
Automata-based Trace Analysis for Aiding Diagnosing GUI
Testing Tools for Android

Enze Ma1, Shan Huang1, Weigang He1, Ting Su1
Jue Wang2, Huiyu Liu1, Geguang Pu1, Zhendong Su3

1Shanghai Key Lab of Trustworthy Computing, Software Engineering Institute, East China Normal University, China
2State Key Lab for Novel Software Tech. and Dept. of Computer Sci. and Tech., Nanjing University, China

3Department of Computer Science, ETH Zurich, Switzerland

ABSTRACT

Benchmarking software testing tools against known bugs is a clas-
sic approach to evaluating the tools’ bug finding abilities. However,
this approach is difficult to give some clues on the tool-missed bugs
to aid diagnosing the testing tools. As a result, heavy and ad hoc
manual analysis is needed. In this work, in the setting of GUI testing
for Android apps, we introduce an automata-based trace analysis ap-
proach to tackling the key challenge of manual analysis, i.e., how to
analyze the lengthy event traces generated by a testing tool against
a missed bug to find the clues. Our key idea is that, we model a bug
in the form of a finite automaton which captures its bug-triggering
traces; and match the event traces generated by the testing tool
(which misses this bug) against this automaton to obtain the clues.
Specifically, the clues are presented in the form of three designated
automata-based coverage values. We apply our approach to en-
hance Themis, a representative benchmark suite for Android, to
aid diagnosing GUI testing tools. Our extensive evaluation on nine
state-of-the-art GUI testing tools and the involvement with several
tool developers shows that our approach is feasible and useful. Our
approach enables Themis+ (the enhanced benchmark suite) to pro-
vide the clues on the tool-missed bugs, and all the Themis+’s clues
are identical or useful, compared to the manual analysis results of
tool developers. Moreover, the clues have helped find several tool
weaknesses, which were unknown or unclear before. Based on the
clues, two actively-developing industrial testing tools in our study
have quickly made several optimizations and demonstrated their
improved bug finding abilities. All the tool developers give posi-
tive feedback on the usefulness and usability of Themis+’s clues.
Themis+ is available at https://github.com/DDroid-Android/home.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging.

*Enze Ma and Shan Huang contributed equally to this work, and they are co-first
authors. Ting Su is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3616361

KEYWORDS

Android GUI Testing, Runtime Verification, Trace Analysis

ACM Reference Format:

Enze Ma, Shan Huang, Weigang He, Ting Su, JueWang, Huiyu Liu, Geguang
Pu, and Zhendong Su. 2023. Automata-based Trace Analysis for Aiding Di-
agnosing GUI Testing Tools for Android. In Proceedings of the 31st ACM

Joint European Software Engineering Conference and Symposium on the Foun-

dations of Software Engineering (ESEC/FSE ’23), December 3–9, 2023, San

Francisco, CA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3611643.3616361

1 INTRODUCTION

In our community, benchmarking software testing tools against a set
of representative, ground-truth bugs (e.g., Defects4J [33], Lava [16],
Magma [29]) is thewell-justified andwidely-used approach to evalu-
ating and improving the tools’ bug finding abilities [34]. Specifically,
in the field of GUI testing for Android apps [35, 58], a proliferation
of automated testing tools have been developed to help find crash
bugs in the apps [17, 27, 36, 37, 39, 45, 53, 60]. However, a recent
study [54] benchmarks several such testing tools against a set of
real-world bugs. It reveals that these tools miss 53∼71% of the bugs
— the tool effectiveness gap for finding real-world bugs is large.

In such a situation, the users of a benchmark suite (e.g., the test-
ing tools’ developers) likely raise the question “why does the tool

miss these bugs?” in hope of knowing some clues of potential tool
weaknesses for improvement. However, the classic benchmarking
approach falls short in such a situation because it can only tell the
false negatives (i.e., which bugs were missed) without any explana-
tion. This shortcomings limits the advantages of benchmarking.
A real example. Figure 1(a) shows a real crash bug (Issue #114 [42])
of ScarletNotes [41], an app used to take notes and to-do lists.
Figure 1(a) shows this issue’s minimal bug-triggering trace, which
includes five pivot1 input events (steps): (1) 𝑐1: clicking the notebook
creation button (located at the bottom right on page 𝑙0) to create a
notebook (e.g., named as “Notebook1”); (2) 𝑐2: clicking the created
notebook “Notebook1” on page 𝑙1 to enter into its directory; (3)
𝑐3: opening the menu by clicking the menu button (located at the
bottom left on page 𝑙2); (4) 𝑐4: choosing the “Locked” option on
the menu to show the locked notes (page 𝑙3); and (5) 𝑐5: clicking
the “×” button on page 𝑙4 to exit from “Notebook1”. Note that the
bug-triggering condition of this issue is filtering the locked notes
under some notebook’s directory (i.e., “Notebook1” in this case) and
then clicking the “×” button to exit from that directory — it does

1A pivot event is a necessary event for bug triggering. If a pivot event is removed from
the bug-triggering trace, the bug cannot be successfully reproduced.

https://github.com/DDroid-Android/home
https://doi.org/10.1145/3611643.3616361
https://doi.org/10.1145/3611643.3616361
https://doi.org/10.1145/3611643.3616361

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA E. Ma, S. Huang, W. Gang, T. Su, J. Wang, H. Liu, G. Pu and Z. Su

Figure 1: (a) Bug-triggering event trace for ScarletNotes’s Issue #114, and (b) list of executable widgets on the GUI page 𝑙2.

Figure 2: The benchmark suite Themis
+
enhanced by our

automata-based trace analysis approach.

not matter which notebook’s directory we are in or whether there
exist some locked notes under that directory. By replicating the
aforementioned benchmarking study [54] (detailed in Section 4),
we find that all of the evaluated testing tools missed this crash bug.
In such a situation, the classic benchmarking approach cannot give
any clue on this missed bug for aiding diagnosing the testing tools.
Difficulties of current practice. Due to the preceding limitation,
tool developers have to manually debug their tools against the
missed bugs to find some clues. To understand the current practice,
we interviewed several tool developers by asking “what kinds of
clues you are looking for during analysis? what difficulties you have

in finding these clues?”. All the developers responded that they hope
to find the clues indicating potential tool weaknesses (e.g., which
events cannot be exercised, which UI pages cannot be reached).
However, the main challenge of finding such clues is analyzing the

lengthy event traces generated by a tool against its missed bugs. It
makes the manual analysis process time-consuming and difficult.

Specifically, we take Fastbot [21], a popular industrial GUI test-
ing tool in our study, as an example to illustrate the typical manual
analysis of tool developers. In face of themissed bug (ScarletNotes’s
issue #114), the Fastbot’s developermanually checks whether each
pivot UI event of the bug-triggering trace (i.e., 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5) is
executable: the developer navigates the app to specific screen pages
(i.e., 𝑙0, 𝑙1, 𝑙2, 𝑙3, 𝑙4), dumps the UI layouts, and checks whether the
UI widgets (corresponding to 𝑐1, 𝑐2, 𝑐3, 𝑐4 and 𝑐5) are clickable. In
this case, the developer finds that all the UI widgets are clickable,
which means all the pivot UI events could be exercised in theory.
However, this clue cannot help explain why the bug was missed.
To this end, the developer runs Fastbot on the app (e.g., one hour
or more) to manually analyze the actual tool behaviors against the

missed bug (e.g., analyzing whether Fastbot can indeed reach the
pages like 𝑙0, 𝑙1, 𝑙2, 𝑙3 and 𝑙4, and exercise 𝑐1, 𝑐2, 𝑐3, 𝑐4 and 𝑐5 in
the right order by its testing strategy). Unfortunately, this manual
analysis process is time-consuming and difficult because testing
tools like Fastbotmay generate a large number of random (usually
fast-executing) input events (including the pivot events and many
irrelevant ones) during testing, although it may sometimes help.
For example, Fastbot could generate about 10,000 input events
within one hour of testing. It is difficult for human to find the clues
by manually analyzing such lengthy UI-based event traces. In this
case, Fastbot’s developer spent more than 3 hours (not including
the tool’s running time) in finding the clues before giving up. Even
worse, this manual analysis becomes more overwhelming when
the developer needs to analyze a number of missed bugs or debug
different tool versions. When the developer fails to find the clues,
they may lose the opportunities for tool improvement.
Our approach and its novelty. The key problem in our setting
is how to automatically and effectively analyze the lengthy event

traces generated by a tool (i.e., the actual tool behaviors) against a
missed bug to find the clues. To this end, our key insight is to cast this
challenging problem into automata-based trace analysis. Specifically,
our idea is to model a bug in the form of an nondeterministic finite
automaton (named as the bug automaton), which captures its bug-
triggering traces. In this way, we can automatically match the event
trace generated by the testing tool (which misses this bug) against
this automaton to monitor tool behaviors. When the event trace
cannot be accepted by the automaton (i.e., the bug is missed), we can
analyze the matching results of the automaton to obtain the clues.
This automata-based trace analysis approach tackles the painpoint
of manual analysis and is applicable to any off-the-shelf GUI testing
tool without tool modifications. At the high-level, our idea can be
viewed as the adaption of runtime verification (RV) [7] because the
automaton can be interpreted as the specification of undesired app
behaviors. However, applying existing RV techniques in our setting
is difficult, which we will discuss in Section 5.

Specifically, inspired by the clues concerned by tool developers
in the interviews and the classic conception of code coverage [68],
we introduce three automata-based coverage metrics, i.e., event
coverage, event-pair coverage and trace-based minimal distance (de-
tailed in Section 3.3), as the proxies of our clues — the values of

these coverage metrics are the clues provided by our approach. We
also compute some supplementary clues (e.g., the execution times
of events and event-pairs). The novelty is that these clues offer the

Automata-based Trace Analysis for Aiding Diagnosing GUI Testing Tools for Android ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Figure 3: Constructing the bug automaton for ScarletNote’s Issue #114 in three steps (a), (b) and (c). (c) is the final bug automaton.

tool developers systematic, fine-grained insights on the potential
tool weaknesses, which are difficult to be achieved by the ad-hoc
manual analysis (demonstrated by our evaluation in Section 4.4).
Application scenario of our approach. The main application
scenario of our approach is to enhance a benchmark suite, thus
improving the classic benchmarking. Figure 2 shows the benchmark
suite enhanced by our approach (denoted by the blue box, detailed in
Section 3). Specifically, we provide each bug with its bug automaton
(denoted by the grey box). In this way, given a testing tool under
evaluation, the benchmark suite can report the missed bugs as well
as the clues on these missed bugs. As the users of a benchmark
suite, tool developers can inspect the clues (with the bug and the
app) to diagnose and improve their tools. Moreover, this benchmark
suite can routinely serve as a “regression test suite” for validating
the effectiveness of testing tools whenever the tools are modified.
It can further reduce the repetitive manual analysis cost of tool
developers. Note that the bug automata in our work are manually

constructed with a one-time effort. We will explain how to construct
the automata in Section 3.2, and give more discussions in Section 4.6.
Evaluation and Results. We implement a tool named DDroid to
support the automata-based trace analysis approach. To evaluate
the usefulness, we integrate DDroid into Themis [54], a represen-
tative benchmark suite with diverse types of real-world bugs for
Android. We named the benchmark suite enhanced by DDroid
(and the bug automata) as Themis+. Specifically, we use Themis+
to evaluate nine automated testing tools for Android with differ-

ent testing strategies and implementations, including Ape [27],
ComboDroid [60], Stoat [53], DroidBot [36], Humanoid [37],
Q-testing [45], Google’s Monkey [26], ByteDance’s Fastbot [10,
21], and WCTester [66, 67] from Tencent’s WeChat team. These
tools represent the state-of-the-art and state-of-the-practice.

Our evaluation shows that our automata-based trace analysis
approach is feasible and useful. First, it enables Themis+ to provide
the clues on the missed bugs (see Section 4.3), which cannot be
achieved by the classic benchmarking (i.e., Themis). Second, all
the Themis+’s clues are either identical or useful, compared to
those manually found by tool developers without any misleading
information. The clues have also helped developers successfully
pinpoint several tool weaknesses, which were unknown or unclear
before. All the tool developers explicitly stated that they would
enhance their tools based on the clues. Specifically, the two actively-
developing industrial testing tools, Fastbot and WCTester, have
quickly made several optimizations, and already demonstrated their
improved bug finding abilities (Section 4.4). A further interview
with the tool developers reveals that all the developers are positive
on the usefulness and usability of Themis+’s clues.

To sum up, our work has made the following contributions:

• We introduce an automata-based trace analysis approach in the
context of GUI testing to enhance the classic benchmarking by
providing the clues of tool weaknesses on the missed bugs.

• We introduce three automata-based coverage metrics as the basis
of the clues, which can give systematic, fine-grained insights on
the potential tool weaknesses.

• Our evaluation shows that the benchmark suite enhanced by
our approach is effective and useful. The clues have helped find
several tool weaknesses and improved some testing tools.

2 ILLUSTRATIVE EXAMPLE

We use ScarletNotes’s Issue #114 (discussed in Section 1) to illus-
trate our approach.

2.1 Bug Automaton

A bug automaton is represented in the form of a nondeterministic
finite automaton with 𝜖-transitions (𝜖-NFA [30]). Intuitively, such
a bug automaton captures different (non-)minimal bug-triggering
traces of the bug. Figure 3(c) gives the automaton of ScarletNotes’s
Issue #114, in which each node (e.g., 𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6) denotes an
abstract program state, and each transition (e.g., 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5) de-
notes an event connecting two states. For example, the trace in blue
[𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5] corresponds to the bug’s minimal bug-triggering
trace. Specifically, 𝑠0 (the initial state) abstracts (and corresponds
to) 𝑙0 in Figure 1(a) (denoting the initial state in which no notebook
is created), 𝑠1 abstracts 𝑙1 (denoting the state in which some note-
book is created) after 𝑐1 is executed, 𝑠2 abstracts 𝑙2 (denoting the
state in which the directory of some notebook is opened) after 𝑐2 is
executed, 𝑠3 abstracts 𝑙3 (denoting the state in which the menu is
shown under the directory of some notebook) after 𝑐3 is executed,
𝑠4 abstracts 𝑙4 (denoting the state in which the locked notes is fil-
tered under the directory of some notebook) after 𝑐4 is executed,
and 𝑠5 (the final state) denotes the crashing state after 𝑐5.

For another example, according to the app feature (see Fig-
ure 1(a)), one can click the “×” button on 𝑙2 (similar to 𝑐5 on 𝑙4) to
return back to 𝑙1, so the automaton includes the transition from 𝑠2 to
𝑠1 (denoted by 𝑐5). This transition helps capture such (non-minimal)
traces as [𝑐1, 𝑐2, 𝑐5, 𝑐2, 𝑐3, 𝑐4, 𝑐5]. Additionally, one can press Back
on page 𝑙2, 𝑙3 or 𝑙4 to jump back to 𝑙1, 𝑙2 or 𝑙1, respectively (denoted
by the curved black lines in Figure 1(a)). As a result, one can take
some non-minimal traces, e.g., [𝑐1, 𝑐2, Back, 𝑐2, 𝑐3, 𝑐4, 𝑐5], [𝑐1, 𝑐2, 𝑐3,
Back, 𝑐3, 𝑐4, 𝑐5] or [𝑐1, 𝑐2, 𝑐3, 𝑐4, Back, 𝑐2, 𝑐3, 𝑐4, 𝑐5] to trigger the
bug. To capture such traces, the bug automaton also includes these
transitions enabled by Back, i.e., the transitions (denoted by 𝜖) from
𝑠2 to 𝑠1, 𝑠3 to 𝑠2, and 𝑠4 to 𝑠1. Specifically, 𝜖 denotes those events like
Back which are not pivot for bug-triggering but could help capture
other non-minimal bug-triggering traces. We will define the bug
automaton and explain the construction method in Section 3.2.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA E. Ma, S. Huang, W. Gang, T. Su, J. Wang, H. Liu, G. Pu and Z. Su

Table 1: Clues forWCTester and Fastbot on ScarletNotes’s

Issue #114 in a simplified textual report. Note that (0) indi-

cates the event or event pair is missed by the tools.

WCTester Fastbot

Event Coverage 2/5 (40.0%) 5/5 (100%)
Event-Pair Coverage 4/24 (16.7%) 17/24 (70.8%)
Minimal Distance 3 1
Details of EC

Event (Executed_Times)
𝑐1 (27), 𝑐2 (35), 𝑐3 (0),

𝑐4 (0), 𝑐5 (0)
𝑐1 (81), 𝑐2 (107), 𝑐3 (17),

𝑐4 (6), 𝑐5 (6)

Details of EPC

Event_Pair (Executed_Times)

(𝑐1,𝑐2) (14), (𝑐2,𝑐3) (0),
(𝑐3,𝑐4) (0), (𝑐4,𝑐5) (0),

...

(𝑐1,𝑐2) (50), (𝑐2,𝑐3) (11),
(𝑐3,𝑐4) (4), (𝑐4,𝑐5) (0),

...
Details of MD [𝑐1, 𝑐2] is covered [𝑐1, 𝑐2, 𝑐3, 𝑐4] is covered

2.2 Clues Provided by Our Approach

The clues are presented in the form of the three automata-based cov-
erage values. Table 1 shows the clues for WCTester and Fastbot
on the missed ScarletNotes’s bug in the form of a simplified textual
coverage report, which we explain as follows.
Clue I: Event Coverage (EC). The event coverage tells which
pivot events for bug-triggering are covered or missed by a testing
tool. Table 1 shows thatWCTester misses the three events 𝑐3, 𝑐4
and 𝑐5 (2/5=40% event coverage), while Fastbot covers all the five
pivot events (5/5=100% event coverage) but still misses the bug.
Clue II: Event-Pair Coverage (EPC). The event-pair coverage
tells which event-pairs are covered or missed by a testing tool. The
intuition is that bug finding requires covering the pivot events but
also specific event-pairs. For example, (𝑐1, 𝑐2), (𝑐2, 𝑐3), (𝑐3, 𝑐4) and
(𝑐4, 𝑐5) are some typical event-pairs of interest on the minimal bug-
triggering trace in Figure 1. Table 1 shows that WCTester and
Fastbot achieve 16.7% and 70.8% event-pair coverage, respectively.
For example, Fastbot misses the event-pair (𝑐4, 𝑐5).
Clue III: Trace-based Minimal Distance (MD). The trace-based
minimal distance tells how close a testing tool can reach a bug (e.g.,
which UI pages on the bug-triggering trace can be reached). It uses
the number of pivot events to characterize the distance. The smaller
the distance is, the closer the tool reaches the bug. When one bug-
triggering trace is covered, the distance should be 0. Table 1 shows
that WCTester’s minimal distance is 3 (i.e., WCTester can only
cover [𝑐1, 𝑐2] in order), while Fastbot’s minimal distance is 1 (i.e.,
Fastbot can cover [𝑐1, 𝑐2, 𝑐3, 𝑐4] in order but the last event 𝑐5).

Note that in practice Themis+ visualizes the clues in the textual
report based on the UI transition graph of the missed bug like
Figure 1 instead of the bug automaton to ease user understanding
and inspection (see an example of the visualized clues at [14]).

2.3 Diagnosing Tools based on the Clues

We present the clues in Table 1 to the developers for tool diagno-
sis. Based on the clues, WCTester’s developer quickly locates the
suspicious events (i.e., the missed events 𝑐3 and 𝑐5) for diagnos-
ing. First, he inspects the widget properties of 𝑐3 and 𝑐5 (presented
by Themis+), and finds that 𝑐3 and 𝑐5 are executable. Next, he in-
spects the widget types of 𝑐3 and 𝑐5 and finds the root cause, i.e.,
WCTester fails to support ViewGroup, the widget type of 𝑐3 and 𝑐5.
After he fixed this tool weakness,WCTester can find this bug.

Based on the clues, Fastbot’s developer quickly knows that the
tool misses 𝑐5 on page 𝑙4 (as the minimal distance is 1) but executes
𝑐5 on page 𝑙2 (as 𝑐5 is covered). Note that 𝑙2 and 𝑙4 contain 𝑐5 (see

Figure 1). Specifically, Fastbot executes 𝑐5 (on 𝑙2) by only 6 times
(while ComboDroid and Ape executes 𝑐5 on 𝑙2 by 55 and 49 times
within the same testing time, respectively). Note that the execution
times of events and event-pairs are recorded as the supplementary
clues (detailed in Section 3.3). Based on these clues, the developer
quickly suspects why 𝑐5 is seldom executed and locates the pivot
page 𝑙2 for diagnosing. Figure 1(b) shows all the executable widgets
on 𝑙2 in the dotted boxes. The developer notes that the six widgets
(𝑤5∼𝑤10) on 𝑙2, including the widget of 𝑐5 (i.e., the “×” button𝑤5),
have the samewidget property values (i.e., the samewidget type and
resource id). As a result, Fastbot assumes that these six widgets
are of the same functional purpose and clusters them into a widget

group to reduce UI exploration space. In particular, each widget in
this group is purely randomly selected for execution. But this widget
group and the other four widgets on 𝑙2 (i.e.,𝑤1 ∼ 𝑤4) are selected
at the same level. As a result, the probability of executing 𝑐5 on 𝑙2
is 1

5 × 1
6 ≈ 0.03, which is rather small. The probability of executing

𝑐5 on 𝑙4 is much smaller than 0.03 because 𝑐5 (on 𝑙4) is executed
after 𝑐4. This explains why Fastbot misses the event-pair (𝑐4, 𝑐5).
The developer confirmed that this is a design defect in the tool’s
event selection strategy, and fixed it by prioritizing the widgets
(in a clustered group) which have not yet been executed before.
The enhanced Fastbot can find this bug. We can see that the clues
provide systematic, fine-grained insights to aid diagnosing testing
tools, which are hard to be achieved by the manual analysis.

3 APPROACH AND IMPLEMENTATION

3.1 Problem Definition

An Android app is a GUI-based event-driven program 𝑃 . Each of
its screen pages is a GUI layout ℓ (i.e., a GUI tree). Each node of
this tree is a GUI view (or widget) 𝑤 . A GUI event 𝑒 = (𝑡,𝑤, 𝑜) is
a triplet, in which 𝑒.𝑡 denotes its event type (e.g., click, edit), 𝑒.𝑤
is the widget on which 𝑒 is executed, and 𝑒.𝑜 denotes the optional
data associated with 𝑒 (e.g., a string input by edit).

Definition 3.1. An event trace. An event trace𝑇 is a sequence of
events, which is denoted as 𝑇 = [𝑒1, . . . , 𝑒𝑖 , . . . , 𝑒𝑛], where 𝑒𝑖 is an
event. When𝑇 is executed on an app 𝑃 , we can obtain a sequence of
GUI layouts 𝐿, i.e., 𝐿 = [ℓ0, . . . , ℓ𝑖−1, ℓ𝑖 , . . . , ℓ𝑛], where ℓ0 is the layout
of the app starting page, and ℓ𝑖 is the layout due to the execution
of 𝑒𝑖 on ℓ𝑖−1 (1≤i≤n). Intuitively, the execution of an event trace 𝑇
can be represented as: ℓ0

𝑒1−−→ ℓ1 . . . ℓ𝑖−1
𝑒𝑖−→ ℓ𝑖 . . . ℓ𝑛−1

𝑒𝑛−−→ ℓ𝑛 .

The main goal of an automated GUI testing tool Γ is to find
potential crash bugs by generating an event trace 𝑇 interacting
with an app 𝑃 . Based on Definition 3.1, given a known crash bug,
we can define the bug-triggering trace as follows.

Definition 3.2. A crash bug triggering trace. A crash bug 𝑟

is a crash-inducing fault of 𝑃 , and usually manifests itself as a
runtime exception. The bug-triggering trace 𝑇𝑟 of 𝑟 is an event

trace, which can deterministically reproduce 𝑟 . We denote 𝑇𝑟 as
𝑇𝑟 = [𝑒 ′1, . . . , 𝑒

′
𝑖
, . . . , 𝑒 ′𝑚] (𝑒 ′

𝑖
is an event), and the corresponding GUI

layouts of 𝑇𝑟 as 𝐿𝑟 = [ℓ ′0, . . . , ℓ
′
𝑖−1, ℓ

′
𝑖
. . . , ℓ ′𝑚] (ℓ ′

𝑖
is the layout).

Definition 3.3. A 1-minimal bug-triggering trace. Given a bug-
triggering trace𝑇𝑟 of the bug 𝑟 , if any single event in𝑇𝑟 is removed,

Automata-based Trace Analysis for Aiding Diagnosing GUI Testing Tools for Android ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

𝑟 cannot be reproduced, we say this trace is 1-minimal. The events
in such a 1-minimal trace are named as pivot events.

Without ambiguity, all the bug-triggering traces discussed in
this paper are 1-minimal unless we explicitly mentioned.
Example. For the bug in Figure 1(a), the bug-triggering trace is
𝑇𝑟 = [𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5]. This trace is 1-minimal and executes 𝐿𝑟 =

[𝑙0, 𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5] (𝑙5 denotes the crashing page).
In practice, 𝑟 may have multiple bug-triggering traces 𝑇𝑟 s with

different sets of pivot events (these traces lead to the identical
exception stack). Without loss of generality, we assume a crash bug
𝑟 has one bug-triggering trace 𝑇𝑟 in the following definitions, and
we discuss the case of multiple bug-triggering traces 𝑇𝑟 s later.
Problem Definition. Our problem is, given a crash bug 𝑟 of 𝑃
and a testing tool Γ, how to automatically and effectively match
the event trace 𝑇 = [𝑒1, . . . , 𝑒𝑖 , . . . , 𝑒𝑛] generated by Γ against 𝑟 ’s
bug-triggering trace 𝑇𝑟 = [𝑒 ′1, . . . , 𝑒

′
𝑖
, . . . , 𝑒 ′𝑚] to find the clues.

3.2 Bug Automaton and Its Construction

To tackle the preceding problem, our key idea is that, given a bug 𝑟 ,
we construct a bug automaton 𝑀 to represent 𝑟 based on 𝑇𝑟 ; and
match𝑇 against the automaton𝑀 to find the clues. Specifically, we
formulate 𝑀 in the form of a nondeterministic finite automaton
with 𝜖 transitions (𝜖-NFA for short) [30].

Definition 3.4. Bug Automaton. A bug 𝑟 ’s automaton𝑀 is for-
mulated as a 𝜖-NFA. Given 𝑟 ’s the minimal bug-triggering trace
𝑇𝑟 = [𝑒 ′1, . . . , 𝑒

′
𝑖
, . . . , 𝑒 ′𝑚] and its corresponding GUI layouts 𝐿𝑟 =

[ℓ ′0, . . . , ℓ
′
𝑖−1, ℓ

′
𝑖
. . . , ℓ ′𝑚], we define𝑀 as𝑀 = (𝑆, Σ, 𝛿, 𝑠0, 𝐹), where

• Σ is a finite set of input symbols, i.e., Σ = {𝑒 ′1, . . . , 𝑒
′
𝑖
, . . . , 𝑒 ′𝑚} ∪

{𝜖}. Here, 𝑒 ′1, 𝑒
′
2, . . . , 𝑒

′
𝑚 are the pivot events on𝑇𝑟 , and 𝜖 denotes

any event (like back in the automaton in Figure 3(c)) which are
not pivot for bug-triggering but could lead to other possible
non-minimal traces reaching 𝑟 .

• 𝑆 is a finite set of abstract program states which can be reached
by executing the input symbols in Σ on app 𝑃 .

• 𝛿 is a transition function, i.e., 𝛿 : 𝑆 × Σ → P(𝑆), where P(𝑆) is
the power set of 𝑆 .

• 𝑠0 ∈ 𝑆 is the initial state of𝑀 .
• 𝐹 is the set of final states. Specifically, in our setting, 𝐹 only
contains one state which denotes the crashing state.

Bug Automaton Construction Given a bug-triggering trace 𝑇𝑟 ,
we follow three steps to manually construct 𝑟 ’s bug automaton𝑀 .
In the following, we use ScarletNotes’s Issue #114 (see Figure 1) to
illustrate the automaton construction method (shown in Figure 3).

Step 1: Initializing the automaton by the minimal bug-

triggering trace. Based on the minimal bug-triggering trace𝑇𝑟 and
its corresponding GUI layouts 𝐿𝑟 , we can initialize the set of input
symbols Σ, the set of abstract program states 𝑆 , and the transition
function 𝛿 of the automaton𝑀 . Specifically, the GUI layouts 𝐿𝑟 are
abstracted to the set of states 𝑆 , i.e., ℓ ′

𝑖
is abstracted to 𝑠𝑖 . Here, ℓ ′0 (the

app’s starting page) is abstracted to 𝑠0 (𝑀 ’s initial state), and ℓ ′𝑛 (the
app’s crashing page) is abstracted to 𝑠𝑛 (𝑀 ’s final state). According
to the execution of 𝑇𝑟 , if there exists a page transition ℓ ′

𝑖

𝑒𝑖+1−−−→ ℓ ′
𝑖+1,

the corresponding state transition 𝑠𝑖
𝑒𝑖+1−−−→ 𝑠𝑖+1 will be added into

the transition function 𝛿 . In this way, the initial bug automaton

is constructed, i.e., 𝑠0
𝑒1−−→ 𝑠1 . . . 𝑠𝑖−1

𝑒𝑖−→ 𝑠𝑖 . . . 𝑠𝑛−1
𝑒𝑛−−→ 𝑠𝑛 . Take

ScarletNotes’s bug in Figure 1 as example, based on its 𝑇𝑟 , we can
decide that Σ = {𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5}, 𝑆 = {𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5}, 𝑠0 and 𝑠5
are the initial and final state, respectively, and the initial transition
function 𝛿 corresponding to the transitions in Figure 3(a).

Step 2: Adding other transitions enabled by the pivot events.

After Step 1, the automaton only captures theminimal bug-triggering
trace. To capture those non-minimal bug-triggering traces, we need
to include other transitions enabled by the pivot events into the
automaton. To this end, we check whether any pivot event in Σ
can be executed on each state in 𝑆 (except 𝑠0 and 𝑠𝑛) and lead to
new transitions and/or new states. We will add any new transi-
tion and/or state into the automaton, and apply the same checking
process on the new states until no new transitions or states can
be found. Let us take 𝑠1 in the automaton in Figure 3(a) as an ex-
ample to enumerate the input symbols in Σ against 𝑠1. According
to the app feature, (1) 𝑠1 can take 𝑐1 to reach 𝑠1 itself because we
can execute 𝑐1 on 𝑠1 (corresponding to 𝑙1) to create some notebook
(recall that 𝑠1 denotes the abstract state in which some notebook
is created); (2) 𝑠1 can take 𝑐2 to reach 𝑠2 according to 𝑇𝑟 (already
included in the automaton); (3) 𝑠1 can take 𝑐3 to reach 𝑠6, a new
abstract state denoting the menu is shown on top of the app’s main
page, which is different from 𝑠3 (because 𝑠3 denoting the menu is
shown under the directory of some notebook); (4) 𝑠1 cannot take
𝑐4 and 𝑐5 because 𝑐4 and 𝑐5 do not exist on 𝑠1 (corresponding to 𝑙1).
As a result, we added all the transitions enabled by the pivot events
for 𝑠1. Similarly, we can enumerate the input symbols in Σ against
the remaining states in 𝑆 . After this step, we obtain the automaton
shown in Figure 3(b). The automaton captures those non-minimal
bug-triggering traces like [𝑐1, 𝑐2, 𝑐5, 𝑐2, 𝑐3, 𝑐4, 𝑐5].

Step 3: Adding the 𝜖-transitions. In addition to the pivot
events, one may take some non-pivot events (like Back) to reach
𝑟 . Thus, we annotate such events as 𝜖 (at this time Σ is updated
to {𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝜖}) and include the transitions enabled by 𝜖 . For
example, according to the app feature (see Figure 1(a)), one can
press Back on page 𝑙2, 𝑙3 or 𝑙4 to jump back to 𝑙1, 𝑙2 or 𝑙1, respectively
(denoted by the curved black lines in Figure 1(a)). Thus, we add
the 𝜖-transitions from 𝑠2, 𝑠3 and 𝑠4 to 𝑠1, 𝑠2 and 𝑠1, respectively.
In this way, the automaton can capture such new non-minimal
bug-triggering traces [𝑐1, 𝑐2, Back, 𝑐2, 𝑐3, 𝑐4, 𝑐5], [𝑐1, 𝑐2, 𝑐3, Back,
𝑐3, 𝑐4, 𝑐5] or [𝑐1, 𝑐2, 𝑐3, 𝑐4, Back, 𝑐2, 𝑐3, 𝑐4, 𝑐5]. After this step, we
obtain the final automaton shown in Figure 3(c).
Discussion. (1) Handling multiple bug-triggering traces. A crash
bug 𝑟 may have multiple bug-triggering traces 𝑇𝑟 s with different
sets of pivot events. In such cases, by Definition 3.4, we construct
an 𝜖-NFA based on each bug-triggering trace 𝑇𝑟 , and merge these
𝜖-NFAs together into a new 𝜖-NFA by connecting their initial and fi-
nal states with 𝜖 . (2) The bug-triggering trace𝑇𝑟 should be 1-minimal.
Because such a bug-triggering trace makes𝑀 expressive, succinct
and precise. If𝑇𝑟 includes non-pivot events,𝑀 could become unnec-
essarily complicated and may lead to misleading clues. For example,
assuming event 𝑒𝑖 is an non-pivot event but included in 𝑇𝑟 , if a
testing tool triggers 𝑟 but does not cover 𝑒𝑖 , the clue that 𝑒𝑖 is not
covered does not make sense. In practice, given a bug-triggering
trace, we manually reduce it to a 1-minimal one (removing one

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA E. Ma, S. Huang, W. Gang, T. Su, J. Wang, H. Liu, G. Pu and Z. Su

event at one time and then checking whether the bug can be re-
produced). It takes little effort because the bug-triggering traces
obtained from bug reports are already or close to 1-minimal. (3)
Given all the bug-triggering traces𝑇𝑟 s, the bug automaton is precise

and complete by construction. Section 4.6 empirically validates the
precision and completeness of the manually constructed automata.

After the construction, we automatically convert𝑀 in the form
of 𝜖-NFA to its equivalent deterministic finite automaton (DFA)
by eliminating the 𝜖 transitions. Formally, the DFA 𝑀𝑑 is 𝑀𝑑 =

(𝑆𝑑 , Σ𝑑 , 𝛿𝑑 , 𝑞0, 𝐹), where all the components have their similar in-
terpretations as for the 𝜖-NFA and Σ𝑑 = Σ \ {𝜖}. We conduct this
conversion because the DFA (without 𝜖-transitions) is algorithmi-
cally more convenient for defining and computing the coverage
metrics (detailed in Section 3.3). Note that (1)𝑀 and𝑀𝑑 are equiv-
alent and accept the same language [30], so it is safe to match 𝑇
(which only contains the symbols in Σ𝑑) against𝑀𝑑 . (2) The con-
version is not expensive as the sizes of 𝜖-NFAs are relatively small.
Moreover, 𝜖-NFA is more intuitive for human understanding (like
the UI transition graph in Figure 1) and easier for manual construc-
tion than its equivalent DFA. In Table 3, “𝜖-NFA Sizes” and “DFA
Sizes” show the sizes of 𝜖-NFA and its DFA, respectively.

3.3 Coverage Metrics based Clues

We introduce three coverage metrics at the automaton level of
𝑀𝑑 = (𝑆𝑑 , Σ𝑑 , 𝛿𝑑 , 𝑞0, 𝐹𝑑), the equivalent DFA of the bug automaton
𝑀 (𝜖-NFA), as the basis of the provided clues.
Clue I: Event Coverage. Let 𝐸𝑎 be the set of all the events in
Σ𝑑 , and let 𝐸𝑐 be the set of events executed by a testing tool Γ.
Formula (1) defines event coverage (EC) to characterize how many
events could be covered by Γ.

EC = |𝐸𝑐 |/|𝐸𝑎 | × 100% (1)
Conceptually, EC is similar to the statement coverage in classic

software testing. Since the events in Σ𝑑 are necessary to trigger
𝑟 , EC can assess the tool effectiveness when Γ cannot execute all
these events. The higher EC is, the more likely Γ can find the bug 𝑟 .
If Γ cannot execute some events, it likely indicates some tool weak-
nesses. For example, as we illustrated in Section 2.2, WCTester
misses some events as it fails to support these events’ widget type.
Clue II: Event-Pair Coverage. Let 𝐼𝑎 be the set of all event pairs
(𝑒𝑥 , 𝑒𝑦) in𝑀𝑑 , where 𝑒𝑥 and 𝑒𝑦 are the events in Σ𝑑 and denote the
events of two adjacent transitions in 𝛿𝑑 . For example, in Figure 3(c),
(𝑐4, 𝑐5) is an event-pair as 𝑐4 and 𝑐5 are the events of two adja-
cent transitions. Formally, 𝐼𝑎 = {(𝑒𝑥 , 𝑒𝑦) |∀𝑠𝑖 , 𝑠 𝑗 , 𝑠𝑘 ∈ 𝑆𝑑 .∃𝑒𝑥 , 𝑒𝑦 ∈
Σ𝑑 .𝛿𝑑 (𝑠𝑖 , 𝑒𝑥) = 𝑞 𝑗 ∧𝛿𝑑 (𝑠 𝑗 , 𝑒𝑦) = 𝑠𝑘 }. Let 𝐼𝑐 be the set of the covered
event pairs. Specifically, we say the event pair (𝑒𝑥 , 𝑒𝑦) is covered if
both 𝑒𝑥 and 𝑒𝑦 are executed in the order of 𝑒𝑥 immediately followed
by 𝑒𝑦 . Formula (2) defines event-pair coverage (EPC) to characterize
how many event pairs could be covered by Γ.

EPC = |𝐼𝑐 |/|𝐼𝑎 | × 100% (2)
Conceptually, EPC is similar to the branch coverage in classic

software testing. EPC is a stronger metric than EC. EPC can (1) assess
the ability of a testing tool Γ to execute two adjacent transitions,
and (2) reflect the diversity of event traces generated by Γ. The
higher EPC is, the more likely Γ can stress test the interactions
between pivot events. If some event pairs are not covered, it may

indicates some tool weaknesses. For example, as we illustrated in
Section 2.2, Fastbot missed the event-pair (𝑐4, 𝑐5) which indicates
some tool weaknesses. Note that this metric is identical to the event-
interaction coverage in traditional GUI software testing [43] and can
be extended to length-𝑛 event sequence coverage (𝑛 ≥ 2).
Clue III: Trace-based Minimal Distance. Let 𝑇Σ𝑑 = [𝑒1, . . . , 𝑒𝑖 ,
. . . , 𝑒𝑛] (𝑒𝑖 ∈ Σ𝑑) be the event trace generated by a testing tool Γ. Let
𝑆𝑐 = {𝑠0, . . . , 𝑠 𝑗 , . . . , 𝑠𝑚}, 𝑠 𝑗 ∈ 𝑆𝑑 , 1 ≤ 𝑗 ≤ 𝑚 be the set of states that
𝑇Σ𝑑 can reach when matching 𝑇Σ𝑑 against the automaton𝑀𝑑 . Let
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑠 𝑗 , 𝐹𝑑) be the minimal number of events (or transitions)
required to take from 𝑠 𝑗 to reach 𝐹𝑑 on 𝑀𝑑 . Formula (3) defines
the trace-based minimal distance (MD) to characterize how close a
testing tool Γ can reach a crash bug 𝑟 .

MD =𝑚𝑖𝑛({𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑠 𝑗 , 𝐹𝑑) |𝑠 𝑗 ∈ 𝑆𝑐 }) (3)

where𝑚𝑖𝑛() returns the minimal element of a set.
For example, if 𝑆𝑐 = {𝑠0, 𝑠1, 𝑠2, 𝑠6} is the set of states reached by

a testing tool on the automaton in Figure 1(c), the value of MD is
3. Because the minimal distance is from 𝑠2 to the final state 𝑠5 by
following the three events 𝑐3, 𝑐4, and 𝑐5.

MD assesses the tool effectiveness from the perspective of path-
based testing in classic software testing. This metric can (1) assess
whether a testing Γ can exercise the events of the bug-triggering
trace in some specific orders, and (2) quantify how far Γ is to reach 𝑟
in terms of number of events to be executed. It indicates the ability
boundary of a testing tool. If Γ can find the crash bug 𝑟 , the MD
should be 0. MD is a stronger metric than EC and EPC because a tool
may achieve 100% EC or EPC but may not achieve MD as 0.
Other clues: Execution times of events and event-pairs.We
compute the execution times (ET) of covered events (i.e., the events
in 𝐸𝑐 of EC) and event-pairs (i.e., the event-pairs in 𝐼𝑐 of EPC), respec-
tively, as the supplementary metrics. ET is similar to the execution
count metric in classic code coverage tools like gcov [22] for per-
formance profiling in terms of statements and branches.

3.4 Implementation

Figure 2 illustrates the workflow of our automata-based trace anal-
ysis approach (denoted by the blue box). Specifically, given a bug
𝑟 of an buggy app 𝑃 and its automaton 𝑀 (manually constructed
according to the method described in Section 3.2), our approach
conducts the following three automated steps to obtain the clues.

(1) Instrumentation. The buggy app 𝑃 is automatically instru-
mented at the pivot events in 𝑇𝑟 . Let 𝑇𝑟 be [𝑒 ′1, . . . , 𝑒

′
𝑖
, . . . , 𝑒 ′𝑚], we

instrument 𝑃 at the event listener of each event 𝑒 ′
𝑖
. In this way, 𝑒 ′

𝑖
will be logged when it is executed by the tool Γ.

(2) Logging. The testing tool Γ is run against the instrumented
app 𝑃 to log the executed pivot events. All the logged pivot events
forms an event trace 𝐿. Γ is allocated with enough testing time for
running to reach the saturation point.

(3) Monitoring. To ease the computation of coverage metrics,
we automatically convert the bug automaton𝑀 from an 𝜖-NFA to
an equivalent DFA 𝑀𝑑 . Next, we match the logged event trace 𝐿
against𝑀𝑑 , and compute the coverage metrics (i.e., EC, EPC, MD and
ET). During the matching, one event is taken from 𝐿 at one time and
matched against the transitions of𝑀𝑑 , and all the covered events,

Automata-based Trace Analysis for Aiding Diagnosing GUI Testing Tools for Android ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 2: Selected automated GUI testing tools in our study.

Tool Venue/Source Main Testing Strategies

Stoat ESEC/FSE’17 Model-based
DroidBot ICSE’17 Model-based

Ape ICSE’19 Model-based
Humanoid ASE’19 Deep learning-based

ComboDroid ICSE’20 Model-based
Q-testing ISSTA’20 Reinforcement learning-based
Monkey Google Random testing
Fastbot ByteDance Model- & Reinforcement learning-based
WCTester WeChat Random & Reinforcement learning-based

event pairs, the reached states and the execution times are recorded
to compute the coverage metrics.

We developed a tool DDroid (written in Python, shell and HTML)
to support the application of our approach.We use JFlap [46] and its
extension PUTflap [49] to specify the bug automaton. We use Gra-
dle Transformer [25] and ASM [4, 9] to automatically instrument
apps at the event handlers to uniquely log executed events [38, 51].
We use automata-lib [19] to convert an 𝜖-NFA to an equivalent
DFA, and the Floyd’s algorithm [64] to compute the MD metric. We
visualize the clues via interactive HTML pages to ease user inspection.

4 EMPIRICAL EXPERIMENT

4.1 Research Questions

• RQ1: Enhanced by the automata-based trace analysis approach,
can Themis+ provide the clues on the bugs missed by automated
GUI testing tools, compared to Themis?

• RQ2: How useful are the clues provided by Themis+ for aiding
diagnosing GUI testing tools, compared to the clues manually
found by tool developers based on only the missed bugs?

• RQ3 : How well other alternative trace analysis approaches per-
form in finding the clues? Can they outperform the automata-
based trace analysis approach in finding useful clues?
RQ1 investigates the feasibility of the automata-based trace

analysis approach to provide some clues on the tool-missed bugs,
thus improving the classic benchmarking. RQ2 investigates the
usefulness of the automata-based trace analysis approach, e.g., better
understanding testing tools’ behaviors, diagnosing potential tool
weaknesses, and improving the tools’ bug finding abilities. RQ3
investigates the effectiveness of the automata-based trace analysis
approach compared to other alternative trace analysis approaches,
i.e., to what extent our approach is really needed.

4.2 Experimental Setup

Experimental Environment. We deployed our experiment on a
64-bit Ubuntu 20.04 machine (64 cores, AMD 3995WX CPU, and
128GB RAM) and Google Android 7.1 emulators.
GUI testing tools. We selected nine GUI testing tools including
six academic ones (Ape [27], ComboDroid [60], Humanoid [37],
DroidBot [36], Q-testing [45] and Stoat [53]) and three indus-
trial ones (Monkey [26], Fastbot [10, 21], andWCTester [66, 67])
for our experiment. These tools represent the state-of-the-arts. Note
that we used the latest versions of these tools at the time of our
study. The academic tools and Fastbot are publicly available on
GitHub.Monkey is released with Android SDK.WCTester is ob-
tained on request from WeChat’s testing team. Table 2 summarizes
these selected tools and their main testing strategies. Readers can

refer to these tools’ papers for more information.We did not include
old tools like Sapienz [39] as it only works old Android versions.
The Benchmark Suite. We applied our approach to Themis [54],
a benchmark suite with real-world bugs for Android among oth-
ers [52, 63]. Themis is representative as it contains 52 crash bugs
with different complexities from 20 different categories of apps.
Each of these bugs is provided with its minimal bug-reproducing
traces and the corresponding buggy app version. Interested read-
ers can refer to Table 3 in Themis’s paper [54] or Themis’s bug
repository [55] for bug details. To build Themis+ based on Themis,
one graduate and one undergraduate students who participated in
this research work manually built the bug automaton for each bug.
Before constructing the automata, the students spent some time in
getting familiar with the apps and the bugs. In our experience, it
roughly took 2∼20 minutes to build one bug automata depending
on the complexity of the bug. It took us about 8 hours in total
to build and validate all the bug automata. In this process, we ex-
cluded 2 bugs of WordPress (because the buggy app versions cannot
be compiled anymore due to an obsoleted third-party library), 1
bug of AmazeFileManager (which cannot be deterministically repro-
duced), 1 bug of Phonograph (because the bug requires adding 2000
music files, which is unrealistic for automated testing tools), and 1
bug of Frost-for-Facebook (avoiding violating Facebook’s user pol-
icy due to random fuzzing). Thus, we finally got 47 instrumented
APKs which can deterministically reproduce the corresponding
bugs. Table 3 (column “Bugs”) lists these bugs.
Evaluation setup for RQ1. We benchmarked the nine selected
testing tools on the 47 bugs to identify missed ones, and computed
the automata-based coverage metrics. We followed the instructions
of Themis [55] (see Section 3.3 in [54]) to run these tools: each tool
is run against each bug on one emulator in one run; each run was
allocated with 6 hours for thorough testing, and repeated 5 times
to mitigate the randomness. For the nine selected tools, the whole
evaluation took about 47×6×5×9 = 12,690 machine hours.
Evaluation setup for RQ2. We invited the developers of seven
tools (listed in Table 4’s column “Tool”) to investigate the usefulness
of the Themis+’s clues. Monkey and Q-testing were excluded be-
causeMonkey’s and Q-testing’s developers did not reply to our
invitation. We find that six of these seven tools (except Fastbot)
are developed and maintained by only one person, respectively. In
this case, it is difficult to involve different developers per tool to
conduct the study with statistical tests. Therefore, we involved 7
developers (one developer per tool) in the study and designed a
rigorous two-step study which we believe is already enough and
valid to answer RQ2. In the first step, we gave the tool developers
the missed bugs (i.e., the output of Themis) and let them try their
best to manually find the clues based on the buggy app and the
bug-triggering traces. The developers followed the similar manual
analysis process described in Section 1 (e.g., running their tools
against the missed bugs) to find the clues without time limits. This
step aims to obtain the “ground-truth” clues of developers with
their best effort. In the second step, we gave the same developers
the Themis+’s clues (i.e., the output of Themis+). The clues are
visualized based on the textual coverage report in Table 1 to ease
inspection. We let them validate whether the clues are useful, iden-
tical, or misleading, compared to their prior own clues. Specifically,

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA E. Ma, S. Huang, W. Gang, T. Su, J. Wang, H. Liu, G. Pu and Z. Su

Table 3: Evaluation results of the nine GUI testing tools based on Themis
+
against the 47 real-world crash bugs.

Bugs

𝜖-NFA
Sizes

DFA
Sizes

WCTester Fastbot Ape ComboDroid Monkey Stoat DroidBot Humanoid Q-testing

EC EPC MD EC EPC MD EC EPC MD EC EPC MD EC EPC MD EC EPC MD EC EPC MD EC EPC MD EC EPC MD
AD-118 13/26 13/117 50 43 7 50 43 7 50 47 7 50 47 7 50 47 7 100 67 0* 88 70 3 100 64 0* 50 36 7
AD-285 9/21 9/63 100 58 0* 50 26 2 67 42 2 83 63 1 67 37 2 67 35 2 67 53 2 50 26 2 83 63 0*

AFM-1232 5/7 5/25 75 83 1 75 83 1 75 83 1 75 83 1 75 83 1 100 83 0* 75 83 1 75 83 1 75 83 1
AFM-1796 4/5 4/16 100 100 0* 100 100 0* 100 100 0* 100 100 0* 67 75 1 100 100 0* 100 100 0* 67 75 1 100 100 0*
AFM-1837 4/5 4/16 33 25 2 67 75 1 67 75 1 67 75 1 100 100 0* 33 25 2 33 25 2 33 25 2 33 25 2
AB-261 14/44 14/140 100 60 6 100 37 0* 78 36 4 78 37 6 78 27 5 67 21 6 67 31 6 89 31 2 66 16 6
AB-375 11/36 13/117 75 41 1 88 62 0* 75 58 3 50 13 4 88 48 1* 75 55 3 62 31 2 75 45 3 50 15 4
AB-480 12/38 13/156 92 46 4* 92 44 4* 100 38 3* 92 37 4* 25 8 4 92 47 1 50 22 4 58 17 4 33 9 4
AB-697 10/17 10/90 63 24 6 63 28 5 88 48 3 75 45 5 88 59 6 38 14 6 63 21 5 75 45 5 37 13 6
AB-703 7/13 7/56 86 50 3 86 58 3 86 63 3 86 63 3 86 58 3 57 21 3 86 50 3 86 54 3 71 29 3

Anki-4200 5/9 5/25 100 100 0* 100 100 0* 100 100 0* 100 100 0* 75 33 3 100 50 0* 100 58 2 100 75 0* 100 75 3
Anki-4451 16/32 22/176 100 68 0* 71 39 2 86 39 1 86 48 1 71 52 2 86 48 1 100 39 0* 100 39 0* / / /
Anki-4707 4/5 4/16 100 100 0* 100 100 0* 100 100 0* 100 100 0* 100 100 0* 100 80 0* 100 80 0* 100 100 0* / / /
Anki-4977 6/9 6/24 100 100 0* 100 100 0* 100 100 0* 100 100 0* 100 86 0* 100 71 0* 100 71 0* 100 86 0* 100 85 0*
Anki-5638 3/3 3/9 50 50 1 50 50 1 50 50 1 50 50 1 50 50 1 50 50 1 50 50 1 50 50 1 50 50 1
Anki-5756 6/13 6/36 100 92 0* 100 77 0* 100 62 0* 100 85 0* 100 46 0* 100 31 0* 100 62 0* 100 69 0* 100 69 0*
Anki-6145 17/39 17/153 75 40 2 63 24 3 63 27 3 75 36 2 75 40 2 63 29 3 63 31 3 63 29 3 63 26 3
APM-116 2/1 2/2 100 - 0* 100 - 0* 100 - 0* 100 - 0* 100 - 0* 100 - 0* 100 - 0* 100 - 0* 100 - 0*
collect-3222 7/15 7/42 100 100 0* 100 74 0* 100 79 0* 100 94 0* 100 84 0* 100 79 0* 100 84 0* 80 26 1 0 0 3
comm-1385 6/11 6/30 100 88 0* 100 63 2 100 69 0* 100 75 1 50 25 2 75 63 1 100 56 2 50 25 2 / / /
comm-1391 6/15 6/36 80 65 4 80 61 4 100 73 3 80 60 4 0 0 5 80 60 4 100 61 3 100 91 1 / / /
comm-1581 8/15 7/35 20 10 4 20 10 4 20 10 4 20 10 4 80 50 1 20 10 4 20 10 4 20 10 4 / / /
comm-2123 5/7 5/25 100 100 0* 100 78 0* 100 100 0* 100 100 0* 100 100 0* 100 78 0* 75 67 1 100 100 0* / / /
comm-3244 7/15 7/42 80 69 1 80 75 1 80 75 1 0 0 5 60 50 2 40 19 3 100 69 0* / / / / / /
FL-4881 4/5 4/16 33 20 2 67 80 1 33 20 2 33 20 2 67 80 1 33 20 2 33 20 2 33 20 2 0 0 3
FL-4942 5/11 5/25 100 100 0* 100 100 0* 100 93 0* 100 60 1 100 80 0* 100 73 0* 100 73 0* 100 87 0* 0 0 4
FL-5085 4/6 4/16 100 100 0* 100 100 0* 100 100 0* 100 100 0* 67 75 1 67 50 1 100 100 0* 67 75 1 0 0 3
GHD-73 3/3 3/9 100 100 0* 100 100 0* 100 100 0* 100 100 0* 100 100 0* 100 100 0* 100 100 0* 100 100 0* 100 100 0*
MFB-224 2/1 2/1 0 - 1 100 - 0* 0 - 1 100 - 0* 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1
NC-1918 3/3 3/9 100 100 0* 0 0 2 100 100 0* 0 0 2 100 100 0* 0 0 2 100 100 0* 100 100 0* / / /
NC-4026 3/3 3/9 100 100 0* 100 100 0* 100 100 0* 100 100 0* 100 100 0* 100 100 0* 50 50 1 100 100 0* / / /
NC-4792 6/9 6/36 100 73 2 100 82 2 100 100 0* 80 55 2 60 46 2 80 46 3 40 9 4 100 64 2 / / /
NC-5173 5/9 5/35 100 100 0* 67 55 0* 100 100 0* 100 91 0* 67 64 0* 83 82 0* 100 73 0* 100 100 0* / / /
ON-745 8/16 8/88 50 17 2 60 45 0* 60 34 1 60 32 1 60 21 0* 60 19 0* 60 26 0* 60 21 0* 20 5 2

OEAA-2198 5/8 4/20 100 80 0* 100 80 0* 100 80 0* 100 90 0* 100 60 0* 100 50 0* 100 70 0* 100 70 0* 0 0 3
OL-67 3/2 2/2 0 - 2 100 - 0* 100 - 0* 100 - 0* 50 - 1 0 - 2 0 - 2 0 - 2 0 - 2

OE4A-637 13/25 13/91 86 63 3 71 53 3 86 63 3 86 68 1 71 42 4 71 37 3 86 53 2 71 42 3 14 0 5
OE4A-729 6/9 6/36 80 71 1 100 93 0* 100 93 0* 100 100 0* 40 21 3 40 7 4 60 36 3 80 57 1 20 0 4
SN-114 6/19 6/36 40 17 3 100 71 1 100 95 1 100 95 1 20 5 5 60 14 3 100 38 2 60 29 3 0 0 5
SF-239 4/5 4/16 67 75 1 67 75 1 67 75 1 67 75 1 100 100 0* 67 75 1 67 75 1 67 75 1 67 75 1
WP-6530 8/16 8/64 71 55 7 71 55 7 71 50 7 71 50 7 57 15 7 43 5 6 57 25 7 71 35 6 / / /
WP-7182 7/11 7/42 60 53 2 60 53 2 60 47 2 60 53 2 60 47 2 60 27 2 60 47 2 60 40 2 / / /
WP-10302 3/3 3/9 100 100 0* 100 100 0* 100 100 0* 100 100 0* 100 100 0* 100 100 0* 100 100 0* 100 100 0* 0 0 2
WP-10363 4/7 4/20 100 86 0* 100 71 0* 100 43 0* / / / 25 14 1 50 14 0* 75 57 0* 75 71 0* / / /
WP-10547 5/6 5/20 100 100 0* 100 100 0* 67 67 2 / / / 67 50 2 100 83 0* 100 83 0* 100 83 0* / / /
WP-11135 4/5 4/16 100 100 0* 100 100 0* 100 80 0* / / / 100 60 0* 100 20 0* 100 80 0* 100 100 0* / / /
WP-11992 5/10 5/25 100 100 0* 100 100 0* 100 100 0* 100 100 0* 100 50 0* 100 29 2 75 14 3 100 79 0* / / /

#Best Values 31 26 27 32 20 30 33 18 29 28 19 25 25 14 25 21 7 25 26 8 22 25 11 25 7 5 8
#Found/Missed 24 / 23 26 / 21 24 / 23 19 / 25 19 / 28 20 / 27 19 / 28 20 / 26 6 / 24

we say identical if developers decided Themis+’s clues are identical
to their found clues; useful if developers decided Themis+’s clues
provide more useful information for tool diagnosis than their found
clues (e.g., the Themis+’s clues cannot be found by manual analy-
sis or are more precise than the clues found by manual analysis);
misleading if developers decided Themis+’s clues are contradictory
w.r.t. their found clues. Note that all the involved developers are
experts and have been actively maintaining the tools for 3∼4 years.
Thus, they have enough expertise to evaluate the usefulness of the
Themis+’s clues. This study was conducted with developers online.
After the study, we conducted an interview with each developer to
solicit their feedback on Themis+’s clues.
Evaluation setup for RQ3. We compared the automata-based
trace analysis approach with two simple alternative trace analysis
approaches, i.e., simple trace comparison (simple TC for short) and
simple runtime verification (simple RV for short). Specifically, sim-

ple TC represents a naive trace analysis method. It directly compares
the event trace𝑇 generated by a testing tool and the bug-triggering
trace𝑇𝑟 of a known bug 𝑟 . It reports the first differing event between
these two traces 𝑇 and 𝑇𝑟 . Simple RV matches the event trace 𝑇 gen-
erated by a testing tool against the constructed bug automaton𝑀 .
It reports the first event which cannot be accepted by the automaton

𝑀 . Because the clues reported by these two approaches and ours

cannot be directly compared. To fairly compare these approaches,
we use the first missed event in the bug-triggering trace of a missed
bug as the comparison metric. Formally, given a bug-triggering
trace 𝑇𝑟 = [𝑒 ′1, . . . , 𝑒

′
𝑖
, . . . , 𝑒 ′𝑚], 𝑒 ′

𝑖
is the first missed event in 𝑇𝑟 if 𝑒 ′𝑖

is missed but all the events 𝑒 ′1, . . . , 𝑒
′
𝑖−1 are covered in the order by𝑇 .

Note that simple RV used the bug automata constructed by us. Our
approach computes the first missed event based on the trace-based
minimal distance MD. We used the event traces generated by the
testing tools in RQ1 for evaluation.

4.3 Results of RQ1

Themis v.s. Themis+ Table 3 gives the results of RQ1. Column
“Bugs” lists the 47 bugs. For example, “SN-114” denotes ScarletNote’s
Issue #114. In Table 3, the last row “#Found/#Missed” gives the out-
put of Themis on these tools in the form of X/Y, where X and Y are
the numbers of found and missed bugs, respectively. We can see
that Themis can only identify the missed (and found) bugs.

With the help of our approach, Themis+ can provide the clues on
the missed bugs, which cannot be obtained by Themis. The columns
with tool names (e.g., WCTester, Fastbot) give the achieved best

coverage values of the three main metrics, i.e., event coverage (EC),
event-pair coverage (EPC) and trace-based minimal distance (MD),
for each bug/tool among the five independent testing runs. We

Automata-based Trace Analysis for Aiding Diagnosing GUI Testing Tools for Android ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 4: Validation results of Themis
+
’s clues w.r.t. the clues

manually found by tool developers on the missed bugs.

Tool #Identical #Useful #Misleading

WCTester 10 13 0
Fastbot 8 13 0
Ape 8 15 0

ComboDroid 11 14 0
Stoat 10 17 0

DroidBot 13 15 0
Humanoid 11 15 0

Total 71 (41%) 102 (59%) 0

focus on these achieved best values as they indicate the best tool
performance. Take the results ofWCTester on bug “SN-114” as an
example (see row “SN-114” under column “WCTester”), the best
achieved EC, EPC, MD among the five testing runs are 40%, 17% and
3, respectively. From such metric values, we can obtain the clues,
e.g., which events and event-pairs are missed and how close a tool can

reach the bug. For example, Section 2.3 illustrates the clues on the
missed bug “SN-114” forWCTester.
Miscellaneous. In Table 3, symbol “/” denotes the coverage
value is unavailable due to tool issues. For example, Q-testing
only successfully ran on 29 bugs (we reported the tool issues to
Q-testing’s developer but did not get reply). Symbol “-” denotes
the coverage metric is not applicable. For example, “APM-116” does
not have EPC because its bug automaton only has one transition.

4.4 Results of RQ2

How useful are the Themis
+
’s clues? Table 4 gives the vali-

dation results on Themis+’s clues. Column “#Identical”, “#Useful”
and “#Misleading” denote the numbers of missed bugs for which
Themis+ finds the identical, useful, or misleading clues respectively,
compared to the clues manually found by tool developers. From
Table 4, we find that all the Themis+’s clues are identical or useful
compared to the clues manually found by developers, without any
misleading ones. Specifically, Themis+ provided the identical and
useful clues, respectively, for 71 (41%) and 102 (59%) of the missed
bugs for all tools. We provided the detailed validation results on
each missed bug per tool in the supplementary material [15].
How can Themis

+
find identical or useful clues? In 71 cases,

Themis+ can find the identical clues w.r.t. the manual analysis of
tool developers. For example, “SF-239” requires a multi-touch event
on an item list. For the tool missing this bug, the developers can find
the clue that the tool cannot emit multi-touch by manual analysis.
Themis+ can find the identical clue as EC can tell the multi-touch
event is not covered. In 102 cases, Themis+ can find useful clues.
Take “NC-4792” as an example, the bug-triggering trace has five
events: 𝑒1 (opening the sidebar navigation drawer), 𝑒2 (selecting "Auto
upload" in the drawer), 𝑒3 (selecting "Remote folder" on the "Auto

upload" page), 𝑒4 (selecting "New folder" on the main page), and 𝑒5
(pressing the "Create" button to create a new folder). For this bug,
WCTester’s developer cannot find any clue although he observes
that the tool could click all the widgets of 𝑒1∼𝑒5. Themis+ finds
the clue thatWCTester can indeed generate these events (because
the EC is 100%) but these events are not executed in the right order
(because its MD is 2). Themis+ reveals thatWCTester never creates
the folder (by 𝑒4 and 𝑒5) after the "Remote folder" option is selected
(by 𝑒1, 𝑒2 and 𝑒3). This clue is hard to obtain by manual analysis.

Figure 4: An example of event generation strategy.

Can the Themis
+
’s clues help diagnose tool weaknesses? In-

formed by the Themis+’s clues, the tool developers have success-
fully located several tool weaknesses, which were unknown or
unclear before. We illustrate some found major tool weaknesses.

(1) Weaknesses in the event generation strategy. Most GUI
testing tools parse GUI layouts to generate events. Specifically, they
check the properties (e.g., clickable, long-clickable) of the UI wid-
gets to generate the UI events (e.g., click, long-click). Themis+’s
clues helped reveal some weaknesses in the event generation strate-
gies of Fastbot and DroidBot, which degrade their bug finding
abilities. For example, Figure 4 shows a ListView page (simplified
from a bug in our study) and its GUI layout. In this layout, ListView
is the root node and “A”, “B” and “C” are the leaf nodes of TextView
(wrapped by LinearLayout). From this layout, a “good” testing tool
should generate three click events for “A”, “B” and “C”, respec-
tively. However, for this case, WCTester and Ape succeed, but
Fastbot and DroidBot fail. Because Fastbot generates an event
only when a widget’s clickable and enabled are both True, while
DroidBot will not generate events for the nodes (i.e., “A”, “B” and
“C”) if the clickable property of their parent node (i.e., ListView) is
True [18]. As a result, Fastbot and DroidBot can only generate a
click on ListView itself.WCTester and Ape succeed because they
rewrite the clickable property of a leaf node (i.e., “A”, “B” and “C”)
by that of its parent node (i.e., ListView) when the parent node is
clickable [2]. Informed by EC, Fastbot’s developer located this
weakness and fixed its strategy by following Ape’s.

(2) Weaknesses in the event selection strategy. Most test-
ing tools select events for execution by some heuristic strategy.
Themis+’s clues helped reveal some design issues in the event se-
lection, which affect the bug finding abilities. For example, Fastbot
implements a clustering strategy to group similar widgets to re-
duce search space. However, as we illustrated in Section 2.2, this
strategy may unexpectedly decrease the probability of executing
the events in the group. Fastbot was affected by this strategy on 3
bugs (“SN-114” is one of them). Informed by EPC, MD and ET (execu-
tion times of events), Fastbot has fixed this strategy with careful
design. Additionally, DDroid’s clues reveal that on the 8 out of 47
bugs, some testing tools can cover all the pivot events of the bug-
triggering traces (i.e., achieving 100% EC) but still miss these bugs.
Informed by EPC and MD, we find that these tools fail to execute
the pivot events in the right order. For such tool weaknesses, some
tool developers plan to incorporate lightweight program analysis
to improve the diversity of event selection.

(3) Other tool weaknesses. Based on Themis+’s clues, tool de-
velopers also found other tool weaknesses, including (1) failing to
emulate the “search” event on the system keyboard or generate spe-
cific texts, (2) failing to interacting with external apps (e.g., Camera,
File Chooser, Setting), and (3) failing to support specific types of
widgets or events (e.g., rotation and multi-touch).

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA E. Ma, S. Huang, W. Gang, T. Su, J. Wang, H. Liu, G. Pu and Z. Su

Table 5: Optimization results ofWCTester and Fastbot.

Tool #Missed #Actionable #Found #Improved

WCTester 23 13 9 3
Fastbot 21 12 6 4

Can Themis
+
’s clues improve the testing tools? All the tool

developers explicitly stated that they would make tool enhance-
ment based on the provided clues. Specifically, the developers of
two actively-developing industrial testing tools, WCTester and
Fastbot, have already made several improvements. Table 5 shows
the enhancement results of the two optimized tools. Column “#Missed”
is the number of bugs missed by the original tools, and “#Action-
able” is the number of bugs for which the tool developers have
devised actionable optimizations. “#Found” is the number of newly
found bugs among “#Actionable”, and “#Improved” is the number
of bugs which are still missed but their coverage values have been
improved. Note that not all the missed bugs could lead to action-
able optimizations (see “#Missed” and “#Actionable”) because some
found tool weaknesses (e.g., failing to cover the pivot events in
the right order) are the open challenges [54]. In Table 5, we can
see thatWCTester and Fastbot have newly found 9 and 6 bugs
respectively, and have improved the chance of finding 3 and 4 bugs
in terms of the three coverage metrics respectively. It is clear that
DDroid’s clues have indeed helped improve these two tools. Note
that the newly added optimizations are designed by developers in
the general sense rather than overfitting specific bugs. We follow
the same evaluation setup in RQ1 to assess the optimized tools.
How are the feedback of tool developers?We conducted a semi-
structured interview [23, 31] with each of the seven tool developers.
During the interviews, we solicited their feedback on the usefulness
and usability of Themis+’s clues. To sum up, all the developers give
high rates on Themis+’s clues, and appreciate that the visualized
clues are intuitive for inspection. In particular, DroidBot’s devel-
oper commented “I usually use DroidBot’s recorded UI trace graph

to debug my tool, but it is very time-consuming for lengthy traces.

Themis
+
’s clues are exactly what I want.” Fastbot’s developer com-

mented “Themis+’s MDmetric is very useful. I can quickly know which

events or screen pages I should focus on [for diagnosing]. It can save

me a lot of time.” WCTester’s developer commented “I routinely
improve my testing tool by adding new code. But it is difficult to know

how the new tool version works. Themis
+
is nice as it can be used as

a regression suite. That’s very useful.” Ape’s developer commented
“Due to flakiness, replaying the recorded event trace [for debugging] is
very difficult. I usually cannot find useful clues by manual analysis.

Themis
+
’s clues helped me a lot.”

4.5 Results of RQ3

From RQ2, we know that the Themis+’s clues are precise because
no clues are contradictory with the manual analysis results of tool
developers (see Table 4). Thus, we used the clues computed by our
automata-based trace analysis approach as the ground truth, and
validated the precision of simple TC and simple RV in identifying
the first missed event in the bug-triggering trace.

Table 6 gives the overall evaluation results (the detailed results
are provided in the supplementary material [15]). Column “Tools”
lists the nine testing tools in our experiments. Column “#Cases”

Table 6: The number of correct clues on the first missed event

reported by simple TC, simple RV and our approach.

Tool #Simple TC #Simple RV #Themis
+

#Cases

WCTester 9 10 23 23
Fastbot 8 8 21 21
Ape 7 6 23 23

ComboDroid 11 7 25 25
Monkey 9 9 28 28
Stoat 14 15 27 27

DroidBot 10 13 28 28
Humanoid 6 6 26 26
Q-testing 12 13 24 24

#Total 86 87 312 312

gives the total number of bugs missed by these tools according
to the results of RQ1. Column “#Simple TC” and “#Simple RV”
give the numbers of missed bugs for which simple TC and simple
RV report the correct clues (which are consistent with the results
of our approach, denoted by Column “#Themis+”), respectively.
Table 6 shows that simple TC and simple RV achieve low precision
in finding correct clues. The precision of simple TC and simple
RV ranges from 23.1∼55.6% (computed by #simple TC/#Cases and
#simple RV/#Cases per tool). For example, when analyzing the 23
bugs missed by WCTester, simple TC and simple RV find correct
clues for only 8 and 9 missed bugs, respectively, achieving 39.1%
(9/23) and 43.5% (10/23) precision, respectively. We can see that
simple TC and simple RV are error-prone and unreliable. It indicates
that our approach is really needed and the three automata-based
metrics are useful.

4.6 Discussion

Precision and completeness of the automata. In our work,
given all the minimal bug-triggering traces 𝑇𝑟 s, the bug automaton
is precise and complete by construction. Moreover, we empirically
validated its precision: we randomly generate 100 random event
traces from the automaton, and all the event traces reaching the
final state indeed crashes the app. Thus, all the automata are precise.
On the other hand, if a bug automaton is complete, the MD should
be “0” when a tool triggers the bug (i.e., the logged event trace
when the crash happens should be accepted by the automaton).
In Table 3, the symbol “*” on the values of MD denotes that the
bug was triggered by a tool at runtime. We can see that, among
the 9×47×5=2,115 tests (running 9 tools against 47 automata for
5 repeated runs), only 5 (≈0.2%) tests (“AB-375” forMonkey, and
“AB-480” forWCTester, Fastbot,Ape and ComboDroid) fails the
completeness. It indicates the tools may find some bug-triggering
traces𝑇𝑟 s which were not reported in Themis (thus not included in
the bug automata). When these traces are given, the automata could
be complete. Thus, this is an orthogonal problem of our approach.
Manual v.s. automated automaton construction. In our work,
the bug automata are manually constructed for Themis+. It is simi-
lar to manually writing program specifications in formal verifica-
tion [7, 24] (the bug automata can be viewed as the specification of
undesired app behaviors). In Table 3, column “𝜖-NFA Sizes” gives
the sizes of the automata. The minimal, median and maximum
number of automaton states and transitions are 1, 5 and 17, and
1, 9 and 44, respectively. Thus, the complexity of bug automata is
reasonable. In our experience, the construction effort ranges from

Automata-based Trace Analysis for Aiding Diagnosing GUI Testing Tools for Android ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Figure 5: (a) imprecise automaton, (b) incomplete automaton

2∼20 minutes per automaton, which is acceptable. Note that the
construction is a one-time effort — Themis+ is reusable for many
different GUI testing tools. Thus, the benefits outweigh the effort.

Although many automated algorithms exist in building finite
state machine based GUI models [1, 6, 11, 27, 53, 60], they are dif-
ficult to apply in our setting. Because defining one “apply-for-all”
state abstraction criterion that fits all different apps is challeng-
ing [6]. As a result, these algorithms are difficult to guarantee the
automaton’s precision and completeness, which affects finding the
right clues. Let us take ScarletNotes’s bug in Figure 1 as an ex-
ample. Some state abstraction criteria (e.g., C-Lv3, C-Lv4, C-Lv5
defined in [6]) abstracts 𝑙2 and 𝑙4 into the same state (𝑆2,4) because
the UI layouts of 𝑙2 and 𝑙4 are identical. Figure 5(a) shows the partial
automaton under such criteria. The automaton is imprecise because
the trace [𝑐1, 𝑐2, 𝑐5] reaching the final state is not a bug-triggering
trace. On the other hand, we know that 𝑐1 can be executed on 𝑙1
to create new notebooks. If the state abstraction is sensitive to the
number of created notebooks (e.g., C-Lv4, C-Lv5 defined in [6]),
a number of (possibly infinite) new states (e.g., 𝑠6, 𝑠7) will be in-
cluded into the automaton shown in Figure 5(b). It leads to an
incomplete automaton. Additionally, the incompleteness could also
be caused by inadequate explorations of different bug-triggering
traces. As a result, we need extra manual efforts to validate (and
fix) the automaton built by these algorithms.
Coverage metrics. The three coverage metrics EC, EPC and MD
complement each other in finding the clues. No one is the best. For
example, when MD is 0 (i.e., the bug is triggered), EC and EPC may
not reach 100%. Because a bug may have multiple bug-triggering
traces, and the tool may only cover one trace. In this case, EC or
EPC complements MD in understanding tool effectiveness. On the
other hand, a tool may achieve 100% EC or EPC but may not achieve
MD as 0. Because the tool covers all the events but fails to cover
them in the right order. In this case, MD complements EC or EPC.
Threats to Validity. The first threat is the representativeness of
the bugs in Themis. We emphasize that Themis’s bugs are diverse
(collected from 20 different apps), nontrivial (many bugs have long
and complicated bug-triggering traces) and selected without explicit

bias (only selecting critical bugs labelled by app developers). In the
future, we would consider non-crashing bugs [56, 65]. The second
threat is that our study involves human factors, e.g., manually con-
struct bug automata and letting the tool developers validate the
clues from DDroid. To counter this, we empirically validated the
precision and completeness of bug automata; and the developers
are required to follow our instructions to carefully validate the
clues to mitigate possible biases and we cross-checked the results.

5 RELATEDWORK

Analyzing GUI testing tools for Android. To our knowledge,
little prior work exists in analyzing tool weaknesses based on tool-
missed bugs. For example, some work only compares different
testing tools [12, 61] or evaluates specific testing strategies [3, 47,

50, 59] in terms of the achieved app code coverage and the number
of found app crashes. They do not analyze potential tool weaknesses.
Some work [8, 28, 67] manually inspect the uncovered app code
to analyze the tool weaknesses of failing to achieve high app code
coverage. Vet [62] uses two heuristic UI trace patterns to find
the tool weaknesses in the form of UI exploration tarpits (i.e., a
tool is trapped for an excessive amount of time within a small
fraction of app functionalities). However, these work in general
cannot help analyze tool-missed bugs. For example, they can hardly
help diagnose Fastbot against the bug in Figure 1. Because the bug
does not have specific patterns of missed app code or UI exploration
tarpits. Themis [54] is the only close work. But it can onlymanually

analyze tool-missed bugs to understand tool weaknesses. Our work
improves Themis by overcoming the difficulties of manual analysis.
Runtime verification and automata-based trace analysis. Run-
time verification (RV) can help find (un)desired behaviors of the
system under test [7]. The typical realization of RV is using a moni-
tor (e.g., an automaton synthesized from some system specification)
to analyze the system’s execution trace [24, 48]. For example, some
work adapts the idea of RV to analyze system kernel traces [40] or
debug specification violations [32]. At the high-level, our approach
can be also viewed as the adaption of RV as the bug automaton is
one form of program specifications. However, applying existing
RV techniques for Android [13, 20, 57] in our setting is difficult.
Because existing RV techniques focus on verifying generic (app-
agnostic) properties (e.g., good programming practices and security
policies), which are manually described in temporal logic in terms
of specific program APIs [44]. However, we concern app-specific
bugs (involving diverse set of APIs), which are difficult to be cap-
tured by generic properties (and thus difficult to automatically

synthesize the monitor like the bug automaton in our approach).
The tools of these relevant work [13, 20, 57] are not available for
comparison. AVA [5] uses a finite state automaton to represent the
successful executions of a target system and use this machine to
analyze the failing executions. AVA uses the deviated events from
the failing executions to interpret why the system fails. Different
from AVA, our approach uses the three different coverage metrics
on the automaton itself to interpret why a target bug is missed.

6 CONCLUSION

In this paper, we introduce an automata-based trace analysis ap-
proach to tackling the challenge of manual trace analysis. Our
approach can improve the classic benchmarking by providing the
clues of tool weaknesses on the missed bugs. The evaluation con-
firms the feasibility and usefulness of our approach. Our work opens
up a new perspective of analyzing the weaknesses of testing tools.

ACKNOWLEDGMENTS

We thank the anonymous ESEC/FSE reviewers for their comments
and the testing tools’ authors from ByteDance’s SE lab (Zhao Zhang,
Chao Peng, Tianxiao Gu), Tencent’s WeChat team (Haochuan Lu,
Ting Xiong, Yuetang Deng), and DroidBot/Humanoid (Yuanchun
Li) for the discussions/feedback on our work. This work was sup-
ported in part by National Key Research and Development Program
(2022YFB3104002, 2020AAA0107800), NSFC Grant 62072178, and
Shanghai Trusted Industry Internet Software Innovation Center.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA E. Ma, S. Huang, W. Gang, T. Su, J. Wang, H. Liu, G. Pu and Z. Su

REFERENCES

[1] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung
Ta, and Atif M. Memon. 2015. MobiGUITAR: Automated Model-Based Testing of
Mobile Apps. IEEE Software 32, 5 (2015), 53–59. https://doi.org/10.1109/MS.2014.
55

[2] Ape. 2022. Ape’s event generation strategy. Retrieved 2022-3 from
https://github.com/tianxiaogu/ape/blob/master/src/com/android/commands/
monkey/ape/tree/GUITreeBuilder.java#L261

[3] Iván Arcuschin, Juan Pablo Galeotti, and Diego Garbervetsky. 2021. An Empirical
Study on How Sapienz Achieves Coverage and Crash Detection. Journal of

Software: Evolution and Process (2021), e2411. https://doi.org/10.1002/smr.2411
[4] ASM team. 2023. ASM: an all purpose Java bytecode manipulation and analysis

framework. Retrieved 2023-1 from https://asm.ow2.io/
[5] Anton Babenko, Leonardo Mariani, and Fabrizio Pastore. 2009. AVA: Automated

Interpretation of Dynamically Detected Anomalies. In Proceedings of the Eigh-

teenth International Symposium on Software Testing and Analysis (Chicago, IL,
USA) (ISSTA ’09). Association for Computing Machinery, New York, NY, USA,
237–248. https://doi.org/10.1145/1572272.1572300

[6] Young-Min Baek and Doo-Hwan Bae. 2016. Automated Model-Based Android
GUI Testing Using Multi-Level GUI Comparison Criteria. In Proceedings of the

31st IEEE/ACM International Conference on Automated Software Engineering (ASE).
238–249. https://doi.org/10.1145/2970276.2970313

[7] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. 2018. In-
troduction to runtime verification. In Lectures on Runtime Verification. 1–33.
https://doi.org/10.1007/978-3-319-75632-5_1

[8] Farnaz Behrang and Alessandro Orso. 2020. Seven Reasons Why: An In-Depth
Study of the Limitations of Random Test Input Generation for Android. In 35th

IEEE/ACM International Conference on Automated Software Engineering (ASE).
1066–1077. https://doi.org/10.1145/3324884.3416567

[9] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. 2002. ASM: A code ma-
nipulation tool to implement adaptable systems. In Adaptable and extensible

component systems.
[10] Tianqin Cai, Zhao Zhang, and Ping Yang. 2020. Fastbot: A Multi-Agent Model-

Based Test Generation System. In IEEE/ACM 1st International Conference on Au-

tomation of Software Test (AST). 93–96. https://doi.org/10.1145/3387903.3389308
[11] Wontae Choi, George Necula, and Koushik Sen. 2013. Guided GUI Testing of

Android Apps with Minimal Restart and Approximate Learning. In Proceedings of

the 2013 ACM SIGPLAN International Conference on Object Oriented Programming

Systems Languages & Applications (OOPSLA). 623–640. https://doi.org/10.1145/
2509136.2509552

[12] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Au-
tomated Test Input Generation for Android: Are We There Yet? (E). In 30th

IEEE/ACM International Conference on Automated Software Engineering (ASE).
429–440. https://doi.org/10.1109/ASE.2015.89

[13] Philip Daian, Yliès Falcone, Patrick O’Neil Meredith, Traian-Florin Serbanuta,
Shin’ichi Shiriashi, Akihito Iwai, and Grigore Rosu. 2015. RV-Android: Effi-
cient Parametric Android Runtime Verification, a Brief Tutorial. In 6th Interna-

tional Conference on Runtime Verification (RV) (Lecture Notes in Computer Science,

Vol. 9333). 342–357. https://doi.org/10.1007/978-3-319-23820-3_24
[14] DDroid. 2022. Themis+’s clues. Retrieved 2023-1 from https://github.com/DDroid-

Android/home/blob/main/README.md#html-report
[15] DDroid. 2023. Supplementary materials for RQ2 and RQ3. Retrieved 2023-

8 from https://github.com/DDroid-Android/home/blob/main/supplementary-
material.pdf

[16] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti,
William K. Robertson, Frederick Ulrich, and Ryan Whelan. 2016. LAVA: Large-
Scale Automated Vulnerability Addition. In IEEE Symposium on Security and

Privacy (SP). 110–121. https://doi.org/10.1109/SP.2016.15
[17] Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury. 2020.

Time-travel Testing of Android Apps. In Proceedings of the 42nd International

Conference on Software Engineering (ICSE). 481–492. https://doi.org/10.1145/
3377811.3380402

[18] DroidBot. 2022. DroidBot’s event generation strategy. Retrieved 2022-3 from https:
//github.com/honeynet/droidbot/blob/master/droidbot/device_state.py#L401

[19] Caleb Evans. 2021. automata-lib(5.0.0). Retrieved 2021-12 from https://pypi.org/
project/automata-lib/

[20] Yliès Falcone, Sebastian Currea, and Mohamad Jaber. 2012. Runtime Verification
and Enforcement for Android Applications with RV-Droid. In Third Interna-

tional Conference on Runtime Verification (RV) (Lecture Notes in Computer Science,

Vol. 7687). 88–95. https://doi.org/10.1007/978-3-642-35632-2_11

[21] Fastbot team. 2022. Fastbot(2.0). Retrieved 2022-1 from https://github.com/
bytedance/Fastbot_Android

[22] gcov team. 2023. gcov-a Test Coverage Program. Retrieved 2023-1 from https:
//gcc.gnu.org/onlinedocs/gcc/Gcov.html

[23] Tegan George. 2022. Semi-Structured Interview: Definition, Guide and Examples.
Retrieved 2023-1 from https://www.scribbr.com/methodology/semi-structured-
interview/

[24] Dimitra Giannakopoulou and Klaus Havelund. 2001. Automata-Based Veri-
fication of Temporal Properties on Running Programs. In 16th IEEE Interna-

tional Conference on Automated Software Engineering (ASE). 412–416. https:
//doi.org/10.1109/ASE.2001.989841

[25] Google Android team. 2023. Transform. Retrieved 2023-1 from
https://developer.android.com/reference/tools/gradle-api/7.0/com/android/
build/api/transform/Transform

[26] Google Inc. 2022. Monkey. Retrieved 2022-1 from https://developer.android.com/
studio/test/monkey

[27] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao,
Qirun Zhang, Jian Lu, and Zhendong Su. 2019. Practical GUI Testing of Android
Applications via Model Abstraction and Refinement. In Proceedings of the 41st

International Conference on Software Engineering (ICSE). 269–280. https://doi.
org/10.1109/ICSE.2019.00042

[28] Wunan Guo, Liwei Shen, Ting Su, Xin Peng, and Weiyang Xie. 2020. Improving
Automated GUI Exploration of Android Apps via Static Dependency Analysis. In
IEEE International Conference on Software Maintenance and Evolution (ICSME).
IEEE, 557–568. https://doi.org/10.1109/ICSME46990.2020.00059

[29] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A Ground-
Truth Fuzzing Benchmark. Proc. ACM Meas. Anal. Comput. Syst. 4, 3 (2020),
49:1–49:29. https://doi.org/10.1145/3428334

[30] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2001. Introduction to

automata theory, languages, and computation, 2nd Edition.
[31] Siw Elisabeth Hove and Bente Anda. 2005. Experiences from Conducting Semi-

structured Interviews in Empirical Software Engineering Research. In 11th IEEE

International Symposium on Software Metrics (METRICS). 23. https://doi.org/10.
1109/METRICS.2005.24

[32] Raphaël Jakse, Yliès Falcone, Jean-François Méhaut, and Kevin Pouget. 2017.
Interactive Runtime Verification - When Interactive Debugging Meets Runtime
Verification. In 28th IEEE International Symposium on Software Reliability Engi-

neering (ISSRE). 182–193. https://doi.org/10.1109/ISSRE.2017.19
[33] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: a database

of existing faults to enable controlled testing studies for Java programs. In
International Symposium on Software Testing and Analysis (ISSTA). 437–440.
https://doi.org/10.1145/2610384.2628055

[34] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security (CCS). 2123–2138. https://doi.org/10.
1145/3243734.3243804

[35] Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F. Bissyandé, and Jacques Klein.
2019. Automated Testing of Android Apps: A Systematic Literature Review. IEEE
Trans. Reliability 68, 1 (2019), 45–66. https://doi.org/10.1109/TR.2018.2865733

[36] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. DroidBot: a
lightweight UI-guided test input generator for Android. In Proceedings of the

39th International Conference on Software Engineering (ICSE). 23–26. https:
//doi.org/10.1109/ICSE-C.2017.8

[37] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2019. Humanoid: A
Deep Learning-Based Approach to Automated Black-box Android App Testing. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering

(ASE). 1070–1073. https://doi.org/10.1109/ASE.2019.00104
[38] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An Input

Generation System for Android Apps. In Proceedings of the 2013 9th Joint Meeting

on Foundations of Software Engineering (ESEC/FSE). 224–234. https://doi.org/10.
1145/2491411.2491450

[39] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-Objective Auto-
mated Testing for Android Applications. In Proceedings of the 25th Interna-

tional Symposium on Software Testing and Analysis (ISSTA). 94–105. https:
//doi.org/10.1145/2931037.2931054

[40] Gabriel Matni and Michel R. Dagenais. 2009. Automata-based approach for kernel
trace analysis. In Proceedings of the 22nd Canadian Conference on Electrical and

Computer Engineering (CCECE). 970–973. https://doi.org/10.1109/CCECE.2009.
5090273

[41] Maubis. 2019. Scarlet Notes. Retrieved 2019-12 from https://play.google.com/
store/apps/details?id=com.bijoysingh.quicknote

https://doi.org/10.1109/MS.2014.55
https://doi.org/10.1109/MS.2014.55
https://github.com/tianxiaogu/ape/blob/master/src/com/android/commands/monkey/ape/tree/GUITreeBuilder.java#L261
https://github.com/tianxiaogu/ape/blob/master/src/com/android/commands/monkey/ape/tree/GUITreeBuilder.java#L261
https://doi.org/10.1002/smr.2411
https://asm.ow2.io/
https://doi.org/10.1145/1572272.1572300
https://doi.org/10.1145/2970276.2970313
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1145/3324884.3416567
https://doi.org/10.1145/3387903.3389308
https://doi.org/10.1145/2509136.2509552
https://doi.org/10.1145/2509136.2509552
https://doi.org/10.1109/ASE.2015.89
https://doi.org/10.1007/978-3-319-23820-3_24
https://github.com/DDroid-Android/home/blob/main/README.md#html-report
https://github.com/DDroid-Android/home/blob/main/README.md#html-report
https://github.com/DDroid-Android/home/blob/main/supplementary-material.pdf
https://github.com/DDroid-Android/home/blob/main/supplementary-material.pdf
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1145/3377811.3380402
https://doi.org/10.1145/3377811.3380402
https://github.com/honeynet/droidbot/blob/master/droidbot/device_state.py#L401
https://github.com/honeynet/droidbot/blob/master/droidbot/device_state.py#L401
https://pypi.org/project/automata-lib/
https://pypi.org/project/automata-lib/
https://doi.org/10.1007/978-3-642-35632-2_11
https://github.com/bytedance/Fastbot_Android
https://github.com/bytedance/Fastbot_Android
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://www.scribbr.com/methodology/semi-structured-interview/
https://www.scribbr.com/methodology/semi-structured-interview/
https://doi.org/10.1109/ASE.2001.989841
https://doi.org/10.1109/ASE.2001.989841
https://developer.android.com/reference/tools/gradle-api/7.0/com/android/build/api/transform/Transform
https://developer.android.com/reference/tools/gradle-api/7.0/com/android/build/api/transform/Transform
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://doi.org/10.1109/ICSE.2019.00042
https://doi.org/10.1109/ICSE.2019.00042
https://doi.org/10.1109/ICSME46990.2020.00059
https://doi.org/10.1145/3428334
https://doi.org/10.1109/METRICS.2005.24
https://doi.org/10.1109/METRICS.2005.24
https://doi.org/10.1109/ISSRE.2017.19
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1109/TR.2018.2865733
https://doi.org/10.1109/ICSE-C.2017.8
https://doi.org/10.1109/ICSE-C.2017.8
https://doi.org/10.1109/ASE.2019.00104
https://doi.org/10.1145/2491411.2491450
https://doi.org/10.1145/2491411.2491450
https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1109/CCECE.2009.5090273
https://doi.org/10.1109/CCECE.2009.5090273
https://play.google.com/store/apps/details?id=com.bijoysingh.quicknote
https://play.google.com/store/apps/details?id=com.bijoysingh.quicknote

Automata-based Trace Analysis for Aiding Diagnosing GUI Testing Tools for Android ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

[42] Maubis. 2019. Scarlet Notes’s issue 114. Retrieved 2019-2 from https://github.
com/BijoySingh/Scarlet-Notes/issues/114

[43] Atif M. Memon, Mary Lou Soffa, and Martha E. Pollack. 2001. Coverage criteria
for GUI testing. In Proceedings of the 8th European Software Engineering Conference
held jointly with 9th ACM SIGSOFT International Symposium on Foundations of

Software Engineering (ESEC/FSE). 256–267. https://doi.org/10.1145/503209.503244
[44] Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and Grigore

Rosu. 2012. An overview of the MOP runtime verification framework. Int. J.
Softw. Tools Technol. Transf. 14, 3 (2012), 249–289. https://doi.org/10.1007/s10009-
011-0198-6

[45] Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. 2020.
Reinforcement Learning Based Curiosity-Driven Testing of Android Applications.
In Proceedings of the 29th ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA). 153–164. https://doi.org/10.1145/3395363.3397354
[46] Jay Patel. 2018. JFlap(7.1). Retrieved 2021-10 from https://www.jflap.org/
[47] Priyam Patel, Gokul Srinivasan, Sydur Rahaman, and Iulian Neamtiu. 2018. On the

effectiveness of random testing for Android: or how I learned to stopworrying and
love the monkey. In Proceedings of the 13th International Workshop on Automation

of Software Test (AST). 34–37. https://doi.org/10.1145/3194733.3194742
[48] Giles Reger. 2014. Automata based monitoring and mining of execution traces.

Ph. D. Dissertation. University of Manchester, UK. http://www.manchester.ac.
uk/escholar/uk-ac-man-scw:225931

[49] Jakub Riegel. 2018. PUTflap(1.0). Retrieved 2021-12 from https://github.com/
jakubriegel/PUTflap

[50] Leon Sell, Michael Auer, Christoph Frädrich, Michael Gruber, Philemon Werli,
and Gordon Fraser. 2019. An Empirical Evaluation of Search Algorithms for
App Testing. In International Conference on Testing Software and Systems (ICTSS),
Vol. 11812. 123–139. https://doi.org/10.1007/978-3-030-31280-0_8

[51] Wei Song, Xiangxing Qian, and Jeff Huang. 2017. EHBDroid: beyond GUI testing
for Android applications. In Proceedings of the 32nd IEEE/ACM International

Conference on Automated Software Engineering (ASE). 27–37. https://doi.org/10.
1109/ASE.2017.8115615

[52] Ting Su, Lingling Fan, Sen Chen, Yang Liu, Lihua Xu, Geguang Pu, and Zhendong
Su. 2020. Why My App Crashes Understanding and Benchmarking Framework-
specific Exceptions of Android apps. IEEE Transactions on Software Engineering

(2020). https://doi.org/10.1109/TSE.2020.3013438
[53] Ting Su, GuozhuMeng, Yuting Chen, KeWu,Weiming Yang, Yao Yao, Geguang Pu,

Yang Liu, and Zhendong Su. 2017. Guided, Stochastic Model-Based GUI Testing
of Android Apps. In Proceedings of the 2017 11th Joint Meeting on Foundations

of Software Engineering (ESEC/FSE). 245–256. https://doi.org/10.1145/3106237.
3106298

[54] Ting Su, Jue Wang, and Zhendong Su. 2021. Benchmarking automated GUI
testing for Android against real-world bugs. In 29th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering

(ESEC/FSE). 119–130. https://doi.org/10.1145/3468264.3468620
[55] Ting Su, Jue Wang, and Zhendong Su. 2021. The Themis Benchmark. Retrieved

2022-3 from https://github.com/the-themis-benchmarks/home
[56] Ting Su, Yichen Yan, JueWang, Jingling Sun, YihengXiong, Geguang Pu, KeWang,

and Zhendong Su. 2021. Fully automated functional fuzzing of Android apps
for detecting non-crashing logic bugs. Proceedings of the ACM on Programming

Languages (OOPSLA) (2021), 1–31. https://doi.org/10.1145/3485533

[57] Haiyang Sun, Andrea Rosà, Omar Javed, and Walter Binder. 2017. ADRENALIN-
RV: Android Runtime Verification Using Load-Time Weaving. In 2017 IEEE In-

ternational Conference on Software Testing, Verification and Validation (ICST).
532–539. https://doi.org/10.1109/ICST.2017.61

[58] Porfirio Tramontana, Domenico Amalfitano, Nicola Amatucci, and Anna Rita
Fasolino. 2019. Automated functional testing of mobile applications: a systematic
mapping study. Software Quality Journal 27, 1 (2019), 149–201. https://doi.org/
10.1007/s11219-018-9418-6

[59] Thomas Vogel, Chinh Tran, and Lars Grunske. 2021. A comprehensive empirical
evaluation of generating test suites for mobile applications with diversity. Inf.
Softw. Technol. 130 (2021), 106436. https://doi.org/10.1016/j.infsof.2020.106436

[60] Jue Wang, Yanyan Jiang, Chang Xu, Chun Cao, Xiaoxing Ma, and Jian Lu. 2020.
ComboDroid: Generating High-Quality Test Inputs for Android Apps via Use
Case Combinations. In Proceedings of the ACM/IEEE 42nd International Conference

on Software Engineering (ICSE). 469–480. https://doi.org/10.1145/3377811.3380382
[61] Wenyu Wang, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang, Yuetang

Deng, and Tao Xie. 2018. An empirical study of Android test generation tools in
industrial cases. In Proceedings of the 33rd ACM/IEEE International Conference on

Automated Software Engineering (ASE). 738–748. https://doi.org/10.1145/3238147.
3240465

[62] Wenyu Wang, Wei Yang, Tianyin Xu, and Tao Xie. 2021. Vet: identifying and
avoiding UI exploration tarpits. In 29th ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE).
83–94. https://doi.org/10.1145/3468264.3468554

[63] Tyler Wendland, Jingyang Sun, Junayed Mahmud, S. M. Hasan Mansur, Steven
Huang, Kevin Moran, Julia Rubin, and Mattia Fazzini. 2021. Andror2: A Dataset
of Manually-Reproduced Bug Reports for Android apps. In 18th IEEE/ACM In-

ternational Conference on Mining Software Repositories (MSR). IEEE, 600–604.
https://doi.org/10.1109/MSR52588.2021.00082

[64] Wikipedia. 2022. Floyd–Warshall algorithm. Retrieved 2022-2 from https://en.
wikipedia.org/wiki/Floyd-Warshall_algorithm

[65] Yiheng Xiong, Mengqian Xu, Ting Su, Jingling Sun, Jue Wang, He Wen, Geguang
Pu, Jifeng He, and Zhendong Su. 2023. An Empirical Study of Functional Bugs in
Android Apps. In Proceedings of the 32nd ACM SIGSOFT International Symposium

on Software Testing and Analysis (ISSTA). 1319–1331. https://doi.org/10.1145/
3597926.3598138

[66] Xia Zeng, Dengfeng Li, Wujie Zheng, Fan Xia, Yuetang Deng, Wing Lam, Wei
Yang, and Tao Xie. 2016. Automated test input generation for Android: are we
really there yet in an industrial case?. In Proceedings of the 24th ACM SIGSOFT

International Symposium on Foundations of Software Engineering (FSE). 987–992.
https://doi.org/10.1145/2950290.2983958

[67] Haibing Zheng, Dengfeng Li, Beihai Liang, Xia Zeng, Wujie Zheng, Yuetang
Deng, Wing Lam, Wei Yang, and Tao Xie. 2017. Automated Test Input Generation
for Android: Towards Getting There in an Industrial Case. In 39th IEEE/ACM

International Conference on Software Engineering: Software Engineering in Practice

Track (ICSE-SEIP). 253–262. https://doi.org/10.1109/ICSE-SEIP.2017.32
[68] Hong Zhu, Patrick A. V. Hall, and John H. R. May. 1997. Software Unit Test

Coverage and Adequacy. ACM Comput. Surv. 29, 4 (1997), 366–427. https:
//doi.org/10.1145/267580.267590

Received 2023-02-02; accepted 2023-07-27

https://github.com/BijoySingh/Scarlet-Notes/issues/114
https://github.com/BijoySingh/Scarlet-Notes/issues/114
https://doi.org/10.1145/503209.503244
https://doi.org/10.1007/s10009-011-0198-6
https://doi.org/10.1007/s10009-011-0198-6
https://doi.org/10.1145/3395363.3397354
https://www.jflap.org/
https://doi.org/10.1145/3194733.3194742
http://www.manchester.ac.uk/escholar/uk-ac-man-scw:225931
http://www.manchester.ac.uk/escholar/uk-ac-man-scw:225931
https://github.com/jakubriegel/PUTflap
https://github.com/jakubriegel/PUTflap
https://doi.org/10.1007/978-3-030-31280-0_8
https://doi.org/10.1109/ASE.2017.8115615
https://doi.org/10.1109/ASE.2017.8115615
https://doi.org/10.1109/TSE.2020.3013438
https://doi.org/10.1145/3106237.3106298
https://doi.org/10.1145/3106237.3106298
https://doi.org/10.1145/3468264.3468620
https://github.com/the-themis-benchmarks/home
https://doi.org/10.1145/3485533
https://doi.org/10.1109/ICST.2017.61
https://doi.org/10.1007/s11219-018-9418-6
https://doi.org/10.1007/s11219-018-9418-6
https://doi.org/10.1016/j.infsof.2020.106436
https://doi.org/10.1145/3377811.3380382
https://doi.org/10.1145/3238147.3240465
https://doi.org/10.1145/3238147.3240465
https://doi.org/10.1145/3468264.3468554
https://doi.org/10.1109/MSR52588.2021.00082
https://en.wikipedia.org/wiki/Floyd-Warshall_algorithm
https://en.wikipedia.org/wiki/Floyd-Warshall_algorithm
https://doi.org/10.1145/3597926.3598138
https://doi.org/10.1145/3597926.3598138
https://doi.org/10.1145/2950290.2983958
https://doi.org/10.1109/ICSE-SEIP.2017.32
https://doi.org/10.1145/267580.267590
https://doi.org/10.1145/267580.267590

	Abstract
	1 Introduction
	2 Illustrative Example
	2.1 Bug Automaton
	2.2 Clues Provided by Our Approach
	2.3 Diagnosing Tools based on the Clues

	3 Approach and Implementation
	3.1 Problem Definition
	3.2 Bug Automaton and Its Construction
	3.3 Coverage Metrics based Clues
	3.4 Implementation

	4 Empirical Experiment
	4.1 Research Questions
	4.2 Experimental Setup
	4.3 Results of RQ1
	4.4 Results of RQ2
	4.5 Results of RQ3
	4.6 Discussion

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

