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ABSTRACT

Social media apps implement many user privacy-related function-
alities. For example, TikTok allows users to upload videos that
record their daily activities and specify which users can view these
videos. Ensuring the correctness of these functionalities is thus
crucial. Otherwise, it may threaten the users’ privacy or disrupt
user experience. Due to the lack of appropriate automated testing
techniques, manual testing remains the primary practice for vali-
dating these functionalities, which is cumbersome, error-prone, and
inadequate. To this end, we adapt property-based testing to validate
such functionalities against the properties described by the given
privacy specifications. Our key idea is that privacy specifications
can be transformed into the Büchi automata, which can (1) deter-
mine whether the app has reached unexpected states, and (2) guide
the testing process. To support the application of our approach,
we implemented an automated GUI testing tool, PDTDroid, which
can detect the app behaviors that are inconsistent with the privacy
specifications. Our evaluation on TikTok, involving 125 real pri-
vacy specifications, shows that PDTDroid can efficiently validate
privacy-related functionality and reduce manual effort by an aver-
age of 95.2% before each app release. Our further experiments on
six popular social media apps show the generability and applica-
bility of PDTDroid. PDTDroid has found 22 previously unknown
inconsistencies issues in these extensively tested apps (including
four user privacy leakage bugs, nine user privacy-related functional
bugs, and nine specification issues).
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1 INTRODUCTION

Social media apps, e.g., TikTok, Facebook, Instagram, and Twit-
ter, are very popular — there are 4.74 billion active social media
users worldwide [45]. These apps allow users to share contents (e.g.,
texts, pictures and videos) and interact with others. Specifically,
these apps usually implement several user privacy-related function-
alities (privacy functionalities for short). For example, a user can
manage who can see his or her posted contents, or, on the other
hand, what contents posted by others can this user see [13]. En-
suring the correctness of such privacy functionalities is important.
Because any flaw in these functionalities may negatively affect user
experience or even lead to severe privacy issues [18].
Example. TikTok [10], a popular social media app (with billions
of monthly active users worldwide) developed by our industrial
partner ByteDance, implements many privacy functionalities. For
example, according to its specifications, one of its privacy function-
alities is: “when user A is following user B, B is not following A,
and B is [set as] a private account, if A can see B’s public videos
before B is a private account, then A should be still able to see B’s
public videos.” Here, according to the app features, when a (pub-
lic by default) account is set as private, its original followers can
still see its public videos as before (but other accounts trying to
follow this account need to be explicitly approved before becoming
new followers). Figure 1 illustrates this functionality, where the
simplified GUI pages annotated by “User A” and “User B” show
the expected behaviors of user A and B, respectively. When A is
following B (B is in A’s following list, denoted by A1∼A2), B is not
following A (A is not in B’s following list, denoted by B1∼B2) and B
is a public account (B’s private account setting is disabled, denoted
by B3∼B5), A can see B’s public videos (A can see B’s videos, de-
noted by A3∼A5). When B is set and keep as a private account (B’s
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Figure 1: Illustration of expected app behaviors that are consistent with the sample privacy specification

private account setting is enabled, denoted by B6∼B7), A should be
still able to see B’s public videos (denoted by A6∼A7).
Difficulties of Current Practice. Validating such privacy func-
tionalities in practice is non-trivial. For example, many automated
GUI testing techniques have been proposed and successfully applied
in industry [36, 38, 40], but they are difficult to be applied in this
setting. Because they are limited to crashing bugs (we will discuss
in detail in Section 5). As a result, the TikTok team follows the
most widely-used practice in industry, i.e., manual testing [2, 77],
to validate these privacy functionalities w.r.t. the specifications.

However, manual testing is cumbersome and time-consuming.
For example, to check the aforementioned example of privacy func-
tionality, a human tester needs to manually execute these steps: 1○
logging in the accounts of user A and B on two separate mobile
devices, 2○ posting a public video on the behalf of B, 3○ making
that A follows B, B does not follow A and B is not private, and
then checking whether A can see B’s videos, 4○ setting B as private,
and then checking whether A can still see B’s videos. In practice, it
may take several minutes to validate such one privacy functionality.
However, TikTok has a few hundred pieces of privacy specifica-
tions, and one piece of specification usually has to be checked at
one time. Moreover, TikTok releases new app versions on a weekly
basis. As a result, this manual testing process has to be repeated
weekly, which incurs a lot of manual cost.

On the other hand, manual testing could be inadequate due to its
small-scale validation, i.e., only checking the happy paths without
considering other possible adverse conditions. For example, if some
privacy issues only manifest when A unfollows B and then follows
B again between the steps of 3○ and 4○, we may miss such issues.
Our approach and its novelty. Inspired by the classic idea of
property-based testing (PBT) [11], this paper aims to adapt PBT
to mitigate the difficulties of current practice in validating privacy
functionalities. To apply PBT, one needs to (1)manually specify the
properties of interest (e.g., usually in the form of assertions), and
design data generators to automatically generate (random) inputs
for property validation [50, 65, 66].

However, instantiating the idea of PBT in our setting is not
straightforward. We face two key technical challenges: (1) how
can we specify the properties of privacy functionalities, which
are difficult to be captured by simple assertions? and (2) how can

we design a data generator to effectively and efficiently validate
the privacy functionalities? To tackle these two challenges, we
collaborate with the TikTok team and obtain several important
observations. First, we observe that (1) the privacy specifications
are well-formatted due to their importance, and (2) the privacy
functionalities are described in the form of temporal properties
(detailed in Section 2.1). Thus, we are inspired to synthesize the
properties from the privacy specifications, and represent these
properties in the form of linear temporal logic (LTL) formulas [49].
Note that each atomic proposition in such a LTL formula denotes a
specific app state (e.g., A is following B), which can be changed or
checked by a privacy operation (e.g., A is made to follow B).

Second, since LTL formula can be equivalently transformed to
Büchi automata [41], we can define the automata-based test ade-
quacy metric (i.e., transition coverage) to guide the data generator,
and we also generate random events to exhibit more app states
(named as the property-guided fuzzing strategy). Specifically, by
examining the privacy specifications, we also observe that different
privacy functionalities may share similar privacy operations (e.g.,
posting a public video). Thus, we are inspired to validate all privacy
functionalities at the same time by choosing appropriate privacy
operations to increase transition coverage as quickly as possible
(named as the all-specification checking strategy). In this way, we
can effectively and efficiently validate functionalities.
Evaluation and Results. We implemented our approach as a tool
named PDTDroid to support validating the privacy functionalities.
It uses NLP techniques [42] to synthesize the properties from the
specifications in natural language, and outputs any inconsistencies
between the specifications and the actual app behaviors (incon-
sistency issues for short). In particular, to automate the validation
process, we manually model all the relevant privacy operations
in terms of UI events. Note that this is almost an one-time effort
(discussed in Section 4.3). Subsequently, PDTDroid automatically
explores the app guided by the automata and checks whether all
automata have been adequately covered during testing. Once any
automaton has reached the accepting state, an inconsistency issue
is found and a bug report will be generated.

We applied PDTDroid to TikTok based on 125 pieces of pri-
vacy specifications provided by the TikTok team. PDTDroid found
eight inconsistency issues (including one privacy functional bug
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Table 1: The syntax patterns used by ByteDance for writing privacy specifications, along with corresponding examples and

LTL formula patterns (𝑐1, 𝑐2, 𝑐3, 𝑐4 representing clauses)

ID Syntax Patterns Samples of Privacy Specifications LTL Formula Patterns

1 Scene: any, Expectation: 𝑐1 Scene: any, Expectation: A cannot find B’s private video 𝐺 (𝑐1 )
2 Scene: 𝑐1 , Expectation: 𝑐2 Scene: A is not following B, B is not following A, and B is private, Expectation: A cannot find B’s public video 𝐺 (𝑐1 → 𝑐2 )
3 Scene:𝑐1 , Expectation: after𝑐2 ,𝑐3 Scene: A is following B, and B is following A, Expectation: after B is blocking A, A is not following B 𝐺 (𝑐1 → 𝑋 (𝑐2 → 𝑐3 ) )
4 Scene: 𝑐1 , Expectation: if 𝑐2 be-

fore 𝑐3 , then 𝑐4
Scene: A is following B, B is not following A, and B is private, Expectation: if A can find B’s public video
before B is private, then A can find B’s public video G((¬𝑐3 ∧ 𝑐2 ∧𝑋 (𝑐1 ∧ 𝑐3 ))→X𝑐4

and seven specification issues). All these issues have been fixed.
Our evaluation also shows that PDTDroid can on average save ap-
proximately 95.2% of manual efforts on checking new app versions.
Moreover, the optimization strategies (property-guided fuzzing and
all-specification checking strategies) indeed contribute to improv-
ing the efficiency. Specifically, the two optimizations respectively
increase transition coverage by 13.8% and 9.6% within a six-hour
testing period. Final, to show the applicability of our approach,
we apply PDTDroid on Xigua Video (another social media app
from ByteDance), Instagram, Twitter, Bilibili, Threads and
Facebook (five social media apps from other app vendors). Based on
the 30 pieces of privacy specifications provided by theXigua Video
team and 160 pieces of privacy specifications written by ourselves
(based on the privacy settings from the other five apps). PDTDroid
found 14 inconsistency issues (including four privacy leakage is-
sues, eight privacy functional bugs and two specification issues) in
these six apps. We have reported these issues to the app vendors, all
of which have been confirmed and are under fixing. These results
show the usefulness of our approach.

To sum up, we make the following contributions:
• We propose a property-based testing approach for validating
privacy functionalities, and employ two optimization strategies
to improve testing effectiveness and efficiency.

• We implement a GUI testing tool, PDTDroid, to support the appli-
cation of our approach. PDTDroid can synthesize the properties
from the privacy specifications in natural language, and use these
properties to find privacy issues.

• We apply PDTDroid to seven popular, well-tested social me-
dia apps TikTok, Xigua Video, Instagram, Twitter, Bilibili,
Threads, and Facebook. PDTDroid can efficiently validate pri-
vacy functionalities of these apps and found 22 previously un-
known inconsistency issues.

2 BACKGROUND

2.1 Privacy Specifications and Functionalities

In this paper, we name the specifications of privacy functionalities
as privacy specifications. In the TikTok team, the privacy specifi-
cations are written in natural language with four typical syntax
patterns. In Table 1, column “Syntax Patterns” shows these four syn-
tax patterns. In these syntax patterns, “Scene” denotes the scenario
where the privacy functionality could be checked, “Expectation”
denotes the expectation of the privacy functionality, “if” and “then”
denote the condition, and“before” and “after” describe the temporal
orders of app states. In Table 1, column “Samples of Privacy Specifi-
cations” gives some samples of privacy specifications under these
syntax patterns. For example, the first specification (with ID 1) in
Table 1 stipulates that user A cannot see user B’s private videos at
any time. If this specification is violated (i.e., A can see the private
information of B), it indicates a severe privacy leakage bug (leaking

Figure 2: A state sequence indicating an inconsistency issue

private user data). The fourth specification (with ID 4) in Table 1 is
explained in Section 1. If this specification is violated (i.e., A cannot
see B’s public video), it indicates a privacy-related functional bug.

We observe that each privacy specification requires that some
specific (bad) app state should not occur (i.e., safety property). More-
over, the property of privacy functionality can be characterized by
a temporal property. Let’s take the fourth specification (with ID
4) in Table 1 as an example. As shown in Figure 2, 𝑠0 represents
the initial app state, while 𝑠𝑖 and 𝑠 𝑗 denote the app state where
A follows B, B does not follow A. However, if executing the pri-
vacy operation (i.e., B is set as private) on 𝑠𝑖 , A can no longer find
B’s public video as before 𝑠 𝑗 . The specification is violated. We can
see that this privacy specification can be captured by a temporal
property in linear temporal logic formula.

2.2 Linear Temporal Logic

Linear temporal logic (LTL) [49] is a temporal logic that describes
system behaviors as a sequence of states, extending infinitely into
the future. It works with a fixed set of atomic propositions (such as
𝑝1, 𝑝2, ...). These propositions stand for atomic facts which hold of
a system, like “A is following B” and “B is private”. A LTL formula
has the following syntax given in the Backus Naur form [39]:
𝜙 ::=𝑝 | (¬𝜙) | (𝜙 ∧ 𝜙) | (𝜙 ∨ 𝜙) | (𝜙 → 𝜙) | (𝑋𝜙) | (𝐹𝜙) | (𝐺𝜙) | (𝜙𝑈𝜙)

where, 𝑝 is an atomic proposition. ¬, ∨, ∧, and→ are logical sym-
bols that mean “not”, “or”, “and”, and “implies”, respectively. 𝑋 , 𝐹 ,
𝐺 and 𝑈 are modal operators, which mean “next”, “eventually”,
“globally”, and “until”, respectively.

Since each privacy specification of the app describes a temporal
property, we can formalize these specifications by expressing them
as LTL formulas. For example, let 𝑐 be the clause in a sentence, which
may consist of multiple atomic propositions 𝑝 . If a specification has
the form of “Scene: 𝑐1,Expectation: if 𝑐2 before 𝑐3, then 𝑐4”, it can
be represented as “𝐺 ((¬𝑐3 ∧ 𝑐2 ∧𝑋 (𝑐1 ∧ 𝑐3)) → 𝑋𝑐4)” (Section 3.1
explains how to do this transformation). The LTL formula means
that “Globally, if 𝑐3 does not hold and 𝑐2 holds, and in the next state
both 𝑐1 and 𝑐3 hold, then 𝑐4 should hold in the next state as well”,
which captures the specification.

2.3 Property-based Testing

Property-based testing is a classic testing methodology [11]. The
idea is to define a set of properties that the system should satisfy,
design a data generator to automatically generate test cases, and
checks whether these properties always hold. For example, for the
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Figure 3: Workflow of our approach

Figure 4: The example of dependency tree

property of the privacy functionality discussed in Section 1, we
should never generate a sequence of app states that violates the LTL
formula 𝜙=G((¬𝑐3 ∧ 𝑐2 ∧𝑋 (𝑐1 ∧ 𝑐3))→X𝑐4. Thus, given a sequence
of app states 𝜋 explored by generated tests, we can check if there
exists a prefix of 𝜋 matching¬𝜙 . If such a prefix is found, it indicates
that the app violates the property 𝜙 .

3 APPROACH

At a high level, our approach takes an app under test (AUT) and
some privacy specifications P as inputs, and outputs a set of the
counterexamples, i.e., a series of GUI events that can reach an app
state where a specification in P is violated. To do this, our approach
works in four steps as shown in Figure 3. First, it automatically
converts the input privacy specifications into LTL formulas (Sec-
tion 3.1). Second, to facilitate testing, each event trace that can
check and change the truth value of atomic proposition in LTL
formulas is instantiated (Section 3.3). Third, the LTL formulas are
systematically transformed into Büchi automata (Section 3.2). Fi-
nally, it automatically performs oracle checking and explores the
AUT based on the automata (Section 3.4). Next, we will present the
formulation and technical details of our approach.

3.1 LTL Formula Generation

Our approach starts by transforming privacy specifications into
corresponding LTL formulas, which involves two phases:

(1) First, our approach uses four transformation rules (as shown
in Table 1) to transform the natural language specification into the
corresponding LTL formula automatically.
Transformation rules. For each syntax pattern in Table 1, we
have devised a corresponding pattern of LTL formula, displayed
in the “LTL Formula Patterns” column of Table 1. We refer to the
correspondence between natural language syntax patterns and LTL
formula patterns as transformation rules.

Based on these manually formulated transformation rules, we
use regular expression matching to check whether any natural
language specification conforms to a certain syntax pattern, and if
so, we convert it into the corresponding LTL formula.
Example. One of the transformation rules is that if the sentence has
the form of “Scene: 𝑐1, Expectation: if 𝑐2 before 𝑐3, then 𝑐4”, it

can be converted into an LTL formula with the form of G((¬𝑐3∧𝑐2∧
𝑋 (𝑐1 ∧ 𝑐3))→X𝑐4). Based on this rule, we can convert the privacy
specification with ID 4 in Table 1 to “G(¬(B is private) ∧ (A can
find B’s video card) ∧𝑋 ((A is following B, B is not following A, and
B is private) ∧ (B is private)) → 𝑋 (A can find B’s video card))”.

(2) Next, our approach analyzes each clause in the LTL formulas,
decomposes it into conjunctions of propositions, and replaces them
with symbols automatically, as detailed below:

➀Weuse Stanza [68]’s dependency analysis to identify themain
components (i.e. subject, verb, object, and negation) of the clause.
The output of dependency analysis is a dependency tree, which
can be exploited to identify the main components of a sentence.
Figure 4 shows the result of the Stanza dependency analysis on
the sentence “A is following B, and B is not following A”. Note that
only arrows that determine the main components of this sentence
are shown here. There is an arrow pointing from the third word
“following” to the first word “A” in Figure 4. The arrow is labeled
“𝑛𝑠𝑢𝑏 𝑗”, indicating that the word pointed by the arrow is the subject
(“A” here) of the clause, and the starting word of the arrow is the
verb (“following” here) of the clause. Similarly, the arrow marked
with “𝑜𝑏 𝑗” can be used to identify the object of the clause, while the
arrow marked with “𝑎𝑑𝑣𝑚𝑜𝑑” starting from the verb can be used
to identify the negation of a clause.

➁ We represent each main component set as a proposition, de-
noted by a tuple ⟨𝑠, 𝑣, 𝑜, 𝑓 ⟩. Here, 𝑠 is the subject, 𝑣 is the verb, 𝑜 is
the object, and 𝑓 is a flag that represents whether the proposition
expresses a negative meaning. The value of 𝑓 is negative if a verb-
dependent negation is present, otherwise positive. As an example,
based on the result of dependency analysis, the clause in Figure 4
is composed of two propositions ⟨A, following, B, positive⟩ and ⟨B,
following, A, negative⟩.

➂ We use the symbol 𝑝 to represent each proposition and replace
the propositions with these symbols in order as 𝑝1, 𝑝2, and so on. In
particular, if a proposition has the same subject-verb-object compo-
nent as another proposition, we use the same symbol to represent
them. Likewise, we merge proposition phrases that have the same
subject-verb-object but are marked as negative. For example, if ⟨A,
following, B, positive⟩ is replaced by 𝑝1, ⟨A, following, B, negative⟩
can be replaced by ¬𝑝1.

Through the preceding three-step conversion process, we con-
vert all privacy specifications into LTL formulas in final form. These
LTL formulas are composed of temporal logic symbols and the least
types of symbols representing propositions.
Example. The privacy specification with ID 4 in Table 1 will ulti-
mately be translated into𝐺 (¬𝑝3 ∧ 𝑝4 ∧𝑋 (𝑝1 ∧ ¬𝑝2 ∧ 𝑝3) → 𝑋𝑝4),
where 𝑝1, 𝑝2, 𝑝3, and 𝑝4 respectively represent “A is following B”,
“B is following A”, “B is private” and “A can find B’s public video”.
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Figure 5: Automaton corresponding to ¬𝐺 (¬𝑝3 ∧ 𝑝4 ∧ 𝑋 (𝑝1 ∧
¬𝑝2 ∧ 𝑝3) → 𝑋𝑝4) for checking the fourth privacy specifica-

tion in Table 1.

3.2 Büchi Automaton Construction

For each LTL formula 𝜙 , we use a standard approach [20] to con-
struct a Büchi automaton 𝑎 accepts paths satisfying ¬𝜙 , which will
be used for automatic oracle checking in Section 3.4. The automaton
𝑎 is defined as a tuple 𝑎 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ), where Q is a finite set of
states, Σ is a finite set of symbols called alphabet, 𝛿 : 𝑄 × Σ→ 𝑄 is
a transition function with each transition ⟨𝑞, 𝜎, 𝑞′⟩ ∈ 𝛿 denoting a
state transition from 𝑞 to 𝑞′ triggered by satisfying the condition 𝜎 ,
𝑞0 is the initial state, and 𝐹 ⊆ 𝑄 is a set of accepting states. Among
others, Σ consists of boolean expressions over the propositions, 𝐹
denotes either a compliant state or an undesired state, depending
on the kind of property. In our testing scenario, all the privacy spec-
ifications describe safety properties, and thus all accepting states
of the automaton denote the undesired app states. Specifically, to
facilitate automatic state transitions, the generated automaton is
represented as a deterministic finite automaton (DFA). In our set-
ting, such a DFA does not lead to excessive states and transitions
(in our experiment, the average number of states and transitions of
the automata synthesized from privacy specifications are 2 and 5,
respectively).
Example. The negation of the LTL formula 𝐺 (¬𝑝3 ∧ 𝑝4 ∧ 𝑋 (𝑝1 ∧
¬𝑝2∧𝑝3) → 𝑋𝑝4) is ¬𝐺 (¬𝑝3∧𝑝4∧𝑋 (𝑝1∧¬𝑝2∧𝑝3) → 𝑋𝑝4). The
automaton converted from this formula is illustrated in Figure 5.

3.3 Privacy Operation Instantiation

Definition 1. GUI Page, GUI Widget, GUI Event, and GUI
Event Trace. An Android app is a GUI-centered event-driven program.
Each of its GUI pages is a runtime GUI layout ℓ , i.e., a GUI tree 𝑇 .
Each node of this tree is a GUI widget (or view)𝑤 (𝑤 ∈ ℓ). Specifically,
each widget 𝑤 has some attributes, e.g., className (i.e., the widget
type), resourceId (i.e., the widget id), and text (i.e., the widget text).
A GUI event 𝑒 = ⟨𝑡,𝑤, 𝑑⟩ is a tuple, where 𝑒.𝑡 denotes the event type
(e.g., click, edit), 𝑒.𝑤 denotes the target GUI widget of the event, and
𝑒.𝑑 denotes the optional data associated with 𝑒 (e.g., a string/number
for edit). A GUI event trace is a sequence of GUI events 𝐸 = [𝑒1, 𝑒2, . . . ].
𝐸 can be executed on the AUT to obtain a sequence of GUI layouts
(pages) 𝐿 = [ℓ1, ℓ2, . . .].

Definition 2. Proposition, Controllable Proposition, Uncon-
trollable Proposition, Privacy Operation, and App State. The
proposition is the statement that describes the specific state of the
target system (AUT here), denoted by 𝑝 . When the AUT is used by
users, whether the truth value of a proposition 𝑝 is𝑇𝑟𝑢𝑒 or 𝐹𝑎𝑙𝑠𝑒 may
change at any time, which can be observed on the specific page by
the specific user. We refer to the proposition whose truth value can be
deterministically controlled by executing certain UI events as control-
lable propositions and whose truth value that cannot be controlled by
users as uncontrollable propositions. A privacy operation is defined

Figure 6: Privacy operation to change the truth value of 𝑝1

as a GUI event trace which has the capability to change or check the
truth value of some proposition at runtime. Let 𝑃𝐴 = {𝑝0, 𝑝1, . . .}
be the set containing all propositions from the automata set 𝐴 (𝐴
contains all the automata transformed from the privacy specifica-
tions). Specifically, we use 𝑃𝐴 = 𝐶𝑃𝐴 ∪𝑈𝐶𝑃𝐴 to denote the sets of
controllable propositions 𝐶𝑃𝐴 and uncontrollable propositions𝑈𝐶𝑃𝐴
in automata set 𝐴, respectively. As a result, the app state can be char-
acterized by the truth values of these propositions in 𝑃𝐴 , represented
as 𝑠 = [𝑣𝑝0 , 𝑣𝑝1 , . . .], where each 𝑣𝑝𝑖 denotes the truth value (𝑇𝑟𝑢𝑒 or
𝐹𝑎𝑙𝑠𝑒) of the corresponding proposition 𝑝𝑖 .

Example. In the example mentioned at the end of Section 3.1, the
proposition 𝑝3 =“B is private” denotes the account status of a user
which can be changed by some privacy operation. Thus, 𝑝3 is a
controllable proposition. The proposition 𝑝4 = “A can find B public
video” denotes the relationship between two users of the app. This
relationship cannot be explicitly changed by users via some privacy
operation. Thus, 𝑝4 is an uncontrollable proposition. If the privacy
specifications to be checked only involve these two propositions,
the app state can be characterized as {𝑣𝑝3 = 𝑇𝑟𝑢𝑒 , 𝑣𝑝4 = 𝐹𝑎𝑙𝑠𝑒}.

In the previous steps, the privacy specifications written in natu-
ral language are converted into the corresponding automata. When
the truth values of the propositions change, the states of these
automata will change. To control and check the transitions of the
automaton, (1) for each controllable proposition, we manually de-
fine how to change its truth value, and (2) for each controllable or
uncontrollable proposition, we manually define how to check its
truth value. First, for each controllable proposition, we manually
instantiate a privacy operation 𝐸𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = [𝑒𝑐𝑜𝑛𝑡𝑟𝑜𝑙1 , 𝑒𝑐𝑜𝑛𝑡𝑟𝑜𝑙2 , . . .]
to change its truth value. Once 𝐸𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is executed from the start-
ing GUI page of AUT, the truth value of the target proposition
changes. Second, for each controllable or uncontrollable proposi-
tion, we identify a key GUI widget𝑤𝑐ℎ𝑒𝑐𝑘 and instantiate a privacy
operation 𝐸𝑐ℎ𝑒𝑐𝑘 = [𝑒𝑐ℎ𝑒𝑐𝑘1 , 𝑒𝑐ℎ𝑒𝑐𝑘2 , . . .] to check its truth value.
When 𝐸𝑐ℎ𝑒𝑐𝑘 is executed from the starting GUI page of the AUT,
the AUT can reach a GUI page on which we can check the status
of𝑤𝑐ℎ𝑒𝑐𝑘 to determine the truth value of the target proposition.

Note that automatically constructing the traces of privacy oper-
ations through their descriptions is challenging in practice, as it is
difficult to accurately infer the GUI pages on which these operations
can be performed. Manually constructing the trace is a one-time
effort and typically acceptable in practice as (1) we need at most
two traces (i.e., 𝐸𝑐𝑜𝑛𝑡𝑟𝑜𝑙 and 𝐸𝑐ℎ𝑒𝑐𝑘 ) for each proposition and (2) a
tester usually already constructs these traces during manual testing.
We assess the required manual effort in Section 4.4.
Example. The event trace that can change the truth value of propo-
sition 𝑝1 (“A is following B”) is illustrated by the four red boxes in
Figure 6. The trace consists of four events (i.e., clicking the search
button, entering the user name of B, clicking the search button, and
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Algorithm 1: Identify inconsistency issues via automata
Inputs :𝐴: set of automaton converted from privacy specifications,
𝐶𝑃𝐴 : set of controllable propositions involved in𝐴,
𝑈𝐶𝑃𝐴 : set of uncontrollable propositions involved in𝐴,
Output :bugsInfo: information of detected bugs

1 Function Main:
2 foreach automaton 𝑎 ∈ 𝐴 do

3 𝑎.𝑞𝑐 ← 𝑎.𝑞0;
4 𝑏𝑢𝑔𝑠𝐼𝑛𝑓 𝑜 ← ∅; 𝑒𝑣𝑒𝑛𝑡𝑇𝑟𝑎𝑐𝑒 ← [];
5 while not timeout do
6 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑝𝑝𝑆𝑡𝑎𝑡𝑒 ← checkPropositions(𝑈𝐶𝑃𝐴 ∪𝐶𝑃𝐴 ) ;
7 foreach automaton 𝑎 ∈ 𝐴 do

8 foreach 𝑡 ∈ 𝑎.𝛿 do

9 if 𝑐ℎ𝑒𝑐𝑘𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 (𝑎, 𝑡, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑝𝑝𝑆𝑡𝑎𝑡𝑒 ) then
10 𝑎.𝑚𝑎𝑘𝑒𝑆𝑡𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 ( ) ;

11 if 𝑎.𝑞𝑐 ∈ 𝑎.𝐹 then

12 𝑏𝑢𝑔𝑠𝐼𝑛𝑓 𝑜 ← 𝑏𝑢𝑔𝑠𝐼𝑛𝑓 𝑜 ∪ (𝑒𝑣𝑒𝑛𝑡𝑇𝑟𝑎𝑐𝑒, 𝑎) ;

13 𝑒𝑣𝑒𝑛𝑡𝑇𝑟𝑎𝑐𝑒 ←
𝑒𝑥𝑝𝑙𝑜𝑟𝑒 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑝𝑝𝑆𝑡𝑎𝑡𝑒,𝐴,𝐶𝑃𝐴, 𝑒𝑣𝑒𝑛𝑡𝑇𝑟𝑎𝑐𝑒 ) ;

14 return 𝑏𝑢𝑔𝑠𝐼𝑛𝑓 𝑜

clicking the follow button). After these four events are executed by
user A, the truth value of 𝑝1 can change from 𝐹𝑎𝑙𝑠𝑒 to𝑇𝑟𝑢𝑒 (or from
𝑇𝑟𝑢𝑒 to 𝐹𝑎𝑙𝑠𝑒). On the other hand, the three red boxes in the first
two pages in Figure 6 illustrate the steps to check the proposition
𝑝1. On page (c), if user B’s user card contains a button with the
text “following”, the truth value of 𝑝1 is 𝑇𝑟𝑢𝑒 (i.e., A is following
B), otherwise the truth value of 𝑝1 is 𝐹𝑎𝑙𝑠𝑒 (A is not following B).

3.4 Inconsistency Issue Identification

After deriving the Büchi automata and privacy operations, our
approach explores the AUT and checks whether there is any in-
consistency between the specification and the app behaviors. In
particular, we propose the all-specification checking and property-
guided fuzzing strategies to validate privacy functionalities.

Algorithm 1 shows how our approach can automatically perform
oracle checking to detect inconsistency issues. We use the same
definition of automaton as in section 3.2 to explain our algorithm,
with 𝑎,𝑄, Σ, 𝛿, 𝑞0, and 𝐹 maintaining their meanings. In addition,
we introduce a new variable 𝑞𝑐 for each automaton to record the
current state of the automaton. At the beginning of the algorithm,
it first initializes each automaton’s variable 𝑞𝑐 to the initial state 𝑞0
(lines 2-3). Then, it initializes 𝑏𝑢𝑔𝑠𝐼𝑛𝑓 𝑜 and 𝑒𝑣𝑒𝑛𝑡𝑇𝑟𝑎𝑐𝑒 to record
all detected bugs and all executed events, respectively (line 4). In
the main loop (lines 5-13), the algorithm continually repeats the fol-
lowing three steps: (1) It checks the truth values of all propositions
involved in all automata by 𝑐ℎ𝑒𝑐𝑘𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 and saves the result
into 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑝𝑝𝑆𝑡𝑎𝑡𝑒 (line 6). (2) It traverses each automaton in
turn and checks whether a transition has occurred (lines 7-10). In
detail, each automaton reviews all its transitions 𝑡 = ⟨𝑞, 𝜎, 𝑞′⟩ ∈ 𝛿
(line 8), uses 𝑐ℎ𝑒𝑐𝑘𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 to confirm ① if the transition starts
from the current state (𝑞𝑐 ) and② if its transition condition 𝜎 is𝑇𝑟𝑢𝑒 ,
and returns 𝑇𝑟𝑢𝑒 when both are met (line 9). If the return value
of 𝑐ℎ𝑒𝑐𝑘𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 is 𝑇𝑟𝑢𝑒 , the automaton will transition to state
𝑞′ and update its 𝑞𝑐 accordingly via function𝑚𝑎𝑘𝑒𝑆𝑡𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛

(line 10). It is worth noting that since each automaton generated by
Section 3.2 is represented as a DFA. Thus, at most one transition
of each automaton can be satisfied at any given time. (3) It checks
whether any automaton has reached the accepting state (line 11).

Algorithm 2: Explore the app guided by automata
1 Function explore(currentAppState,automata,𝐶𝑃𝐴 ,eventTrace):
2 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 ← 𝑔𝑒𝑡𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 (𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑎) ;
3 𝑚𝑎𝑥𝑆𝑐𝑜𝑟𝑒 ← 0;
4 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐴𝑝𝑝𝑆𝑡𝑎𝑡𝑒𝑠 ←

𝑔𝑒𝑡𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑁𝑒𝑥𝑡𝑆𝑡𝑎𝑡𝑒 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑝𝑝𝑆𝑡𝑎𝑡𝑒,𝐶𝑃𝐴 ) ;
5 foreach 𝑠 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐴𝑝𝑝𝑆𝑡𝑎𝑡𝑒𝑠 do
6 𝑠𝑐𝑜𝑟𝑒 ← 0;
7 foreach 𝑡 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 do
8 if 𝑐ℎ𝑒𝑐𝑘𝑊𝑒𝑎𝑘𝑆𝑎𝑡𝑖𝑠 𝑓 𝑦 (𝑡 .𝜎, 𝑠 ) then
9 𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒 + 𝑡 .𝑤𝑒𝑖𝑔ℎ𝑡 ;

10 if 𝑠𝑐𝑜𝑟𝑒 >𝑚𝑎𝑥𝑆𝑐𝑜𝑟𝑒 then

11 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐴𝑝𝑝𝑆𝑡𝑎𝑡𝑒𝑠 ← 𝑠 ;
12 𝑚𝑎𝑥𝑆𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒 ;

13 𝑐ℎ𝑎𝑛𝑔𝑒𝐸𝑣𝑒𝑛𝑡𝑠 ←
𝑔𝑒𝑡𝐸𝑣𝑒𝑛𝑡𝑠 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑝𝑝𝑆𝑡𝑎𝑡𝑒, 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐴𝑝𝑝𝑆𝑡𝑎𝑡𝑒𝑠 ) ;

14 𝑒𝑣𝑒𝑛𝑡𝑇𝑟𝑎𝑐𝑒 ← 𝑒𝑣𝑒𝑛𝑡𝑇𝑟𝑎𝑐𝑒 :: 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝐸𝑣𝑒𝑛𝑡𝑠 (𝑐ℎ𝑎𝑛𝑔𝑒𝐸𝑣𝑒𝑛𝑡𝑠 ) ;
15 𝑒𝑣𝑒𝑛𝑡𝑇𝑟𝑎𝑐𝑒 ← 𝑒𝑣𝑒𝑛𝑡𝑇𝑟𝑎𝑐𝑒 :: 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑅𝑎𝑛𝑑𝑜𝑚𝐸𝑣𝑒𝑛𝑡𝑠 ( ) ;
16 return 𝑒𝑣𝑒𝑛𝑡𝑇𝑟𝑎𝑐𝑒 ;

If so, it indicates that some specification is violated, and records
the violated specification and the previously executed events (line
12). Finally, the algorithm executes some events that may change
the app state by 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 (the strategy for executing events will be
introduced in the Algorithm 2) (line 13). Through the above loop,
the algorithm changes the app state and simultaneously checks all
privacy specifications. We term this strategy as the all-specification
checking strategy. Eventually, the algorithm returns any found in-
consistency issues during testing (line 14).

Note that Algorithm 1 solves the oracle checking problem. Algo-
rithm 2 focuses on exploring the app effectively, which (1) utilizes
all automata to guide test case generation with the aim of improving
the transition coverage, and (2) executes random events to explore
more possible app states. To guide the generation of test cases, a
variable 𝑤𝑒𝑖𝑔ℎ𝑡 is added to each transition. Every time a transi-
tion is covered, its 𝑤𝑒𝑖𝑔ℎ𝑡 will be decreased. When the function
𝑚𝑎𝑘𝑒𝑆𝑡𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 on line 9 of Algorithm 1 is called, the𝑤𝑒𝑖𝑔ℎ𝑡
of the corresponding transition will also be updated. In our ex-
periment, we set the 𝑤𝑒𝑖𝑔ℎ𝑡 to one-tenth during each update. If
efficiency is prioritized, the denominator can be increased, whereas
if sufficiency is emphasized more, the numerator can be increased.

Algorithm 2 first uses 𝑔𝑒𝑡𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 to find any tran-
sition of all automata that may occur (i.e., any transition of all
automata whose start states are 𝑞𝑐 ) and stores them in a list named
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 (line 2). Afterwards, the algorithm looks for
a feasible controllable proposition that, when modified, can cover
as many transitions as possible while maximizing the sum of the
weights of the satisfied transitions (lines 4-12). We term this strat-
egy as the property-guided fuzzing strategy. Note that we may not
always be able to achieve the transition. In particular, some transi-
tions on the automaton may never be covered because there is no
corresponding bug in the app (e.g., transitions (e) and (f) in Figure 5).
To achieve this, the algorithm employs 𝑔𝑒𝑡𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑁𝑒𝑥𝑡𝑆𝑡𝑎𝑡𝑒 to
identify all possible app states resulting from altering each control-
lable proposition in the current state and records these states in
𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐴𝑝𝑝𝑆𝑡𝑎𝑡𝑒𝑠 (line 4). For example, assuming that the au-
tomata set 𝐴 involves only two controllable propositions, 𝑝1 and
𝑝2, and the current app state is [𝑣𝑝1 = 𝑇𝑟𝑢𝑒, 𝑣𝑝2 = 𝑇𝑟𝑢𝑒]. Then, by
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Figure 7: Automaton corresponding to ¬𝐺 (¬𝑝1 ∧ ¬𝑝2 ∧ 𝑝3 →
¬𝑝4) for checking the second privacy specification in Table 1.

changing one controllable proposition, the app state at the next mo-
ment may be [𝑣𝑝1 = 𝐹𝑎𝑙𝑠𝑒, 𝑣𝑝2 = 𝑇𝑟𝑢𝑒] or [𝑣𝑝1 = 𝑇𝑟𝑢𝑒, 𝑣𝑝2 = 𝐹𝑎𝑙𝑠𝑒].
We store these two app states in the list 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐴𝑝𝑝𝑆𝑡𝑎𝑡𝑒𝑠 . Next,
for each candidate app state, it calculates which candidate transi-
tion’ condition can be weakly satisfied (i.e., assuming the transition
can be enabled if the corresponding controllable propositions hold)
under the current app state by 𝑐ℎ𝑒𝑐𝑘𝑊𝑒𝑎𝑘𝑆𝑎𝑡𝑖𝑠 𝑓 𝑦. If so, it adds
the weight of the transition to the score corresponding to the can-
didate app state, and selects the app state with the highest score
as the last selected one (lines 5-12). Finally, the algorithm uses
𝑔𝑒𝑡𝐸𝑣𝑒𝑛𝑡𝑠 to identify the controllable propositions that need to
be changed to reach the target app state and returns the event
traces required to make these changes. (line 13). Next, the algo-
rithm executes these events sequentially and records the events
that have been successfully executed by 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝐸𝑣𝑒𝑛𝑡𝑠 (line 14). In
particular, the algorithm also randomly executes some events by
𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑅𝑎𝑛𝑑𝑜𝑚𝐸𝑣𝑒𝑛𝑡𝑠 (with the chance of coin-flipping) to reach
more diverse app states (line 15). In this random execution, the
algorithm randomly selects a GUI widget from the current GUI
page and randomly selects an event type to generate a GUI event
for that widget and executes that event. Note that we avoid repeat-
ing a small number of the same event traces by considering all the
automata at once, and dynamically updating the transition weights.
Example. Assuming only the second and fourth privacy specifi-
cations in Table 1 are needed to be checked (corresponding to the
automata shown in Figure 7 and Figure 5 respectively) and the
initial app state is that A is not following B, B is not following A,
B is private and A can find B public video. (1) Algorithm 1: First,
two automata all initiate at state 0 (line 2). Subsequently, after the
execution of line 5, 𝑝1, 𝑝2, and 𝑝3 are evaluated as 𝐹𝑎𝑙𝑠𝑒 , and 𝑝4
are evaluated as 𝑇𝑟𝑢𝑒 . Then, after line 9 is executed, the automa-
ton in Figure 5 migrates to state 1 through transition (b), and the
automaton in Figure 7 migrates back to state 0 through transition
(a). (2) Algorithm 2: To enhance transition coverage, Algorithm 2
calculates, through the execution of lines 2-12, that proposition 𝑝3
should be changed. As this change could lead to covering transition
(c) of the automaton in Figure 5 and transition (b) of the automaton
in Figure 7. On the other hand, changing either 𝑝1 or 𝑝2 at this
point would not cover these two transitions. To this end, it changes
the truth value of 𝑝3 (lines 13-14), performs random events (line
15), and then continues the next iteration.

4 EVALUATION

Our experiment aims to answer these research questions:
• RQ1 : How effective is PDTDroid in validating privacy function-
alities of TikTok? Can PDTDroid find inconsistency issues?

• RQ2 : How do the optimization strategies in PDTDroid perform
in improving the testing effectiveness and efficiency?

• RQ3 : Can our property-based testing approach (supported by
PDTDroid) be applied to validate other social media apps?

4.1 Tool Implementation

We implemented a prototype tool PDTDroid to support our ap-
proach. Given an app and its privacy specifications (written in the
syntax patterns illustrated in Table 1) as input, PDTDroid out-
puts any found inconsistency issues (including the issue-triggering
traces). To convert the privacy specifications to LTL formulas,
we use Stanford’s Stanza [68] for dependency analysis. We use
Spot libraries [67] to obtain Büchi automata from LTL formu-
las. We use WEditor [75] to help record event traces. We use
the UI Automator test framework [69] to execute events and
dump GUI layouts. We have made PDTDroid publicly available at
https://github.com/property-driven-privacy-testing/home.

4.2 Experiment Setup

4.2.1 Experiment Setup of RQ1. The TikTok team provided us a
total of 125 privacy specifications in natural language. To answer
RQ1, we used PDTDroid to automatically convert all these privacy
specifications to LTL formulas. After that, we manually checked the
correctness of these LTL formulas (Section 4.4 discusses the con-
version accuracy). We invited one human tester from the TikTok
team to help us instantiate the corresponding event traces for the
propositions involved in these LTL formulas. The tester manually
instantiated a total of 54 event traces for the 125 privacy specifica-
tions (Section 4.4 discusses the manual cost). We tested one recent
version of TikTok (version 25.1.0) on real Android devices (OPPO
A11s, Android 10.0) and allocated 6 machine hours for privacy test-
ing. We manually inspected all the reported inconsistency issues
to find the unique ones based on the issue-triggering traces. We
reported all the found issues to the TikTok team for confirmation.

4.2.2 Experiment Setup of RQ2. We conducted an ablation study to
evaluate whether the optimization strategies can improve testing
effectiveness and efficiency. Specifically, we built two baselines:
• Baseline A: This baseline evaluates how the all-specification check-
ing strategy performs in improving testing efficiency. The only
difference between Baseline A and PDTDroid is the strategy of
checking the privacy specifications. Baseline A checks one specifi-
cation at one time, while PDTDroid checks all the specifications
at the same time. Note that both Baseline A and PDTDroid use
the property-guided fuzzing strategy to generate tests.
• Baseline B: This baseline evaluates how the property-guided fuzzing
strategy performs in improving testing effectiveness and efficiency.
The only difference between Baseline B and PDTDroid is the
strategy of generating tests. Baseline B mimics the state-of-the-
practice GUI testing tool, Monkey [40], to generate random tests
(i.e., randomly exploring GUI pages), while PDTDroid uses the
automata to guide test generation for improving transition cov-
erage. Note that both Baseline B and PDTDroid use the all-
specification checking strategy.

To compare with PDTDroid, we allocated 6 hours for these two
baselines based on the same set of 125 privacy specifications. We
measured the transition coverage of all automata and counted the
number of detected inconsistency issues.

4.2.3 Experiment Setup of RQ3. To address RQ4, we chose the six
top downloaded apps in the category of social media apps on Google
Play Store [23] and Xiaomi GetApps [79]. They are Xigua Video

https://github.com/property-driven-privacy-testing/home
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Table 2: List of eight inconsistency issues found by PDTDroid in TikTok

ID Scenes Expectations Actual behaviors
1 A is blocking B B’s video should not appear on A’s recommendation page. B’s video will appear on A’s recommendation page.
2 B has a posted private video B can find B’s private video under comprehensive search. B cannot find B’s private video under comprehensive search.
3 B has a posted private video B can find B’s private video under video search. B cannot find B’s private video under video search.
4 A is blocking B A can mention B on the release page, but B cannot mention A on the release page. A cannot mention B on the release page.
5 A is blocking B A can mention B on the comment page, but B cannot mention A on the comment page. A cannot mention B on the comment page.

6 B is private B can find B’s user card under user search, and there is an icon indicating that B is
private.

B can find B’s user card under user search, but there is no icon indicating
that B is private.

7 A is following B, B is following
A, B is private

A can find B’s user card under user search, and there is an icon indicating that B is
private.

A can find B’s user card under user search, but there is no icon indicating
that B is private.

8 B is private, B has a posted video B can find B’s video under video search. B cannot find B’s video under video search.

(version 7.3.4, 1B+ installations), Instagram (version 272.0.0, 5B+
installations), Twitter (version 9.98.0, 1B+ installations), Bilibili
(version 7.45.0, 1B+ installations), Threads (version 300.0.0, 100M+
installations) and Facebook (version 426.0.0, 5B+ installations).
Among them, Xigua Video is developed by ByteDance, and we
tested it based on 30 privacy specifications provided by its team.
The other five apps are developed by other app vendors. Since
these selected apps are social media apps, and thus they have some
similar privacy functionalities of TikTok. We could migrate the
privacy specifications from TikTok to these apps. We carefully
checked whether each privacy specification from TikTok is rele-
vant to the selected apps according to their privacy features, settings
and prompts. For example, when disabling Instagram’s “allow pho-
tos remix”, Instagram will prompt that “No one can create new
remixes with your photos. Existing remixes will not be affected
unless you delete your photos or block the user.” Based on this
privacy setting and its prompt, we constructed a privacy speci-
fication: “Scene: A disables ‘allow photos remix’, Expectation: B
cannot create new remixes with A’s photos.” In this process, we
used the four syntax patterns in Table 1 to construct the privacy
specifications for these selected apps. We find that these four syn-
tax patterns are comprehensive enough to capture all the observed
privacy functionalities in these apps. However, we also find that
some of TikTok’s privacy functionalities do not exist in other apps
(e.g., Bilibili cannot set user accounts as private), and thus some
privacy specifications cannot be migrated. Additionally, since we
are not the app vendors, we can only construct the privacy speci-
fications according to the publicly available information of these
selected apps. Finally, we constructed 35, 25, 40, 30 and 30 pri-
vacy specifications for Instagram, Twitter, Bilibili, Threads
and Facebook, respectively. We allocated 24 hours for testing each
of these apps. Once the privacy specifications are constructed, ap-
plying PDTDroid to these new apps is straightforward. The only
manual task is to instantiate the event traces for the LTL formulas.

4.3 Experiment Results

4.3.1 Results for RQ1. Table 2 shows the inconsistency issues
found by PDTDroid. The second and third columns list the scenes
and expectations described in the privacy specifications, while the
fourth column provides the actual behaviors of the app observed by
PDTDroid. After we reported the inconsistency issues, the devel-
opers confirmed that the first issue (the issue with ID 1 in Table 2)
is a privacy functional bug in TikTok. Due to the algorithmic ran-
domness of the recommendation functionality, finding this bug
requires multiple checks of the related privacy specification. As
a result, this bug has not been found by manual testing. For the
remaining seven inconsistency issues, the developers responded

Figure 8: Comparison between Baseline A, B, and PDTDroid

in terms of transition coverage of all automata in six hours.

that the corresponding privacy specifications had not been updated
timely after updating the functionalities of TikTok. These issue
reports are still crucial for TikTok as the testing process for pri-
vacy functionalities requires referencing to these specifications. So
far, all these eight issues have been fixed. Note that our approach
does not incur any false positives. We interviewed five testers of
the TikTok team. Among them, two are in charge of manually
testing privacy functionalities, while the others are responsible for
developing automated testing tools. They consistently gave positive
feedback that PDTDroid is useful because it can help them check
privacy functionalities and spot the specifications issues.

4.3.2 Results for RQ2. Figure 8 compares the performance of Base-
line A, B, and PDTDroid in terms of transition coverage in val-
idating privacy functionalities. Baseline A, B and PDTDroid are
denoted by the black, yellow and red curves, respectively. The
horizontal axis denotes the 6-hour testing time, and the vertical
axis denotes the transition coverage of of all the automata during
testing, respectively. Note that if the app does not violate some
specification, some transitions of the corresponding automaton will
never be covered. For example, for the automaton in Figure 5, the
transitions (e) and (f) can never be covered if the corresponding
specification is never violated. The maximal transition coverage of
this automaton is 4/6≈66.6%. Therefore, the transition coverage of
Baseline A, B, and PDTDroid cannot always reach 100%.

From Figure 8 , we can see that PDTDroid performs better than
both Baseline A and B. Benefiting from both the property-guided
fuzzing and all-specification checking strategies, PDTDroid in-
creases the transition coverage much faster than the two baselines.
PDTDroid also finally achieved the highest transition coverage
because it can reach more diverse app states when checking all the
specifications simultaneously. However, Baseline A may not be able
to sufficiently test each specification with diverse app states due
to its inefficiency, while randomness of Baselines B may prevent it
from reaching the corresponding scenes for some privacy specifi-
cations. Specifically, PDTDroid achieved a respective increase of
13.8% and 9.6% in transition coverage compared to Baselines A and
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Table 3: Inconsistency issues found by PDTDroid in Xigua Video, Instagram, Twitter, Bilibili, Threads and Facebook

Type ID App Issue Description

1 Instagram B can see A’s deleted videos.
2 Twitter B can see A’s deleted videos.
3 Twitter After A removes B from circles, B can still see A’s "circle-only" tweets.Privacy Leakage

4 Bilibili The content that is not visible to other users (such as the name of a video published by a private account) can still be seen via the UI layout files.
5 Instagram After B hides the story from A, A sometimes does not appear in B’s block list.
6 Instagram Sometimes the number of followers displayed on the user’s homepage differs from the number of followers displayed in the followers list.
7 Instagram After B hides the story from A, B cannot see A’s story on A’s homepage, but can see A’s story on the recommendation page.
8 Twitter Crash when user sets visible topic in the setting page.
9 Bilibili After modifying the privacy settings multiple times, the user cannot set the visibility of the fan list unless the app is reinstalled.
10 Facebook After frequently accessing the privacy settings, the user will not be able to open the settings page unless the app is reinstalled.
11 Facebook After A unfollows B, B is still in A’s friends list.

Privacy
Functional Bugs

12 Threads After turning on the replies filtering and specifying the hidden words, users can still see the replies from other users that include those hidden words.
13 Xigua Video After A blocks B, A cannot search for B.Specification Issues 14 Xigua Video B cannot search for his private video.

B within a six-hour testing period. On the other hand, PDTDroid
found 8 inconsistency issues, while Baseline A and B found 7 and 6
issues, respectively. Both Baseline A and B did not found the issue
with ID 1 (which is a real functional bug) in Table 2. Thus, the
results show that the two optimization strategies of PDTDroid can
help improve testing effectiveness and efficiency.

4.3.3 Results for RQ3. Based on the constructed privacy specifi-
cations for the selected apps, PDTDroid has successfully found 14
inconsistency issues, which affect the latest versions of these apps.
Table 3 gives the detailed information of these found issues. (1) The
first four issues (with issue ID 1∼4) are privacy leakages, which
could be dangerous for users. For example, the first one indicates
that if A (a user of Instagram) accidentally posted a video that
reveals A’s privacy, and immediately deleted it, other users can still
see this deleted video within half one hour. This issue is difficult
to be found by manual testing due to its specific issue-triggering
condition: it only manifests when A has one draft video and two
public videos in A’s video list. For another example, the fourth issue
indicates that if user A sets itself as a private account, user B can
still see A’s private videos via the dumped GUI information. This
issue is hard to be found by manual testing as the information is
invisible from normal GUI pages. (2) The fifth to twelfth issues (with
issue ID 5∼12) are functional bugs of the privacy functionalities
that may not compromise users’ privacy but could negatively affect
user experience. For instance, some privacy settings in some apps
(Bilibili and Facebook) are buggy: changing the privacy settings
for multiple times breaks the settings (issue ID 9 and 10). These
issues may be difficult to be found by manual testing. Because hu-
man testers typically check each privacy functionality only once
due to the limited testing budgets. The issues with ID 5 and 6 are
sporadic, and they are only triggered by multiple executions of
the same privacy functionalities. The issue with ID 7 also requires
multiple executions of the privacy functionality due to the random-
ness of the recommendation functionality. (3) The last two issues
in Xigua Video are caused by the outdated specifications. We have
reported all these found issues to the app vendors, all of which
have been confirmed and under fixing. These results indicate that
our property-based testing approach is general and applicable to
different social media apps.

4.4 Discussion & Lessons Learned

In this section, we discuss lessons learned and practical experience
obtained from this work.

PDTDroid can help save the manual cost in practice. In RQ1,
the first instantiation on TikTok (version 25.1.0) took 8 person-
hours for all the 125 privacy specifications, averaging 3.8 minutes
per specification. On the other hand, the human tester reports
that the cost needed by manually testing all the privacy specifica-
tion without PDTDroid is about 6 hours. However, to instantiate
PDTDroid on a new app version, a human tester only needs to
check whether the event traces from a prior version are valid (e.g.,
whether the target UI widgets of these event traces have changed).
To investigates the manual cost of using PDTDroid in practice,
we invited one human tester to apply PDTDroid on five new app
versions (26.1.0, 27.1.0, 28.1.0, 28.6.0 and 28.7.0) based on the prior
version (25.1.0) tested in RQ1. Specifically, the tester automatically
replayed the event traces instantiated for a prior app version on this
new app version, and manually updated any failed event traces. We
recorded (1) the number of failed event traces due to app updates,
and (2) the time cost of manually fixing the failed event traces. The
statistics show that it takes an average of 0.29 person-hour to test a
new app version with PDTDroid. It saves about 95.2% (≈(6-0.29)/6)
of the time cost of manual testing. Specifically, the numbers of failed
event traces for versions 26.1.0, 27.1.0, 28.1.0, 28.6.0, and 28.7.0 were
only 7, 6, 3, 4, and 3, respectively. It indicates that the human testers
can increasingly benefit from PDTDroid in reducing the manual
testing time when validating new app versions.
Lightweight natural language processing technique can ef-

fectively synthesize the privacy specification. As shown in
Section 3.1, we transform the privacy specification into the corre-
sponding LTL formula by leveraging customized transformation
rules and dependency analysis. In our experiment, this approach
can achieve high efficiency and accuracy. Specifically, PDTDroid
only takes an average of seconds to complete the conversion of each
privacy specification. The conversion accuracy (284/315≈90.2%) is
also high. Only 31 out of 315 LTL formulas were converted inaccu-
rately. We found that all conversion errors are caused by inaccurate
dependency analysis results from the NLP tool Stanza we used,
these conversion errors will be found when we instantiate the
proposition-related event trace for each proposition (step 2 in Fig-
ure 3). For example, the propositions that are missing the object can
be noticed and easily fixed by anyone with basic language skills.
Threats to validity The primary threat to external validity for
this study involves the representativeness of our app and the cor-
responding privacy specifications for inspection. However, we do
reduce this threat to some extent by selecting one of the most pop-
ular social apps, TikTok as the major subject, which has complex
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user privacy-related functions. Moreover, our testing of TikTok is
based on privacy specifications provided by ByteDance, which are
used in the real industrial setting.

5 RELATEDWORK

Privacy leakage detection in Android apps. Several methods
have been proposed for detecting privacy leakage in Android apps.
Some work [3, 22, 32, 37, 76] identifies potential privacy leakage by
analyzing the source code or bytecode of Android apps. However,
these methods are limited by their inability to account for the dy-
namic behavior of an app, so they cannot detect the privacy leakage
related to specific app states, which are only exposed during dy-
namic execution. As for meta-information analysis, there are some
work [28, 44, 56, 78, 83] uses machine learning to detect Android
malware (including Adware, Ransomware, Scareware, and SMS
Malware) that maliciously leaks user privacy. These work focuses
on identifying malicious apps, not accidental privacy-related bugs
in regular apps. Some work [5, 16, 33, 54] combines dynamic and
static techniques to detect privacy leaks in Android apps. However,
the testing purposes of these work are different from our approach.
For example, COVERT is a tool for compositional analysis of An-
droid inter-app vulnerabilities. Some work [9, 25, 27, 57, 74, 82]
targets privacy policies (describing what information the app will
collect), which are different from the privacy specifications (describ-
ing the expected behaviors of privacy functionalities) used in our
work. Overall, existing privacy leakage detection techniques cannot
detect the bug concerned in this paper. Moreover, as there are no
benchmark subjects with known user privacy-related bugs, we are
unable to evaluate our technique on such benchmarks.
Functional testing of mobile apps. Our work focuses on vali-
dating the correctness of user privacy functionalities of mobile
apps. However, most of existing automated testing techniques
(e.g., [14, 26, 38, 40, 59, 73]) in this field are limited to finding crash-
ing bugs. Because they do not accept functional specifications but
use runtime exceptions as the oracle [80]. Thus, they cannot find
the user privacy-related functional bugs like PDTDroid. To find
functional bugs, some work (e.g., Genie [60], SetDroid [63, 64],
DLD [51], Thor [1]) uses metamorphic testing to generate auto-
mated oracles. However, it is difficult to derive the metamorphic
relations to capture different properties of user privacy related
functionalities. DiffDroid [17] and SPAG-C [35] compare the GUI
pages between two different devices (i.e., differential testing) to find
device-specific compatibility issues. However, user privacy-related
functional bugs are not likely device-specific. Thus, they do not
work in our setting. Odin [72] compares the app behaviors after
appending the same events to the test inputs terminating at similar
GUI layouts. However, it cannot check specific specifications or
measure the degree of inspection, so it cannot be used in our test
scenario (pre-release inspection of industrial app’s new version).
Property-based testing. Property-based testing (PBT) was first
formally introduced by Fink et al. [19] and popularized by Claessen
and Hughes [11]. There are some work applying PBT in mobile
apps. Liam et al. proposeQuickstrom, which uses LTL to specify
the behaviors of web apps as temporal properties, and automatically
generates tests for property checking. However,Quickstrom re-
quires users to provide LTL formulas as input, which describes the

sequence of GUI pages rather than the temporal logic of complex
app states. These required LTL formulas cannot characterize pri-
vacy specifications involving multiple users. Lam et al. [30] design
ChimpCheck that applies property-based testing in Android apps.
However, ChimpCheck uses the assertions in the user-provided
example-based tests for testing a single function. Thus, the privacy-
related bugs involving relationships between multiple functions
cannot be detected byChimpCheck (e.g., following users and search-
ing users are the two independent functions). Sun et al. [62] intro-
duce a property-based fuzzing approach to detect data manipulation
errors in Android apps. Their approach is based on the model-based
properties specified by human for testing. Due to the inability to
characterize temporal logic, this property cannot be used to detect
the bugs we are targeting. Moreover, PBT is also applied in other
testing scenarios, e.g., RESTful APIs [29], Scratch programs [58],
Java Programs [47], OCaml programs [46], Ros programs [52], and
Coq programs [31], which cannot be applied for Android apps.
Model checking and runtime verification.Model checking [15]
and runtime verification [7] are also commonly used to detect se-
curity issues that violate specific specifications in apps. Some work
applies model checking to mobile apps [6, 70]. However, for large-
scale industrial apps, building their models manually is difficult.
Although there are some automated modeling techniques [4, 34],
they can only obtain models that describe UI transitions, and cannot
characterize the privacy-related properties of apps. Some work
applies runtime verification techniques to mobile apps [55, 61].
Conceptually, our approach differs from runtime verification. Run-
time verification checks whether a single execution of the system
violates the given specifications by inserting stakes in the system.
However, our approach observes the state of the system externally
and uses the specification to guide the construction of test cases to
find violations. In addition, our approach does not require access
to the app source code, which is thus more flexible and accessible.
Translating natural language texts to LTL formulas. As far as
we know, there are few comprehensive solutions that can translate
unrestricted, natural English texts into general LTL formulas [8, 12].
Over the years, some researchers have developed the techniques
for translating natural language texts into LTL formulas in specific
domains, e.g., aerospace [43, 53], robot [24, 48, 71] and other spe-
cific systems [21, 81]. However, these domain-specific methods are
difficult to apply to our scenario directly. To our knowledge, there
is no English-to-LTL technique for Android apps. To this end, we
employ lightweight natural language processing techniques and
establish transformation rules to accomplish the target conversion.

6 CONCLUSION

In this paper, we introduce a property-driven testing approach to
validate privacy functionalities against given privacy specifications.
Each privacy specification is expressed as an LTL formula and con-
verted into an automaton. This automaton will enable automatic
detection of specification violations in the app and guide the GUI
testing. We implemented our approach as a tool, PDTDroid, which
can efficiently and sufficiently check given specifications and re-
port any inconsistent app behaviors. The evaluation of PDTDroid
on seven popular social media apps demonstrates the effective-
ness and practicality of our proposed approach. In our experiment,
PDTDroid found 22 previously unknown inconsistency issues.
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