226.

[44] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson, “Many-core
compiler fuzzing,” in Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2015),
2015, pp. 65–76.

[45] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: data-driven seed
generation for fuzzing,” in 2017 IEEE Symposium on Security and
Privacy (SP 2017), 2017, pp. 579–594.

[46] R. Kersten, K. S. Luckow, and C. S. Pasareanu, “Afl-based fuzzing for
Java with Kelinci,” in Proceedings of the 2017 ACM SIGSAC Conference

on Computer and Communications Security (CCS 2017), 2017, pp. 2511–
2513.

[47] E. Bruneton, R. Lenglet, and T. Coupaye, “ASM: A code manipulation
tool to implement adaptable systems,” 2002.

[48] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based GUI testing of Android apps,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2017), 2017, pp. 245–256.

[49] T. Su, “FSMdroid: Guided GUI Testing of Android Apps,” inProceedings
of the 38th International Conference on Software Engineering (ICSE
2016 (Companion)), 2016, pp. 689–691.

1268

