
FSMdroid: Guided GUI Testing of Android Apps

Ting Su

⇤

Shanghai Key Laboratory of Trustworthy Computing,

East China Normal University, Shanghai, China

tsuletgo@gmail.com

ABSTRACT
GUI testing has been an e↵ective means of validating An-
droid apps. Meanwhile, it still faces a strong challenge about
how to explore trails, i.e., unfrequented test sequences, as
defects tend to reside on these unfrequented trails. This
paper introduces FSMdroid, a novel, guided approach to
GUI testing of Android apps. The essential idea of FSM-
droid is to (1) construct an initial stochastic model for the
app under test, (2) iteratively mutate the stochastic model
and derive tests. The model mutations are guided by an
MCMC sampling method such that the resulting test se-
quences can be diverse and also achieve high code coverage
during testing. We have evaluated FSMdroid on 40 real-
world Android apps. Compared with the traditional model-
based testing approaches, FSMdroid enhances the diversity
of test sequences by 85%, but reduces the number of them
by 54%. Furthermore, we uncover 7 app bugs.

1. MOTIVATION AND CONTRIBUTION
Today Android apps have become ubiquitous. Most of

them encompass their functional behaviors into GUI inter-
actions. Therefore, before the release of an app, GUI testing
is often conducted, in which tests are designed and run in
the form of sequences of GUI interaction events.

Many approaches do exist for GUI testing of Android
apps [3, 5, 17, 7, 14, 15], which are e↵ective in generating
random or common test sequences. However, GUI testing
still faces a strong challenge about how to explore trails,
i.e., unfrequented test sequences for an app, as these un-
frequented trails are usually less covered during testing and
defects tend to reside on them.

To tackle this challenge, this paper introduces FSMdroid,
a model-based approach [13, 18] to GUI testing of Android
apps. FSMdroid generates test sequences by (1) construct-
ing a stochastic model for an app, and (2) deriving a set of

⇤Ting Su is partially supported by ECNU Program for
outstanding doctoral dissertation cultivation No.PY2015032
and China HGJ Project No.2014ZX01038-101-001.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE’16 May 14-22, 2016, Austin, TX, USA
c� 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4205-6/16/05.

DOI: http://dx.doi.org/10.1145/2889160.2891043

test sequences from that model. Moreover, FSMdroid ex-
ploits a Markov Chain Monte Carlo (MCMC) sampling al-
gorithm [11, 10] to iteratively mutate the stochastic model,
and guide test generation toward yielding high code cover-
age and exhibiting diverse event sequences. We have imple-
mented FSMdroid and evaluated it on 40 real-world Android
apps. The results indicate that (1) FSMdroid can diversify
test sequences, and (2) defects can be revealed on these gen-
erated test sequences.

2. RELATED WORK
When model-based testing is employed to test Android

apps, one main activity is to produce an appropriate model
representing the GUI interactions. Researchers either man-
ually [19, 14] or automatically [16, 5, 20] construct behavior
models for apps. For example, Android-GUITAR [1] fol-
lows the idea of [16], and uses an event flow graph, which
is composed of UI events, to describe behaviors of apps.
AndroidRipper [5] and ORBIT [20] use state machines to
represent app models. All these models can support model-
based GUI testing, while the stochastic model in our study
allows the test sequences can be picked in their priorities.

Given a model for an app under test, tests can be derived
from the model to test the app. MobiGUITAR [6] enforces
pair-wise edge coverage to generate tests. SwiftHand [12]
generates tests when learning models to visit unexplored
app states. Usage profiles [9] are also used to generate
tests to check commonly-used features. Comparatively, FS-
Mdroid iteratively optimizes the generated tests by utilizing
the feedback of their code coverage and sequence diversity.

3. APPROACH
As Figure 1 shows, FSMdroid takes two main steps to test

an app under test: (1) constructing a stochastic model (Fig-
ure 1.a); and (2) iteratively mutating the stochastic model,
generating test sequences, and running the tests on the app
(Figure 1.b). Next presents the key elements.
A weighted UI exploration strategy In our study, an app
is represented as a stochastic finite state machine (FSM),
where each node represents an app state s characterized by
the UI widgets, each transition represents a user event e, and
each transition is assigned with a probability value p which
indicates its selection probability during test generation.

FSMdroid first uses static analysis to identify UI events
which can be missed during dynamic analysis. To e�ciently
reverse-engineer the model, it adopts a weighted exploration
strategy, which integrates three key insights: (1) prioritizing
event selections, that is, events are assigned with di↵erent
weights according to the frequencies of event execution, the

2016 IEEE/ACM 38th IEEE International Conference on Software Engineering Companion

 689

Figure 1: Overview of the FSMdroid approach.

AUT
2. dynamic
UI ripping

devices or emulators

(weighted UI exploration)

a. Model Construction

1. static
event identification

3. test generation

(MCMC Sampling)

Test Suite

b. Guided Test Generation and Execution

4. test execution

Test
Coverage

&
Diversity

6. accept the new model or
reject by certain probability

bug checker
Bug

Report

5. output
measuremnts

(probability-based
test generation)

7. bug diagonsis

stochastic
FSM

p1

p6

p4
p3

p2

p5

Soot A3E

0.4 0.6

0.3
0.7

1.0
1.0

types of widget, and the numbers of children widgets; (2)
tabuing special events, that is, some events, e.g., exit and
bug-triggering events, may accidently close the app and ter-
minate the testing; once triggered, they will be tabued in
the future to prevent jeopardizing the e�ciency of model-
ing; (3) merging duplicate states and transitions at runtime
to render the model compact. The execution profiles (i.e.,
the execution frequencies of events) from the modeling pro-
cess are used to populate the stochastic FSM model, where
each transition is associated with a probability value.
An MCMC guided test generation process Starting from
the initial stochastic FSM, FSMdroid utilizes an MCMC
sampling method to iteratively mutate the model to guide
test generation. As Figure 1.b shows, the test generation
process consists of model mutation, test derivation, and test
execution. These three steps are iteratively performed until
code coverage and sequence diversity reach peak values or
the testing budget is used up.
Model mutation At each search iteration, we mutate a
stochastic FSM M to M

0 by randomly picking a state s

from M , and then changing all its transition probabilities
p1, . . . , pj w.r.t. Gaussian distribution, respectively. Note
that p1 + . . .+ p

j

= 1 always holds during mutations.
Test derivation Given the model M , FSMdroid takes a
probabilistic-based test generation algorithm to derive test
sequences from M , where the events associated with a state
are selected according to their transition probabilities: the
higher probability is, the higher selection chance it gets.
Test execution The generated test suite T from M is exe-
cuted on the app under test to determine whether the pro-
posed model M should be accepted or not. It is evaluated
on the fitness function F

F = ↵1 ⇤ Coverage(T) + ↵2 ⇤ Diversity(T)

where ↵1 and ↵2 are weights, Coverage(·) measures state-
ment coverage, and Diversity(·) approximates the distance
di↵erence between test sequences. If the fitness value of
M

0 is higher than that of M , we accept the new model M 0

and continue on. Otherwise we still accept M 0 with certain
probability to avoid local optimum during the search. More
precisely, the new model M 0 (with the fitness value f

0) will
be accepted with the probability below

AcceptProbability(M 0) = min(1, exp(�� ⇤ (f � f

0)� �)

Table 1: Testing statistics of our guided GUI testing
on 40 Android apps.

Tool(Max Eve.) Statement Cov. Consumed Eve.

Monkey(10000)

A

3

E(500)

FSMdroid

random

(500)

FSMdroid

weighted

(500)

35.5%

20.8%

31.4%

45.1%

3769

36

233

109

Model (Test Suite) Test Suite Size Test Diversity

M

init

(T

init

)

M

opt

(T

opt

)

-28%

-54%

+34%

+85%

where, � and � are parameters used to scale the underlying
density function and make the search more e�ciently.

To improve the scalability of the search, test suites are dy-
namically allocated and parallelly executed on a distributed
testing platform. The system runtime logs are recorded dur-
ing test execution, which can help analyze app bugs.

4. EVALUATION
We implemented FSMdroid on top of Soot [4] (a Java

static analysis framework) and A

3
E [8], and evaluated it on

40 real-world apps from F-droid [2] (a popular Android apps
repository). In particular, we compared the weighted UI ex-
ploration strategy (FSMdroid

weighted

) with Android Mon-
key [3] (a random testing approach for Android apps) and
A

3
E (a systematic GUI ripping approach with the classic

dept-first exploration strategy, which is also widely adopted
in other GUI rippers [16, 5, 20]). We also implemented ran-
dom exploration (FSMdroid

random

) in FSMdroid.
We also compared the e↵ectiveness of the tests from three

models of an AUT: the naive model without transition prob-
abilities (sayM

naive

), the initial stochastic model (sayM

init

),
and the optimal stochastic model found in the search (say
M

opt

). Three test suites T

naive

, T

init

, T

opt

are respectively
derived from the three models to achieve the same highest
coverage by taking the probabilistic-based test generation
algorithm in Section 3.

Some evaluation results are summarized in Table 1. By
observing the results, we make three findings. First, the
weighted exploration strategy can achieve higher code cov-
erage and consume fewer UI events than the other two ap-
proaches, which indicates it is more e↵ective and e�cient
when building app models. In particular, it can improve
10% and 25% statement coverage than those of Monkey and
A

3
E, respectively, but only consumes 3% events of Monkey.
Second, the optimized stochastic model can achieve high

code coverage more quickly as well as derive more diverse
tests. In particular, while achieving the same highest cov-
erage, the test suites T

init

and T

opt

are in average 28% and
54% smaller than T

naive

, respectively. Moreover, T
init

and
T

opt

in average further improve 34% and 85% test diver-
sity (measured by the event di↵erence between tests) than
T

naive

, respectively. It indicates FSMdroid is more e↵ective
than traditional model-based testing approaches.

Third, our approach can indeed reveal app bugs on the
generated tests. In particular, we have found 7 app bugs,
and 3 of them are newly found, the other 4 bugs are in-
dependently found by FSMdroid and also reported by app
users. These bugs include NullPointerException, Number-
FormatException, IndexOutOfBoundsException, and Non-
responding Hang. Thus we believe FSMdroid can enhance
the existing GUI testing approaches.

690

5. REFERENCES
[1] Android guitar. http://sourceforge.net/apps/

mediawiki/guitar/index.php?title=Android GUITAR.
Accessed January, 2016.

[2] F-droid. https://f-droid.org/. Accessed January, 2016.
[3] Monkey. http:

//developer.android.com/tools/help/monkey.html.
Accessed January, 2016.

[4] Soot. https://github.com/Sable/soot. Accessed
November, 2015.

[5] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. D.
Carmine, and A. M. Memon. Using GUI ripping for
automated testing of android applications. In
IEEE/ACM International Conference on Automated
Software Engineering, ASE’12, Essen, Germany,
September 3-7, 2012, pages 258–261, 2012.

[6] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D.
Ta, and A. M. Memon. Mobiguitar: Automated
model-based testing of mobile apps. IEEE Software,
32(5):53–59, 2015.

[7] S. Anand, M. Naik, M. J. Harrold, and H. Yang.
Automated concolic testing of smartphone apps. In
20th ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE-20), SIGSOFT/FSE’12,
Cary, NC, USA - November 11 - 16, 2012, page 59,
2012.

[8] T. Azim and I. Neamtiu. Targeted and depth-first
exploration for systematic testing of android apps. In
Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2013, part of
SPLASH 2013, Indianapolis, IN, USA, October 26-31,
2013, pages 641–660, 2013.

[9] P. A. Brooks and A. M. Memon. Automated gui
testing guided by usage profiles. In 22nd IEEE/ACM
International Conference on Automated Software
Engineering (ASE 2007), November 5-9, 2007,
Atlanta, Georgia, USA, pages 333–342, 2007.

[10] Y. Chen and Z. Su. Guided di↵erential testing of
certificate validation in SSL/TLS implementations. In
Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE
2015, Bergamo, Italy, August 30 - September 4, 2015,
pages 793–804, 2015.

[11] S. Chib and E. Greenberg. Understanding the
metropolis-hastings algorithm, 1995.

[12] W. Choi, G. C. Necula, and K. Sen. Guided GUI
testing of android apps with minimal restart and

approximate learning. In Proceedings of the 2013 ACM
SIGPLAN International Conference on Object
Oriented Programming Systems Languages &
Applications, OOPSLA 2013, Indianapolis, IN, USA,
October 26-31, 2013, pages 623–640, 2013.

[13] A. C. Dias Neto, R. Subramanyan, M. Vieira, and
G. H. Travassos. A survey on model-based testing
approaches: a systematic review. In Proceedings of the
1st ACM international workshop on Empirical
assessment of software engineering languages and
technologies, pages 31–36. ACM, 2007.

[14] C. S. Jensen, M. R. Prasad, and A. Møller.
Automated testing with targeted event sequence
generation. In International Symposium on Software
Testing and Analysis, ISSTA ’13, Lugano,
Switzerland, July 15-20, 2013, pages 67–77, 2013.

[15] R. Mahmood, N. Mirzaei, and S. Malek. Evodroid:
segmented evolutionary testing of android apps. In
Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
(FSE-22), Hong Kong, China, November 16 - 22,
2014, pages 599–609, 2014.

[16] A. M. Memon, I. Banerjee, and A. Nagarajan. GUI
ripping: Reverse engineering of graphical user
interfaces for testing. In 10th Working Conference on
Reverse Engineering, WCRE 2003, Victoria, Canada,
November 13-16, 2003, pages 260–269, 2003.

[17] N. Mirzaei, S. Malek, C. S. Pasareanu, N. Esfahani,
and R. Mahmood. Testing android apps through
symbolic execution. ACM SIGSOFT Software
Engineering Notes, 37(6):1–5, 2012.

[18] M. Shafique and Y. Labiche. A systematic review of
model based testing tool support. Carleton University,
Canada, Tech. Rep. Technical Report SCE-10-04,
2010.

[19] T. Takala, M. Katara, and J. Harty. Experiences of
system-level model-based GUI testing of an android
application. In Fourth IEEE International Conference
on Software Testing, Verification and Validation,
ICST 2011, Berlin, Germany, March 21-25, 2011,
pages 377–386, 2011.

[20] W. Yang, M. R. Prasad, and T. Xie. A grey-box
approach for automated gui-model generation of
mobile applications. In Fundamental Approaches to
Software Engineering - 16th International Conference,
FASE 2013, Rome, Italy, March 16-24, 2013.
Proceedings, pages 250–265, 2013.

691

