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ABSTRACT

Non-crashing functional bugs of Android apps can seriously affect
user experience. Often buried in rare program paths, such bugs are
difficult to detect but lead to severe consequences. Unfortunately,
very few automatic functional bug oracles for Android apps exist,
and they are all specific to limited types of bugs. In this paper, we
introduce a novel technique named deep-state differential analysis,
which brings the classical “bugs as deviant behaviors” oracle to
Android apps as a generic automatic test oracle. Our oracle utilizes
the observations on the execution of automatically generated test
inputs that (1) there can be a large number of traces reaching inter-
nal app states with similar GUI layouts, and only a small portion of
them would reach an erroneous app state, and (2) when performing
the same sequence of actions on similar GUI layouts, the outcomes
will be limited. Therefore, for each set of test inputs terminating
at similar GUI layouts, we manifest comparable app behaviors by
appending the same events to these inputs, cluster the manifested
behaviors, and identify minorities as possible anomalies. We also
calibrate the distribution of these test inputs by a novel input cali-
bration procedure, to ensure the distribution of these test inputs is
balanced with rare bug occurrences.
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We implemented the deep-state differential analysis algorithm
as an exploratory prototype ODIN and evaluated it against 17 popu-
lar real-world Android apps. OpIN successfully identified 28 non-
crashing functional bugs (five of which were previously unknown)
of various root causes with reasonable precision. Detailed compar-
isons and analyses show that a large fraction (11/28) of these bugs
cannot be detected by state-of-the-art techniques.
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1 INTRODUCTION

Background and Motivation. Non-crashing functional bugs [36]
of Android apps caused by program logic errors seriously affect user
experience [41]. Being buried in rare program paths, such bugs may
not be captured in the quality assurance (testing) procedure and
may lead to severe consequences [38].

Despite the rapid development of automatic test input genera-
tion for Android apps [2, 4, 8, 14, 18, 23, 24, 34, 35, 39], very few
automatic functional bug oracles for Android apps exist [36, 37].
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Figure 2: A motivating bug example

Specifically, metamorphic relations [7] can be established by com-
paring independent executions (Genie [36]) or with injected neu-
tral Ul/system events (Thor [1] and SetDroid [37]). However, these
metamorphic relations all place a strong emphasize on the inde-
pendence of two event fragments, and are fundamentally limited in
identifying programming errors that occurred in dependent event
fragments. For instance, Genie’s authors acknowledged that only
29.5% of the non-crashing functional bugs in an empirical study
falls into the scope of Genie [36].

A natural question then arises: can we exploit the massive, au-
tomatically generated test inputs to expose potential logic errors?
This paper demonstrates that it is possible to mine behavioral speci-
fications for detecting non-crashing functional bugs without super-
vision. Specifically, we observed that automatically generated test
inputs can reach comparable states of an app, from which we can
differentiate its behaviors to find non-crashing, functional bugs.

Mining May-beliefs as Test Oracle. This paper introduces deep-
state differential analysis, a novel, generic, and automatic oracle
for Android apps that brings the classical “bugs as deviant be-
haviors” [11] oracle to automatically generated GUI test inputs
of Android apps. Specifically, we mine may beliefs' (expected app
behavior specifications) from execution traces and use such beliefs
to identify anomalies as deviant behaviors likely caused by bugs.
Our mined beliefs are based on the following two observations:

(1) There can be a large number of traces (test inputs) that end
up with a similar GUI layout. Suppose that the app is mostly
functionally correct, then only a small portion of them could
possibly end up with an erroneous state since developers
would already notice bugs on frequent program paths.

The original paper [11] also defines a set of “must beliefs” of formal specifications a
system must satisfy. A few existing techniques [1, 15] proposed manual must beliefs
(assertions concerning specific system behaviors) and are out of our scope.

(2) Android apps are designed with the “least surprise” princi-
ple [30] that performing the same sequence of actions on
similar GUI layouts should trigger only a few limited behav-
iors of the app.

Therefore, if we append the same event sequence to all these
test inputs (ending up with similar GUI layouts), their triggered
app behaviors should fall into only a few behavior clusters-the
majority becomes our belief (oracle). A corollary is thus any small
cluster should be considered potentially buggy.

There are two main challenges to porting this idea to Android.
First, beliefs (bugs as deviant behaviors) should be established
over “balanced” traces of rare bug occurrences. However, exist-
ing coverage-directed test input generators often fail to provide
such traces, which are necessary for mining reliable beliefs. Our
approach addresses this challenge by a novel input calibration
procedure that generates additional test inputs by repeatedly ap-
proximating random walks on a mined GUI model of the app, so
that for each GUI model state representing a group of similar GUI
layouts, there are a set of sufficiently balanced test inputs reaching
it, with which we can safely mine reliable beliefs.

Second, the may-beliefs are extracted from the clustered “ma-
jority behaviors”. Android apps are GUI-centered, and thus using
the corresponding GUI layout sequence as a representation of the
app’s behavior is a common practice [2, 4, 14, 18, 34]. However, GUI
layouts often contain rich but redundant, or even non-deterministic
information [2, 14, 18, 23, 34] which hinders precise clustering and
majority extraction. To mitigate this challenge, our approach per-
forms a GUI-abstraction-based hierarchical clustering [9] on the
GUI layout sequences. Specifically, starting with each sequence in
its own cluster with no abstraction on the GUI layout, our approach
iteratively (1) selects one more rule from a pool of GUI abstraction
rules commonly adopted by existing work, (2) further abstracts
each GUI layout accordingly, and (3) merge clusters that contain
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similar abstracted GUI layout sequences. It attempts to detect out-
liers, which are accordingly identified as anomaly behaviors while
others as may-beliefs, by calculating and comparing z-scores [13]
of the clusters’ size after each round of merging.

The OpIN Prototype Tool. We implemented the deep state dif-
ferential analysis algorithm as an exploratory prototype OpIN and
evaluated it against 17 popular real-world Android apps. ODIN suc-
cessfully identified 28 non-crashing functional bugs, five of which
were previously unknown. We reported these unknown bugs to
the developers, and all have been confirmed. Detailed comparisons
and analyses show that (1) a large fraction (11/28) of these bugs
cannot be detected by the state-of-the-art technique Genie [36],
(2) the input calibration and GUI-abstraction-based hierarchical
clustering can indeed improve ODIN’s effectiveness, and (3) OpIN
can identify non-crashing functional bugs of various root causes
with reasonable precision.

In Summary, this paper makes the following key contributions:

e We proposed deep-state differential analysis and brought the
“bug as deviant behaviors” idea to Android apps as a novel,
generic, and automatic test oracle.

e We implemented the prototype tool OpIN and will make it
public?.

e We evaluated the tool against real-world Android apps, and
the results are encouraging that OpiN well complements
state-of-the-art techniques.

The rest of this paper is organized as follows. Section 2 provides
an overview of our approach with a motivating example. Details of
our approach are discussed in Section 3. In Section 4 we introduce
the implementation of OpIN and in Section 5 the evaluation is con-
ducted. Related work is discussed in Section 6, and finally Section 7
concludes the paper.

2 OVERVIEW

It is non-trivial to port the “bugs as deviant behaviors” idea to
Android despite its simplicity. This section describes the overview
of our approach illustrated in Figure 1, and discusses the challenges
and their mitigation.

Our approach takes the app under test and a set of its GUI ex-
ecution traces (a GUI execution trace is an event sequence com-
bined with the GUI layout sequence obtained by sending the event
sequence to the app) as input, and outputs bug reports. First, to
provide balanced GUI execution traces of rare bug occurrences
with which we can mine reliable beliefs, our approach constructs
a GUI model from the traces and preforms an input calibration
procedure for each GUI model state representing a set of similar
GUI layouts, and then extends calibrated inputs ending up at the
GUI state for manifesting normal and anomaly app behaviors. Next,
to find a deliberate abstraction that is simultaneously effective in
distinguishing anomaly behaviors and resistant to noises, it adopts
a GUI-abstraction-based hierarchical clustering algorithm to cluster
the manifested behaviors, mines may beliefs, and detects anomalies
from the behavior clusters. Anomalies are reported as potential
non-crashing functional bugs.

Zhttps://automatedoracleforandroid.github.io/Odin/
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We motivate our approach by a previously unknown bug (found
by our deep-state differential analysis) in the AmMAZE file manager
app (Figure 2). A user can use AMAZE to view folders on the device
and select a folder to view its content by clicking its icon. There is a
subtle bug that AMAZE sometimes erroneously identified an empty
folder inside a zip file as an APK. Clicking such a folder triggers
the system’s installer, while the expected behavior is displaying an
empty folder. This is a typical non-crashing functional bug.

State-of-the-art automated test input generators [14, 34, 39] can
occasionally trigger this erroneous behavior. We explain below how
do we establish the belief that “clicking an folder should not open
an app installer”.

2.1 Calibrating Generated Test Inputs

May-beliefs assume that (1) traces are sufficiently diverse, i.e., each
(internal) app state has a considerable portion of traces reaching
it, and (2) buggy traces are rare. However, automatically generated
test inputs are drawn from a highly skewed probability distribution
in which dominant inputs can only reach shallow app states with
limited diversity.

This is due to the coverage-directed nature of automatic test
input generators [4, 8, 14, 24, 34]. First, to maximize covered (inter-
nal) states or app code within a limited time, automatic test input
generators tend to stick to a profitable trace for long-term explo-
ration, producing a skewed distribution of test inputs. If such a
profitable trace is accidentally erroneous, it cannot be identified as
rare and buggy. Furthermore, deeper internal states are generally
more difficult to reach. Consequently, test inputs that reach deep
states are also rare and deep states lack sufficient traces for deriving
strong beliefs on majority behaviors.

Challenge 1: How to effectively generate massive, balanced test
inputs that provide all explored app GUIs (shallow or deep) with
sufficiently many traces of behavioral diversity?

To mitigate this challenge, our approach calibrates the generated
test inputs by approximating a random walk on a mined GUI model
of the app. First, our approach mines the app’s GUI model from
the GUI execution traces of massive, automatically generated test
inputs by grouping similar GUI layouts as GUI model states® and
adding transitions according to the input event between each pair
of GUI layouts in the execution traces. Note that our approach
ensures that no non-deterministic transitions (i.e., an event can
trigger two different transitions from the same GUI model state) in
the GUI model. Given any GUI model state o, no matter shallow or
deep, our approach simulates a random walk on the GUI model, i.e.,
finding a random path terminating at o. The random walk forces
all outgoing transitions from the same GUI model state the same
probability. Specifically, suppose that the random walk is at GUI
model state o3, and there are transitions (o3, o) in the GUI model

(0j € %, 0; # 0j). Then, our approach selects each o; € X with
1
|1Z]+1°
to obtain the next state o in the random walk. In each step of the
random walk, our approach also randomly selects an event that

can manifest the transition (oj, crlf ), yielding a test input (event

probability mﬁ and o; (terminating at the same state) with

3We consider two GUI layouts similar if they handle the same set of events, i.e., events
are interchangeable for both states.
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sequence) that can potentially terminates with GUI model state o.
By repeating this procedure, our approach generates sufficiently
many and diverse test inputs for each GUI model state. Note that
the goal of our calibration is to generate, for each GUI model state o
(no matter whether it is shallow or deep) that has been covered by
some given test inputs, a set of diverse traces reaching o. It does not
guarantee to cover all deep states of the app, which is a challenge
for any test input generation approach [4, 8, 14, 34, 39].

GUI modeling inevitably losses information, and test input ob-
tained from a random walk may not terminate at a designated o in
real execution. To enable a practical approximation, when such an
inconsistency occurs, our approach re-mines the GUI model from
the original execution traces and the newly obtained ones causing
inconsistency.

In the motivating example, automatic test input generators can
provide massive execution traces reaching the same GUI model state
with folders listed on similar GUI layouts (the first GUI page of
each GUI page pair in Figure 2). However, the generators are likely
to stick to an erroneous one (reaching a GUI page displaying the
empty folder inside a zip file) and extend it for long-term exploration
because they can cover extra pieces of code that are incorrectly
executed to display an “apk file”, leading to a skewed distribution
in which the erroneous traces are no longer rare. Nonetheless,
our input calibration procedure is able to calibrate the skewed
distribution by generating additional test inputs for the GUI model
state, most of which reach the correct app states.

2.2 Manifesting App Behaviors

Given sufficiently balanced test inputs that reach a GUI model
state, we can reasonably assume that only a small fraction of the
inputs terminate with an erroneous internal state. However, it is
difficult to directly cluster internal states, which consist of low-level
representation of data like serialized heap objects.

Alternatively, we leverage the observation that an internal state
s can be characterized by its future behaviors. Specifically, for a
test input whose execution terminates with an internal state s, we
can extend the test input by appending various event sequences to
the test input, and all observable triggered behaviors (GUI layouts)
of the appended events depend on s. Manifested anomaly GUI
layouts indicate a buggy s. Unfortunately, appending all inputs
with exhaustively enumerated event sequences yields an intractable
search space. Therefore, our second challenge concerns efficient
manifestation of diverse behaviors:

Challenge 2. How to efficiently extend inputs to manifest both
normal and deviant app behaviors for establishing beliefs?

This challenge is mitigated by the observation that appending
only one event to the inputs suffices for manifesting abnormal GUI
layouts and establishing beliefs. Suppose that an input terminating
with an internal state sy is extended to yield a state transition

€k-1 €k . i
—— Sgp_1 — Sk, in which s

e ey
sequence of sp — s — ...
displays an anomaly GUI layout. Then, our calibrated inputs should
contain sufficiently many test inputs that terminate with a similar
GUI layout with sg_1, and only a minority of them hit an erroneous
state. Thus, appending only one event ey to such inputs (of similar

GUI layout, and thus e; can be applied to all of them) will establish
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a may-belief that the less frequently occurred GUI layout of s;
indicates a bug.

In the motivating example, for the GUI model state representing
app states in which a folde can be selected to view its content, our
approach appends different single events to the inputs reaching it.
When appending one click event on the folder, our approach mani-
fests both normal and anomaly GUI layouts illustrated in Figure 2
for belief mining.

2.3 Mining May-beliefs as Test Oracle

Finally, the may-beliefs are extracted from the “majority behaviors”
of GUI layouts. The one event we append to each input yields an in-

ternal state transition s — s’ connecting a pair of GUI layouts (¢, £’)
that can be clustered. However, GUI layouts often contain rich but
redundant, or even non-deterministic information [2, 14, 18, 23, 34]
like dynamic Web contents. It is a challenge to find a deliberate ab-
straction that is simultaneously effective in distinguishing anomaly
behaviors and resistant to noises:

Challenge 3: How to cluster GUI layout pairs for establishing
correlations between anomaly behaviors and minority?

To mitigate this challenge, a GUI-abstraction-based agglomer-
ative hierarchical clustering [9] is performed by our approach.
Based on the common abstraction criteria adopted by existing
techniques [5, 14, 34], we design a set of abstraction rules (e.g.,
abstracting away all texts in the GUI layout) that can be applied
individually or combined. With each GUI layout pair in its own
cluster with no abstraction, our approach iteratively selects one
more abstraction rule and further abstracts all GUI layouts. After
applying a new rule, our approach merges similar clusters. Our ap-
proach measures the similarity between two clusters by comparing
the fingerprints of their contained GUI layout pairs. Specifically, it
uses the differential between the abstracted GUI layouts in each lay-
out pair as its fingerprint (denote by the tree editing distance [45]
of abstracted GUI layouts), which enables the clustering algorithm
to focus on the “instantaneous rate of change” (e.g., a newly added
button or a piece of unchanged text) and ignore the accumulated
non-determinism over test input execution, like the first-order dif-
ferential of continuous functions. After each round of abstraction
and cluster merging, our approach conducts a z-score-based [13]
may-beliefs mining on the merged clusters in which outliers (if
any) are considered anomalies while others may-beliefs. Such an
iteration terminates when all abstraction rules are applied or any
anomaly is found (and thus may-beliefs are mined).

In the motivating example in Figure 2, for the majority of GUI lay-
out pairs, the second layout displays a list of different files. However,
for the erroneous ones obtained by clicking an empty folder inside
a zip file, the second layout displays a dialog asking permissions
to “install” the folder. With a deliberate abstraction, the majority is
grouped in one cluster (the may beliefs) while the erroneous ones
in another (the anomalies), and the non-crashing functional bug is
detected.
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Algorithm 1: GUI model mining

Algorithm 2: Calibrating over GUI model G(V, E, §)

1 Function MineModel(T, = {Ly, L,, ..
2 Ve—0,E—0;60;

- Ln})

3 foreachL=({’ge—I>[1e—2>...ei>t’m)Engo

4 V «— VU {{£}|0 < i < m};// initially, no state is merged

5 E«—EU{ej|]1 <i<m};

6 | 6= 8U{{{tic1} e {t:i})0 <i<m};

7 for each (03,0;) € V X V and 0; # ¢ do // in the BlueFringe
ordering [17]

8 (V’,8") « merge-recursive(o;, 0},V,8);

9 if (V’,8") # L then

10 L (V,8) «(V",8);

11 return (V,E, §)

12 Function merge-recursive(oy, 03, V, d)

13 if Yt € 01,6 € az.similar(fl,t’g) then

14 V'« V\{o1,02} U{o1 Uor}; & « Slo1/o2];

15 for each (o1, e, 0% ), (01,€,0;) € & and o} # o do
16 (V', 8"y « merge-recursive(og, oy, V', 8');
17 if (V’,6’) = L then

18 L return L // merge failed

19 return (V/,8") # L

20 return L // merge failed

3 DEEP-STATE DIFFERENTIAL ANALYSIS
3.1 Notations and Definitions

Android apps are GUI-centered and event-driven. At runtime, the
GUI layout (snapshot) of the app P’s current (internal) state s, £ =
L(s), is represented as a tree in which each node w € ¢ is a GUI
widget (e.g., a button or a text field object). A set of attributes are
associated with each node, for instance w.type refers to w’s widget
type (e.g., a button or a text field) and w.text refers to w’s displayed
text (w.text = L if no text is displayed). When P is inactive (closed
or paused to background), no GUI layout exists and £ = L.

An GUI event e = (t,r) is a record in which e.t and e.r denote
e’s event type and receiver widget, respectively. An event type can
either be click, long-click, or swipe 4 and the receiver r(f) = w
denotes the widget w € ¢ to which e can be delivered (r(¢) = L if
this event cannot be delivered to any widget of ¢).

Executing P with an event sequence (i.e., a testinput) [eq, ez, . . ., €]
. . (31 (]
yields an execution trace T = (sg — s1 — ..

is the initial (internal) app state, and sending event e;,1 to state s;
yields a new state sj41 (0 < i < n). Its corresponding GUI execution

traceis L = ({, o, 0 RN tn), where £; = L(s;) (0 < i < n).

€n . .
. — s, in which sg

3.2 Calibrating Generated Test Inputs

We calibrate the automatically generated test inputs by simulating
a random walk on an automatically mined GUI model.

Mining a GUI Model. The GUI model is mined from the GUI
execution traces of massive, automatically generated test inputs.

40ur approach does not limit (and assume) the event types in the given test inputs.
GUI events, such as text input or pinch, can be modeled as combinations of these three
types of events. For example, a text input event can be modeled as a series of click
events on the soft keyboard.

1 Function Calibrate(T)

2 T « @;
3 repeat
* . Z * .
4 o™ « argmin [reach(z™,0)];
ceV T
5 p < random-walk({og),o*);
6 if p # L then
7 L T « T" U {to-input(p)};
8 until sufficiently many traces are collected;
9 | returnTU T ;
10 Function random-walk(p = {0y, 01,...,0:),0*)
1 | if [p| >MAX_LIMIT then
12 L return L
13 3« {o|de € E{oj,e,0) € 6};
14 if 6; = 0* then
15 L 3 « X U {0o;}; // terminate at the designated GUI model state
16 for each cj;1 € shuffle(2) do
17 if 0i41 = 0; and 0; = ¢* then
18 L P —p;
19 else
20 L p’ — random-walk({oo, 01, ..., 01, Gi+1), 0*);
21 if p’ # 1 then
22 L return p’
23 return L

Given the execution trace set T = {r1,72,...,7n}, Whose corre-
sponding GUI execution trace set is Ty = {L1, Ly, ..., Ly}, its cor-
responding GUI model is a tuple G(V, E, §), in which V is a set of
GUI model states ({o|oc € V} is a partition of all GUI layouts in
ULer, {€l£ € L}), E is the set of events sent to the app on some
LeTp,and §: V X E — V are the transitions in G.

To mine a minimal GUI model, we adopt the existing algorithm
(Algorithm 1) in SwiftHand [8] that groups similar GUI layouts
together and ensures transitions in the model are deterministic °.

We consider two GUI layouts #; and ¢, are similar if and only if
they can handle the same set of events, i.e., Ve € E.e.r(f)) # L <
e.r(f2) # L. Specifically, if we have witnessed in T that an event
e is sent to a widget w € f1, we compute the tree editing distance
between ¢; and #; using the classic Zhang-Shasha algorithm [45],
and find the shortest editing operation sequence (each editing oper-
ation inserts, removes, or modifies a widget) that transforms ¢ to
£p. If w is not removed during the transformation, there must exist
a unique correspondence w’ € £. We thus let e.r(£;) = «’. Other-
wise, e.r(f2) = L and we consider £; and £, not similar. We discuss
the editing operation sequence in more details in Section 3.4.

Random Walk Simulation. With the GUI model G(V, E, §), we
calibrate automatically generated test inputs by a random walk
simulation with the algorithm presented in Algorithm 2.

Given a set of traces T, we select the least balanced GUI model
state o* € V, i.e, 0* has the fewest traces reaching it (Line 4).
“Reaching” a GUI model state o is defined by visiting o one or more

SAll transitions in a GUI model G(V, E, §) are deterministic if and only if for each
o eV, H(o,e01), (0, e 0,) € 5suchthat oy # 0.
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times:
reach(r,0) & [{ser|L(s) ea}{ > 1

Then, we try to find a path p on the model reaching the least
balanced ¢* via a simulated random walk starting at the initial GUI
model state oy (Line 5), and obtain the corresponding test input
(Line 6-7). The initial GUI model state oy is the state containing
GUI layout of the app at the initial app state. Such a procedure is
repeated until sufficiently many traces are obtained (Lines 3-7).

During a simulated random walk, when at a GUI model state o,
we first obtain ¥, the set of GUI model states that an outer transition
from o; can reach (Line 13). Moreover, if o; is the target GUI model
state o*, we also add it to = (Lines 14-15). We then iteratively select
each 0j41 € 2 with a uniform probability ﬁ in turn (Line 16), and
continue the random walk on ¢j+1 (Lines 17-20). Such an iteration
terminates when all g;41 € X have been selected or a transition
path to o* is found (Lines 16-22). To reduce the search space, we
also limit the number of steps in one random walk (Lines 11-12).

The Feedback Loop. GUI modeling inevitably losses informa-
tion [14, 34], and the test input we obtained by a simulated random
walk may not actually yield the same transitional path in real ex-
ecution. To reduce the occurrence of such inconsistencies, after
we obtain a transitional path p = {0y, 01,. .., O"p|> and its corre-
sponding test input, we send the input to the app and record the
actual execution trace 7 and its corresponding transitional path
P’ =0y, 07 o(p, |> in the GUI model. If an inconsistency occurs,
i.e., for a transition (o, 0i+1) (0 < i < |p[) in p, the corresponding
transition (o7, 07, ;) in p’ has 6; = o] but 041 # 0, ;, we add 7’s
GUI execution trace to Ty from which the GUI model G(V, E, 9) is
mined, and re-mine a new minimal GUI model G’ (V’, E, §’), which
will be used for future calibration and belief mining.

3.3 Manifesting App Behaviors

Given any test input (trace) that terminates with GUI model state
o (can be obtained by selecting a trace reaching ¢ and removing all
subsequent events after reaching o), we extend it by exactly one
event to manifest potentially buggy behaviors. Specifically, given
a GUI model state ¢ = {L(s)}, all s respond to the same set of
events due to our similarity criteria. Therefore, the belief mining is
conducted on the per-event basis. Suppose that all states s, where
L(s) € o, responds to e. We enumerate all inputs [ej, ez, ..., ex]
reaching ¢ and append e to yield a new execution trace

T+:<50 i)51 =, -~~e—n)5n i’5n+1>,
and the layout pair of the last state transition (L(sp), L(sp+1)) repre-
sents the manifested app behavior from which we mine may-beliefs.

3.4 Mining May Beliefs

Hierarchical Behavior Clustering. Given a set of GUI layout
pairs B = {{f1,€]), (£2,£}), ..., {fn, £,)} obtained by sending a same
event to inputs terminating with a same GUI model state, we con-
duct a agglomerative hierarchical clustering [9]. As shown in Al-
gorithm 3, initially each layout pair starts with no abstraction in
its own cluster (Lines 2-3). Next, we iteratively select one more
abstraction rule to apply (Line 5). We study existing start-of-the-
art techniques concerning GUI layout abstraction [5, 14, 34], and
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Algorithm 3: Hierarchical Behavior Clustering

1 Function Cluster(B = {{£1,£]),(f2,£5), ..., {fn, ) })

2 R « 0; // initially, no abstraction rule applied

3 C — {{(t,¢')}|{£,£") € B};// eachlayout pair in its own cluster
4 while not all abstraction rules are applied and |C| > 1 do
5 r « select-one-rule(C); R < RU{r};

6 for each (C1,C2) € C X C and Cy # C; do

7 Ay « fingerprint(Cy, R);

8 Ay « fingerprint(Cs, R);

9 if Al = AZ then

10 | C—C\CLCyu{GIUGC);

1 Cerror «— detect-anomaly(C);

12 if Cerror # L then

13 L return (C, Cerror)

14 return L
15 Function fingerprint(C = {{#,%)},R)

16 {ty, ;) < random-choice(C);

17 ] « abstract (¢, R);

18 , < abstract(f, R);

19 A — tree-edit(¢],4;);

20 | returnA

design a set of abstraction rules that can be applied individually
or combined. There are three abstraction rules that can be applied,
namely (1) sets the value of a specific attribute attr of all widgets
(e.g., w.text) ina GUI layout £ to L, i.e,forallw € ¢, set w.attr = L,
(2) removes all widgets in a GUI layout ¢ that are not the receiver of
any event, i.e., remove each widget w € ¢ if Ve € E.e.r(f) # w, and
(3) removes duplicate sub-trees of each widget » in a GUI layout ¢
if it displays a list on the GUI, e.g, if w.type = ListView.

For each iteration, we select one more rule that (1) has not been
applied, and (2) leads to minimal cluster merging, i.e., fewest clusters
can be merged after applying this rule, and add it to the rule set
R (Line 5). With R, we enumerate each cluster pair (Cy,Cy) to
determine whether they can be merged by comparing their new
fingerprints (Line 6-10). After merging all clusters with identical
fingerprint, we try to detect anomalies (and mine may-beliefs) on
the merged clusters (Line 11). Such an iteration terminates when
all abstraction rules are applied, only one cluster remains, or we
have found an anomaly (Lines 4-13).

Fingerprint Extraction. As Algorithm 3 shows, to extract fin-
gerprint of a cluster C, we randomly select one layout pair in
(t1,£2) € C (Line 16), apply the currently selected abstraction rules
on #; and #», and calculate the differential between the abstracted
layouts £] and £, as C’s fingerprint (Lines 17-20).

We denote the differential of two (abstracted) GUI layouts £ and
¢’ as a tree editing operation sequence [45] A transforming ¢ to ¢’.
Each operation is a tuple 0 = {t, @, »’), where t is its type (addition,
deletion, or modification), w is the target of 0, and ’ is the widget
after the operation is applied. For an adding operation, we add o’
as ’s leftmost child. For an deleting or modification operation, we
replace w with «” (for deleting operations w’ = L). Specifically for
a modification operation o = (, w, "), if for an widget attribute
attr (e.g., text) we have w.attr = w’.attr, we set w.attr and w’.attr
to L to reduce noises.
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We randomly select one layout pair in C and use its A as C’s
fingerprint because (1) all layout pairs start in their own clusters,
(2) we only merge clusters with identical fingerprints, and (3) for
any two layout pairs in one cluster, applying one more abstraction
rule may only remove identical operations in their As. Therefore,
we can safely assume that all layout pairs in a cluster share the
same A.

Anomaly Detection and May-Beliefs Mining. Given a set of
clusters C = {C1,Cy, ...,Cm}, we conduct a z-score-based analysis
to identify anomaly clusters. Ideally, the z-score [13] of a cluster
CeCis

_ICl-pc

= —Sc ,

where ¢ is the average sizes of clusters in C and s is the standard
deviation. However, |C| can be quite small, and the anomaly clusters
can largely affect p¢ and s¢. Therefore, we replace u¢ and s¢ with
pcr and s, respectively, where the majority subset C’ C C is the
smallest subset such that

Z | > Z Z C].

C'eC’ CeC

zc

Following the common practice, a cluster C € C is considered
anomaly if zc > 3 and |C| < p¢r. Other clusters are accordingly
considered as may beliefs.

4 IMPLEMENTATION

We implemented the deep state differential analysis algorithm as
a prototype tool ODIN consisting of 14,362 lines of Kotlin code.
We extensively used open-source tools in the implementation, and
OpIN is also open-source available: bootstrapping automatically
generated test inputs (traces) are obtained using APE [14] and
ComboDroid [39]. Such a mixed bootstrapping is also inspired by
existing work [36]. APE is also used to execute test inputs and
obtain execution traces (GUI layout dumps at app states regarded
quiescent by APE after launching and sending each event).

All implementation is consistent with the descriptions in Sec-
tion 3. For performance considerations, during the calibration pro-
cedure (Algorithm 2) , if the trace of a generated input for o* does
not reach o*, ODIN still keeps it in the calibrated input set but
does not count it when checking the number of test inputs for
termination. Moreover, for each GUI model state and appended
event pair, may beliefs are mined and multiple anomalies can be
detected. ODIN outputs a single report containing all corresponding
execution traces and clusters for further manual examination.

5 EVALUATION

Our evaluation aims to answer the following research questions:

¢ RQ1 (Bug Finding, Section 5.2): How effective does OpIn
automatically find non-crashing functional bugs in real An-
droid apps comparing with state-of-the-art techniques?

e RQ2 (Test Input Calibration, Section 5.3): How beneficial
is input calibration in establishing beliefs and finding non-
crashing functional bugs?

e RQ3 (May-Belief Mining, Section 5.4): How beneficial is
our may-belief mining algorithm in identifying non-crashing
functional bugs?
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e RQ4 (False Positives, Section 5.5): How precise does OpIin
report non-crashing functional bugs?

e RQ5 (Bug Types, Section 5.6): What types and character-
istics of non-crashing functional bugs can Opin find?

5.1 Experimental Subjects and Setup

Evaluated Apps. We first collected 11 apps (latest version) used in
the evaluation of existing Android testing/oracle work [14, 34, 39]
as Group Randoms. We selected the top three largest (in LoC) among
all available subjects: WIKIPEDIA, ANTENNAPOD, and ANKIDROID,
and eight random subjects with at least 10K downloads and 4,000
LoC. These subjects are listed as the first group in Table 1.

To conduct a full comparison with the state-of-the-art work Ge-
nie [36], we also include all experimental subjects in the evaluation
of Genie, excluding two non-functional apps (RAbD1oDRoOID and Sku-
TuBE) due to unavailable Web services. For ANKIDROID, ANYMEMO,
MARKOR, and TRANSISTOR, their latest versions are included in the
first group of subjects. The remaining six subjects are listed as the
second group named Group Comparisons in Table 1.

If an app’s major functionalities cannot be accessed without a
proper initial setup (e.g., user login), we provided the app a script to
complete the setup. All evaluated techniques received exactly the
same script, which runs automatically once the initial setup GUI is
reached, to ensure a fair comparison. This is a common practice in
Android testing [4, 5, 8, 14, 34, 39]. We did not mock any further
functionality other than the initial setup script.

Experimental Setup. To answer RQ1, we compared ODpIN with
the state-of-the-art automated oracle Genie [36] on all 17 selected
apps. Genie was configured with its default settings (same in its
evaluation): one hour for mining a GUI transitional model and gen-
erating 20 initial test inputs with up to 15 events. Then, it mutated
the test inputs (at most 4,500 mutated test inputs from one initial
test input), executed them on 16 parallel Android emulators, and
detected non-crash functional bugs. The exploration is terminated
if accumulated wall-clock time exceeds 48 hours.

OpIN is given a same 48-hour time limit. Since ODIN requires
massive test inputs to establish beliefs, we divide the 48-hour into
12 hours of test input generation (6 hours each for APE [14] and
ComboDroid [39], each test input is 60-event long) and 36 hours
for test input calibration and behavior manifestation on 16 parallel
emulators. Runtime cost for anomaly detection is negligible. The
calibration process terminates when ODIN obtains the same number
of test inputs as the automatically generated ones, and the steps of
a simulated random walk is also limited to 60. For each GUI model
state o, ODIN keeps 200 random inputs reaching 0. We compared the
numbers of bug reports, true positive ones, and detected distinct
non-crashing functional bugs of OpiN and Genie. We manually
analyzed the GUI execution traces and related code of true bugs to
determine their distinctness.

To answer RQ2 and RQ3, we compared OpIN with two of its
variants, namely ODIN-NOCALIB and ODIN-SIMPLE on the subjects
of the Randoms. ODIN-NoCALIB does not conduct test input cali-
bration, but directly samples 200 inputs for each GUI model state
from automatically generated test inputs. On the other hand, OpIN-
SiMpLE adopts a simple clustering and anomaly detection strategy.
Specifically, for clustering it uses a fixed abstraction criteria that
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Table 1: Experimental subjects and comparison results with Genie
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ID SuBjECT (Version, #Downloads, LoC) Genie [36] Opin Comparison
’ ’ #TP/#Report  4p | #Input #State (Cov) #TP/#Report 4 | [Genie|Common][Opin |
Group Random: Random apps, latest version

1  WIKIPEDIA (2.7.50366, 10M-50M, 93404) 35/112 (31.2%) 1 5,015 261 (8.0%) 136/381 (35.7%) 1

2 ANTENNAPOD (2.0.0, 100K-500K, 262460) 35/106 (33.0%) 8 4,856 96 (24.0%) 151/447 (33.8%) 6

3 ANKIDROID (2.15.4, 5M—10M, 66513) 6/19 (31.6%) 1 | 4876  124(20.2%) 101/256 (39.5%) 1

4 AMAZE (3.6.0, 100K-500K, 66126) 72/152 (47.4%) 1 5,621 103 (21.4%)  231/683 (33.8%) 2

5  AND-BIBLE (beta-539.3, 100K-500K, 20301) | 22/45 (48.9%) 2 4,339 63 (34.9%) 144/394 (36.5%) 2

6  ANYMEMO (10.11.6, 100K-500K, 40152) 20/91 (22.0%) 1 5,022 147 (14.3%) 62/203 (30.5%) 1

7  MARKOR (2.6.0, 50K-100K, 8356) 31/69 (44.9%) 1 | 5388  87(21.8%)  138/403 (342%) 1

8  MATERIALISTIC (3.3, 50K-100K, 38468) 35/78 (44.9%) 1 4,852 196 (8.7%) 247/735 (33.6%) 1

9  TRANSISTOR (4.0.15, 10K-50K, 4925) 15/21 (71.4%) 1 4,362 83 (50.6%) 86/238 (36.1%) 2

10  SkYTUBE (2.987, 100K-500K, 9615) 16/38 (42.1%) 2 4,961 235 (6.8%) 216/807 (26.8%) 2

11  AARD2 (0.46, 10K-50K, 9622) 8/23(34.8%) 1 | 4471  68(51.5%)  47/145(32.4%) 1

Group Comparisons: Other Genie evaluated apps, Genie’s evaluated version

12 AcTIviTYDIARY (1.4.0, 1IK-5K, 6966) 31/69 (44.9%) 7 4,335 77 (24.7%) 115/310 (37.1%) 3

13 TASKS (6.6.5, 100K-500K, 46828) 12/17 (70.6%) 2 4,516 133 (16.5%) 71/203 (35.0%) 2

14  UNITCONVERTER (5.5.1, IM=5M, 4167) 50/106 (47.2%) 2 5,013 179 (11.2%)  126/246 (51.2%) 2

15  SIMPLETASK (10.3.0, 10K-50K, 3767) 13/16 (81.2%) 1 4,562 169 (13.6%) 0/153 (0.0%) 0

16 FOSDEM (1.6.2, 10K-50K, 8188) 30/71(42.3%) 1 | 5012 207 (9.2%)  142/299 (47.5%) 1

17 MYEXPENSE (3.0.9.1, 500K-1M, 77155) 6/41 (14.6%) 1 4,912 205 (8.8%) 0/291 (0.0%) 0

Summary | 26/63 (41.3%) 34 | 4,830 143 (18.2%) 118/364(32.4%) 28 |[17 | 17 [ 11 |

! Column Subjects lists the information of each subject. For Genie and ODpIN, column #TP/#Reports displays the numbers of true positive/all reports for each subject
and the TP rate in the brackets, and column #p;: displays the numbers of detected distinct bugs. For OpIN, the number of automatically generated test inputs and the
number of GUI states in the mined model along with the state coverage (a state is considered covered if ODpIN finishes mining may beliefs for it) are displayed in
column #Inputs and #State (Cov), respectively. Finally, column Comparison plots the venn diagrams of the sets of bugs detected by Genie alone, OpIN alone, and

both, respectively.

removes all non-interactive widgets and sets the values of all at-
tributes except type to L for all remaining widgets in the GUI layout.
This is a common abstraction criteria adopted by existing tech-
niques [5, 34, 36]. Moreover, for anomaly detection ODIN-SIMPLE
directly uses the mean and standard deviation of all clusters in-
stead of the ones of the majority subset to calculate z-scores. For
ODIN-NOCALIB, we let it use the same automatically generated test
inputs as ODIN, and gave it 36 hours for behavior manifesting and
anomaly detection. For ODIN-SIMPLE, we let it mine may beliefs and
detect anomalies on all the GUI layout pairs produced by OpIN with
no time limitation. We compare the reports and detected distinct
non-crashing bugs of these variants on the 11 randomly selected
subjects of Group Randoms.

To answer RQ4 and RQ5, we further analyzed ODIN’s reports
and detected bugs, the corresponding execution traces, and the
related code of the apps, to determine the root causes of false reports
and the bugs, respectively. All experiments were conducted on a
server running Ubuntu 18.04 LTS with 32-core AMD Ryzen 2990WX
CPU, 128G RAM, and 16 Android 7.1.1 emulators.

5.2 Evaluation Results: Bug Finding

Bugs Found. The overall results in Table 1 show that OpIN comple-
ments Genie in finding non-crashing functional bugs. Considering
that only ~5,000 traces are used in the experiments due to the time
limit, OpIN would have potential to reveal even more non-crashing
functional bugs given truly massive traces.

After eliminating false and duplicated reports, we found that
OpiN and Genie reported 28 and 34 distinct non-crashing func-
tional bugs, respectively. 17 of the bugs are overlapping. The Venn
diagrams in the last column of Table 1 displays the detailed results.

In the subjects of the Randoms and the Comparisons, Genie re-
ported 20 and 14 functional bugs, respectively, while ODIN reported
20 and 8, respectively. On average, Genie output 63 bug reports for
each app, 26 (41.3%) of which were true, while OpIN output 364
reports for each app, 118 (32.4%) of which were true. ODIN reported
more duplicated reports because there can be multiple GUI model
states representing semantically similar GUI layouts that respond to
(slightly) different sets of events, and from these GUI model states
OpIN identifies the same non-crashing functional bugs and reports
each individually.

Previously Unknown Bugs. OpIN and Genie are also complemen-
tary to each other in detecting previously unknowns non-crashing
functional bugs. Among all true-positive bugs reported by Opin
in the apps of the Randoms group, we reported five previous un-
known bugs (listed in column New in Table 2) by excluding bugs
already in the issue tracking system. Genie reported four previ-
ously unknown bugs (two in AMAzE and two in SKYTUBE), two of
which were also reported by Opin. Developers confirmed all these
previously unknown bugs.

Discussions. For RQ1 (bug finding), we argue that OpIN comple-
ments Genie, and the major limitation of ODIN is the unavailability
of truly massive traces that thoroughly manifests app behaviors for
all GUI model states.

For the 17 bugs detected by both Opin and Genie, we found that
they indeed fall into the scopes of both tools. Specifically, we found
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Table 2: Comparison results between different variants of OpIN on the Randoms

ID  Subject Inputs OpINn 5 ObpIN-NoCALIB 5 ODIN-SIMPLE 3
#Input  #State | Cov #TP/#Report a New | Cov #TP/#Report TS #TP/#Report A
1 WIKIPEDIA 5015 261 8.0%  136/381 (35.7%) 1 7.3%  99/290 (34.1%) 1 0/142 (0.0%) 0(-1)
2 ANTENNAPOD | 4,856 9% 24.0%  151/447 (33.8%) 6 19.8%  52/226 (23.0%) 3 (-3) | 16/115(13.9%)  2(-4)
3 ANKIDROID 4876 124 | 202%  101/256 (39.5%) 1 4 | 20.2%  93/194 (47.9%) 1 29/385 (7.5%) 1
4  AMAZE 5,621 103 | 21.4%  231/683 (33.8%) 2 W | 194% 151/493 (30.6%)  1(-1) | 163/672 (24.3%) 1(-1)
5  AND-BIBLE 4339 63 34.9%  144/394 (36.5%) 2 333%  94/264 (35.6%)  1(-1) | 81/272(29.8%)  1(-1)
6  ANYMEMO 5,022 147 | 143%  62/203 (30.5%) 1 16.3%  52/164 (31.7%) 1 0/181 (0.0%) 0(-1)
7  MARKOR 5,388 87 21.8%  138/403 (34.2%) 1 23.0%  103/342 (30.1%) 1 30/178 (16.9%) 1
8  MATERIALISTIC | 4,852 196 8.7%  247/735(33.6%) 1 6.6%  147/644 (22.8%) 1 0/103 (0.0%) 0(-1)
9  TRANSISTOR 4,362 83 50.6%  86/238 (36.1%) 2 53.0%  75/191 (39.3%) 2 31/108 (28.7%)  1(-1)
10  SkYTUBE 4,961 235 6.8%  216/807 (26.8%) 2 55%  168/651(25.8%)  1(-1) 0/203 (0.0%) 0(-2)
11 AARD2 4,471 68 51.5%  47/145 (32.4%) 1 55.9%  34/98 (34.7%) 1 23/87 (26.4%) 1
Summary | 4,888 133 | 18.0% 142/427 (33.3%) 20 5 | 17.3% 97/323(30.0%) 14(-6) | 34/222(15.3%) 8 (-12)

! Column ID lists the id of each subject in Table 1. The numbers of generated test inputs and GUI model states in the mined model are displayed in column #Input and
#State, respectively. For the three variants ODIN (with calibration), ODIN-NoCALIB, and ODIN-SIMPLE, column Cov lists the state coverage of the GUI model (ODIN-SIMPLE
shares the same number as ODIN), column #TP/#Report displays the numbers of true positive/all reports for each subject and the TP rate in the brackets, and column #p:
displays the numbers of detected distinct bugs. For the standard version of ODIN, column New additionally lists the number of detected previously unknown bugs.

that these bugs are rare of occurrences and lead to violations of
metamorphic relations utilized by Genie.

For the 11 bugs detected by Opin but not Genie, we found most
(8/11, 73%) of them are beyond Genie’s independent assumption.
Two comparable GUI layout sequences can be obtained by (1) Ex-
ecuting a single functionality of the app, and (2) executing it se-
quentially after executing another functionality independent from
it. Genie designs metamorphic relations between these sequences,
and identifies violations of these relations caused by the incorrect
inference between executing the two independent functionalities.
Though effective, many bugs does not concern such incorrect infer-
ences, and thus may escape Genie’s detection. For instance, Genie
failed to detect the motivating bug example in Figure 2. On contrast,
OpIn successfully reported this previously unknown functional bug.
The other three functional bugs missed by Genie require complex
event sequences to manifest, which Genie failed to generate.

For the 17 bugs reported by Genie but not OpIN, many (9/17) of
them were due to the corresponding GUI model states were not
covered. A GUI model state is covered if ODIN finishes manifesting
behaviors and mining may beliefs for it. As Table 1 shows, even
with 16 emulators and 36 hours, ODIN could only cover a small
portion of the GUI model states (18.2%) because executing a test
input is extremely time-consuming [40].

As a qualitative and supplementary experiment, we gave ODIN
sufficient time (108 hours) to cover all GUI model states on AcTIvi-
TYDIARY (a relatively small app among all experimental subjects),
and three of four missed bugs were correctly identified by the belief
mining. Therefore, efficient test execution mechanisms [40] could
be a potential research direction for enhancing OpIN. There are also
4/17 missed bugs because test input generators failed to manifest
them. Therefore, more effective test input generators also benefits
OpIN in bug finding.

Finally, we found a fraction of bugs (4/17) missed by OpIN were
manifested by a considerable fraction of test inputs reaching the
corresponding GUI model states, because calibration procedure did
not generate enough additional inputs for these models, which hide

deep in the GUI model. These bugs were thus regarded as normal
behaviors instead of anomalies. This suggests that the calibration
procedure may be further improved in the future.

5.3 Evaluation Results: Test Input Calibration

As shown in Table 2, if the calibration procedure is disabled (ODIN-
NoCaAL1B), 6/20 (30%) bugs are missed, and we do not observe signif-
icant changes to the GUI model state coverage and true positive rate.
All these missed bugs are are due to the skewed distributions of
automatically generated test inputs: the erroneous GUI model states
occurred too frequently in the traces to be identified as deviant
behavior.

5.4 Evaluation Results: May-Belief Mining

As shown in Table 2, bug finding capability is significantly reduced
if we adopt a trivial clustering algorithm (ODIN-SimMPLE) that adopts
afixed abstraction criteria and uses the mean and standard deviation
of all clusters to calculate z-scores, indicating that our hierarchical
clustering and anomaly detection algorithm is effective in mining
may beliefs and detecting anomalies.

Specifically, 12/20 (60%) bugs are missed because either (1) ODIN-
SIMPLE over- or under-abstracted the GUI layouts, and incorrectly
clustered normal and anomaly behaviors together or put similar
behaviors into different clusters, or (2) the clusters were too few,
and the anomaly ones largely affected the z-scores.

5.5 Evaluation Results: False Positives and
Duplicated Bug Reports

False Positives. As shown in Table 1, approximately 2/3 of ODIN’s
bug reports are false positives. Furthermore, there may also be
duplicated bug reports on the same root cause. The root causes of
false positives are:

(1) Imprecise GUI layout model (47%). We adopted the Swift-
Hand [8]’s algorithm for GUI state model construction, and
semantically dissimilar states may be erroneously grouped
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together. This is a fundamental limitation for any GUI layout-

based approach [5, 14], and this limitation may be alleviated

by developer-provided models.
(2) Rare but normal behaviors (32%). Some functionalities of an
app are hidden deep and require a complex input to exer-
cise, making our test input calibration procedure insufficient.
Increasing the runtime of test calibration will yield more
balanced test inputs for these states.
Unstable replay (21%). How to stably replay an execution
trace is another open challenge [24, 34]. Operations such as
network accessing can have non-deterministic latent effect
on the app’s execution, leading to rare but correct behav-
iors. This can be tackled with more advanced trace replay
techniques.

3

~

Duplicated Reports. We manually analyzed the GUI execution
traces and related code of true reports to determine whether they
are duplicated. As shown in Table 1, ODIN can produce duplicated
reports (~ 100 bug reports revealing ~ 1.6 distinct bugs per app).

Discussions. Despite the relative high false positive rates and the
existence of duplicated reports, we believe that they do not signifi-
cantly hinder the practical benefits of Opin for finding otherwise
hard-to-detect bugs.

First, in our evaluation, ODIN has already significantly narrowed
down the scope for manual examination by filtering out ~98.7% of
the traces (~28,000 traces were generated for each app, and there
were ~360 reports). We manually examined all the remaining traces
(several hours for each app), resulting in ~1.6 bugs per app. Consid-
ering that we found previously unknown bugs in well-tested apps,
such an effort is worthwhile and reasonably moderate. For example,
the file managing app AMAZE has 50+ manually written regressions
test cases which evolved over time. Nonetheless, OpIN detected a
previously unknown bug (shown in Fig 2) in its frequently used
functionality, which can severely affect user experience. The devel-
opers quickly fixed the bug in the first revision after confirming our
report, and explicitly documented it in the Changelog for v3.6.2.

Furthermore, there are opportunities to further reduce human
labor:

(1) For practical usage, one can first fix a bug detected by Opin
and then eliminate its duplicates by checking the remaining
traces against the patched app. As bug duplication for non-
crashing functional bugs is still a challenging open issue,
this is the typical process currently adopted in practice [36].

(2) Better visualization of test cases (ODIN used a simple vi-
sualization) and test case triaging can reduce the time for
checking a trace. Checking a trace often takes less than one
minute for a developer familiar with the app.

Such limitations may also be alleviated by future research on
reducing false positives and duplication.

5.6 Evaluation Results: Bug Types
The 28 bugs found by OpIN are categorized as follows:
(1) Incorrect inferences between event handlers (14/28, 50%). An
app can be exercised in different scenarios, in some of which

multiple (dependent or independent) event handlers that
may incorrectly affect each other’s execution can be invoked
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simultaneously or sequentially. For example, TRANSISTOR
provides search suggestions if more than three characters
are entered in the search bar. However, a race condition in-
correctly results in app denial-of-service without a crash if a
user quickly deletes the characters before search suggestions
are returned.

(2) Improperly handled data format (8/28, 29%). An app can have
functionally similar reactions to different data formats, and
some case handler code may be buggy. For example, ANTEN-
NAPoD cannot properly process a subscribed podcast when
its metadata is in a less popular CSV format, and incorrectly
recognizes audios in the podcast as videos.

(3) General coding mistakes (4/28, 14%) Some non-crashing func-
tional bugs are the results of general coding mistakes, e.g.,
third-party library misuse or incorrect program logic.

(4) Incompletely implemented functionalities (2/28, 7%). Due to
tight development schedule, some rarely used functionalities
of an app may leave unimplemented, e.g., untranslated texts
on rarely used languages.

5.7 Discussions

Finding Non-Crashing Functional Bugs. Finding hidden non-
crashing functional bugs in an app is far from trivial. Many bugs (in-
cluding the five previously unknown ones) are from well-maintained
apps, some are even from apps with extensive manual test cases
(e.g., ANKIDROID contains over 200 manually written Ul/unit test
cases with assertions for correctness checking).

Considering the challenges even for experienced developers to
find such non-crashing functional bugs, the runtime overhead (for
generating and calibrating massive traces) and false positives could
be acceptable for developers.

Existing Non-Crashing Functional Bug Oracles. Before OpIN,
non-crashing functional bugs can be automatically detected by
differential-based metamorphic relations. Thor [1] and SetDroid [37]
perturb a trace by injecting neutral event sequences. Genie [36] ex-
tends this idea by injecting a “likely independent” in-app operations.
Metamorphic testing is a fundamentally different scope compared
with OpIN, and thus we compared only with the state-of-the-art
technique Genie [36].

Threats to Validity. The representativeness of selected test sub-
jects can affect the fidelity of our conclusions. To mitigate this
threat, we selected additional evaluation subjects from popular
benchmarks evaluated in existing work. These subjects are (1) large
in size (around 76 KLoC on average), (2) well-maintained (contain-
ing thousands of revisions and hundreds of issues on average), (3)
popular (all have 10K+ downloads), and (4) diverse in categories.
Moreover, we selected the exact same versions of subjects used to
evaluate Genie to provide a direct comparison.

The evaluated techniques (including OpIN) involve randomness,
and subjects may be non-deterministic. To mitigate this threat,
the bootstrapping test input generation tools for both Genie and
OpIN were given sufficient time to cover almost all states they
can explore. Moreover, we manually analyzed the reported bugs
and identified that (1) most (8/11=73%) Odin-unique bugs are due
to fundamental limitations of Genie, thus unlikely to be found
by Genie on independent runs, and (2) many Genie-unique bugs
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(9/17=53%) might be found by OpIN because the specific GUI states
were not explored (no clustering performed and thus no bug reports)
before OpIN’s timeout. Therefore, we believe that randomness is
not a primary threat to validity, and Odin and Genie are indeed
complementary to each other.

The bug reports of OpIN and Genie were manually analyzed to
determine whether they are true positives. Moreover, we manually
identified distinct detected bugs and their root causes. This may
incur imprecision. To mitigate this threat, three authors of this
paper conduct independent examination on all the reports, and
cross-check to ensure correctness.

6 RELATED WORK

Detecting Non-Crashing Functional Bugs in Android Apps.
A few pieces of work proposed for fully automatically detecting
non-crashing functional bugs in Android apps without given ora-
cles. Inspired by metamorphic testing [7], Both Genie and SetDroid
design heuristic metamorphic relations between app execution re-
sults and cross-check for relation violations to detect non-crashing
functional bugs. For instance, SetDroid utilizes the metamorphic
relation that if one changes the system settings and immediately
changes them back, the follow-up execution of the app should not
be affected. Though effective, these metamorphic relations all have
a strong emphasize on the independence of two event fragments,
and many functional bugs fall out of these oracles’ scopes. As our
evaluation results show, Genie missed many bugs because they do
not lead to relation violations. DiffDroid [12] on the Other hand, is
inspired by differential testing [25] and cross-checks for execution
inconsistencies on different devices. Similarly, bugs with consistent
consequences across devices would escape DiffDroid’s detection.

Our deep-state differential analysis does not rely on these symp-
tomatic features of non-crashing functional bugs in Android apps.
Inspired by the “bugs as deviant behaviors” [11] idea, it captures
the statistical features of the bugs. Therefore, it can detect bugs
with various symptoms and root causes. As our evaluation results
demonstrate, our approach well complements existing techniques.

Most existing techniques still require manually written oracles,
and mainly focus on enhancing these oracles’ detecting abilities.
Thor [1] and executes test suites in adverse conditions and check if
the manually written assertions still hold. QUANTUM][44] utilizes
manually provided GUI models as oracles and accordingly exam-
ines app behavior under specific user interactions. AppFlow [15]
and ACAT [32] utilize machine learning techniques to combine
test inputs and oracles from manually written ones for testing
complex app functionalities. FARLEAD-Android [16] accepts GUI-
level formal specifications as manually written Linear-time Tem-
poral Logic formulas as oracles. Finally, AppTestMigrator [6] and
CraftDroid [20] migrate test inputs and oracles from other apps to
examine the functional correctness of the app under test. These
techniques require tremendous manual efforts to provide required
oracles or specifications, while ODIN requires no manual guidance.

In conclusion, most existing techniques heavily rely on manually
provided oracles and specifications to detect non-crashing func-
tional bugs, while a few fully automated ones detect specific types
of non-crashing bugs. This motivates the design of ODIN.
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Detecting Non-crashing Functional Bugs in Traditional GUI-
Based Softwares. For traditional GUI-based programs such as
web applications and desktop programs, manually provided oracles
also play an essential role for detecting non-crash functional bugs.
For instance, Memon et al. proposed a series of work [26-28, 42]
that derive oracles for desktop programs from manually provided
GUI models or specifications. These techniques cannot be directly
applied to Android apps, and they still require manual guidance.

The Must/May Belief. The classic must/may belief was proposed
by Engler et al. [11] for detecting functional bugs in operating
systems as deviant behaviors. Be a generic methodology, the must/-
may belief has been utilized in various research topics, including
specification mining [3, 19, 33, 43], race detection [10, 22], fault
localization [21, 29, 31], etc.

A few techniques infer must beliefs from manually written ora-
cles for detecting non-crashing functional bugs in Android apps.
For instance, Thor [1] infers must beliefs that if a test case passes
the manually written assertions, inserting a neutral action (e.g.,
rotating the screen and back) into the test case should not change
the outcome. To the best of our knowledge, we are the first to
fully automatically infer may beliefs for detecting non-crashing
functional bugs in Android apps without given oracles.

7 CONCLUSION

Leveraging the insight that a large number of traces obtained by
executing automatically generated test inputs can reach a similar
GUI layout, and only a small portion of them reach erroneous app
states, this paper presents a generic, novel, and automatic oracle
named deep-state differential analysis for detecting non-crashing
functional bugs in Android apps by manifesting both normal and
deviant app behaviors via extending calibrated test inputs, and
clustering them to mine may beliefs and detect anomalies. We im-
plemented our technique into a exploratory prototype OpIN, and
the evaluation results demonstrate that OpIN can effectively detect
non-crashing functional bugs in real-world Android apps, a consid-
erable portion of them cannot be detected by existing techniques.

As a first exploratory work, the deep-state differential analysis
technique provides an new direction for detecting non-crashing
functional bugs. Based on the proof-of-concept prototype, a diverse
range of technologies can be applied in the future enhancement
of this technique. Promising research directions include utilizing
information in the traces beyond GUI layouts, such as app logs
and method invocation sequences, to calibrate automatically gen-
erated test inputs and mine may beliefs, and human-in-the-loop
approaches to filter out false positive results.
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