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ABSTRACT

For ensuring the reliability of Android apps, there has been tremen-

dous, continuous progress on improving automated GUI testing in

the past decade. Specifically, dozens of testing techniques and tools

have been developed and demonstrated to be effective in detecting

crash bugs and outperform their respective prior work in the num-

ber of detected crashes. However, an overarching question łHow

effectively and thoroughly can these tools find crash bugs in prac-

tice?ž has not been well-explored, which requires a ground-truth

benchmark with real-world bugs. Since prior studies focus on tool

comparisons w.r.t. some selected apps, they cannot provide direct,

in-depth answers to this question.

To complement existing work and tackle the above question,

this paper offers the first ground-truth empirical evaluation of

automated GUI testing for Android. To this end, we devote sub-

stantial manual effort to set up the Themis benchmark set, includ-

ing (1) a carefully constructed dataset with 52 real, reproducible

crash bugs (taking two person-months for its collection and vali-

dation), and (2) a unified, extensible infrastructure with six recent

state-of-the-art testing tools. The whole evaluation has taken over

10,920 CPU hours. We find a considerable gap in these tools find-

ing the collected real bugs Ð 18 bugs cannot be detected by any

tool. Our systematic analysis further identifies five major common

challenges that these tools face, and reveals additional findings

such as factors affecting these tools in bug finding and opportu-

nities for tool improvements. Overall, this work offers new con-

crete insights, most of which are previously unknown/unstated

and difficult to obtain. Our study presents a new, complementary

perspective from prior studies to understand and analyze the effec-

tiveness of existing testing tools, as well as a benchmark for future

research on this topic. The Themis benchmark is publicly available

at https://github.com/the-themis-benchmarks/home.

CCS CONCEPTS

· Software and its engineering → Software testing and de-

bugging.
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1 INTRODUCTION

Android apps typically run in complex end-user environments post-

deployment. Ensuring their reliability and correctness Ð avoiding

fatal crashes in particular Ð is thus a top priority of any app devel-

opment team. Since the first effort by Hu and Neamtiu [13] in 2011,

tremendous and continuous efforts have been made to improve

automated GUI testing for Android [19, 47, 49], which complement

the commonly-adopted manual testing in this field [18, 48]. Specifi-

cally, dozens of automated GUI testing or fuzzing tools (e.g., [5, 9,

12, 15, 24, 25, 29, 31, 37]) have been developed and demonstrated to

be effective in detecting crash bugs and outperform their respective

prior work in the number of detected crashes.

Thus, an overarching question is łHow effectively and thoroughly

can these tools find crash bugs in practice?ž. To answer this question,

an ideal approach is to directly assess these tools against a ground-

truth benchmark with real-world bugs, and check how many bugs

are found or missed by a given tool. Indeed, such a benchmark-

ing approach is well-justified and widely-adopted in practice for

evaluating software testing or analysis tools [17], e.g., LAVA [8],

Defects4J [16] and DeCapo [4]. It has two key benefits: (1) enabling

many direct, in-depth analyses (e.g., analyzing the false negatives

and common weaknesses of tools), and (2) consolidating the evalua-

tion validity (e.g., avoiding such false positives as bug overcounting

due to the imprecision of bug de-duplication strategies). In contrast,

evaluating testing tools against only apps (without known bugs) is

difficult to obtain such benefits if not impossible.

On the other hand, no effort exists in the literature yet to answer

the aforementioned question against ground-truth. For example, by

investigating the recent literature reviews [19, 47, 49] and relevant

publications in this field, we identified 32 research papers that

propose automated testing techniques for detecting crash bugs in

Android apps. However, none evaluated the proposed techniques

against real-world bugs, and all compare tools w.r.t. some selected

apps alone. Similarly, all prior relevant empirical studies [3, 7, 32,

50, 52] in this field also use only apps (without known bugs) to
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Table 1: Key differences between the prior relevant studies and ours in evaluating automated testing techniques for Android

(ł✓ž, ł✗ž and ł?ž denote that the study can, cannot or can only partially give answers, respectively, and łN/Až is not applicable).

Studies Venue
Evaluation Basis Analysis Basis New Study Insights

#Tools Basis
Has the

ground-truth?
Basis

Are crashes
known and
reproducible?

Examine tool
implementations?

Discuss/confirm
with tool authors?

Quantifying bug
finding abilities

(RQ1)

Common
challenges
(RQ2)

Factors and
Opportunities

(RQ3)
Choudhary et al. [7] ASE’15 multiple apps ✗ #crashes, coverage ✗ ✗ ✗ ✗ ? ✗

Wang et al. [50] ASE’18 multiple apps ✗ #crashes, coverage ✗ ✗ ✗ ✗ ✗ ✗

Zheng et al. [52] ICSE’17-SEIP one one app ✗ coverage N/A ✗ ✗ ✗ ? ✗

Behrang et al. [3] ASE’20 one apps ✗ coverage N/A ✗ ✗ ✗ ? ✗

Our study ESEC/FSE’21 multiple real bugs ✓ real-world bugs ✓ ✓ ✓ ✓ ✓ ✓

evaluate testing tools. Therefore, we still do not have direct, in-

depth answers to the aforementioned question.

Our work aims to fill this gap by providing the first ground-truth

evaluation of existing testing techniques for Android. To clearly

present the necessity and novelty of our study, Table 1 summarizes

the key differences between the prior relevant studies [3, 7, 50, 52]

and ours. These differences show that our study presents a new,

complementary perspective from prior studies.

Specifically, the studies by Choudhary et al. [7] andWang et al. [50]

compare one tool to another based on some selected apps in terms

of the numbers of found unique crashes and achieved code coverage.

However, due to the lack of ground-truth, we cannot analyze the

false negatives of these tools on a common basis. As a result, quanti-

fying the degree of effectiveness of these tools becomes difficult. In

practice, these two studies face two additional challenges. First, ex-

isting testing tools for Android cannot reliably provide reproducible

tests for found crashes (see Section 5 in [7] and Section 3.5 in [36])

due to the open technical challenges like GUI flakiness [27, 46]

and lengthy tests [6]. As a result, it is difficult to analyze the bug

features, thus unable to offer fine-grained analyses on the tools’ bug

finding abilities. Second, existing tools heuristically de-duplicate

crashes by hashing stack traces, which is difficult to make reliable,

thus likely incurring bug-overcounting [17].

The studies by Zheng et al. [52] and Behrang et al. [3] investigate

the tool limitations by analyzing the uncovered code of one or more

apps, respectively. But these two studies cannot give direct answers

to the raised question, because they only focus on code coverage,

which is a proxy indicator of bug finding abilities and the correlation

could be weak [14] (our study also observes this in Section 4.2).

Moreover, they only evaluate one tool, Monkey [29]. Thus, the

generability of the identified tool limitations is unclear.

To achieve our study, one important step is to setup a ground-

truth benchmark with real-world bugs based on an agreed-upon cri-

terion. To this end, we resort to the industrial practitioners for gain-

ing insights. Specifically, we contact 8 senior app testing managers

and engineers (with 3∼10 years’ working experience) from five

well-known companies, i.e., Google, Facebook, Tencent, ByteDance

and Testin (a major mobile app testing service provider in China)

within our networks. Their teams are responsible for testing their

own apps (like Google Pay, Messenger, WeChat and TikTok which

have billions of monthly active users worldwide) or the apps from

different vendors. We conduct independent on-line interviews with

them per company, and ask them 5 prepared and some follow-up

questions to fully understand their testing practice.

Finally, all the interviewees respond that in practice they assign

priority labels to the bugs reported by in-house testing or app

users, and they prioritize critical bugs (namely important bugs) Ð

the bugs that break the major app functionalities and affect the

larger percentage of app users (in practice, realtime crash reporting

platforms are used to track crash issues from end-users). In other

words, critical bugs are more likely to affect more users in reality.

All the interviewees indicate and agree that the ability of finding

critical bugs is an objective metric to measure the effectiveness of

testing tools in practice. Thus, we decide to choose critical bugs

as the agreed-upon criterion to setting up the benchmark. In fact,

such ability has already been strongly and widely advocated for

evaluating testing tools in both industry and academia [26, 34].

To this end, we take three steps to approach this study. First,

we choose open-source apps as the targets to collect critical bugs

because their issue repositories are public. Specifically, we desig-

nate the importance of bugs w.r.t. their issue labels assigned by app

developers themselves. We collect the bugs with critical issue labels

like high-priority, blocking-release, P1-urgent. We finally construct

a dataset of 52 real bugs from 20 open-source Android apps by

crawling the issue repositories of 1,829 Android apps. This pro-

cess took us substantial manual effort (nearly two person-months)

that could not be automated. It involves manually reviewing bug

reports, locating buggy code versions, building app binaries, and

reproducing and validating bugs. Section 3.1 details this step.

Second, we rigorously setup a unified, extensible experimental

infrastructure, and integrateMonkey [29], the state-of-the-practice

testing tool, and five most recent state-of-the-art ones for thorough

evaluation, namely Ape [12], Humanoid [21], ComboDroid [15],

TimeMachine [9] and Q-testing [31]. Specifically, we run these

tools on the collected bugs, and profile different metrics: the number

of bugs they can find (i.e., effectiveness), how many times they can

trigger a bug given a number of runs (i.e., stability), and how long

they take to trigger a bug (i.e., efficiency). Section 3.2 details this step.

We name our dataset and infrastructure as the Themis benchmark,

which aims for an objective evaluation w.r.t. ground-truth.

Finally, we give the detailed quantitative and qualitative analysis

on the testing results of these tools by reviewing the bug features,

examining these tools’ implementations, and discussing/confirming

with the tool authors. We identify the common challenges that ex-

isting tools face and the factors that affect bug finding, which have

not been well-identified by the prior studies. In particular, we inves-

tigated the following research questions (answered in Section 4):

• RQ1: How effectively and thoroughly can these testing tools find

the collected real-world bugs?

• RQ2: Are there any common challenges that all these tools face in

finding these bugs (by analyzing the common false negatives)?

• RQ3: Are there any factors affect these tools in finding these bugs

(by pair-wisely analyzing the testing results of these tools)? What

are the opportunities for improving the state-of-the-arts?

Summary of main findings. Out of 52 bugs, 18 (≈34.6%) bugs

cannot be detected by any testing tool, which indicates that a con-

siderable gap exists between the existing tools and the collected
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Table 2: Summary of the selected automated GUI testing tools for Android in our study.

Tool Name Venue Open Source Main Technique
Need App

Source Code?
Need App

Instrumentation?
Supported

SDKs
Tool Version

Implementation
Basis

Monkey [29] - ✓ Random testing ✗ ✗ Any default -
Ape [12] ICSE’19 ✓ Model-based ✗ ✗ 6.0 / 7.1 a53e98c Monkey-based

Humanoid [21] ASE’19 ✓ Deep learning-based ✗ ✗ Any c494c7d DroidBot-based
ComboDroid [15] ICSE’20 ✓ Model-based ✗ ✓ 6.0 / 7.1 567b3f6 Monkey-based
TimeMachine [9] ICSE’20 ✓ State-based ✗ ✓ 4.4 / 7.1 e79beb5 Monkey-based
Q-testing [31] ISSTA’20 ✗ Reinforcement learning-based ✗ ✗ 4.4 / 7.1 / 9.0 045825a -

real-world bugs. Specifically, these 18 bugs impose five common

major challenges blocking any tool, e.g., deep use case scenarios,

changes of system/app settings, and specific user interaction patterns.

It indicates that continuous, long-term research effort is needed to

tackle these challenges (Section 4.2). On the other hand, the gap

is larger when these tools are applied individually Ð they miss a

large portion (53.8∼71.2%) of bugs, although we indeed observe

their unique advantages in finding specific bugs (Section 4.1). Also,

we find these tools have obvious randomness in triggering bugs,

and no one can absolutely outperform the others in bug finding.

By pairwise comparisons, we find that their testing results are

largely affected by the GUI exploration strategies, state abstraction

criteria, and small heuristics, which are the opportunities for tool

improvement in the short-term (Section 4.3). Table 6 in Section 4.4

summarizes the concrete new insights we obtained from this study,

most of which are unknown/unstated and difficult to obtain.

Contributions. Our study makes several contributions:

• It takes the first step to conduct an empirical study against real-

world bugs to evaluate GUI testing tools for Android, which

presents a new, complementary perspective from prior studies.

• It carefully setups the Themis benchmark, including the first

ground-truth dataset of 52 real, reproducible crash bugs and a

unified, extensible infrastructure, to achieve this study.

• It gives in-depth quantitative and qualitative analysis on the

testing results. It obtains new concrete findings, most of which

were unknown/stated before. It also motivates the future research

on this topic with a benchmark (discussed in Section 4.4).

2 TESTING TOOLS FOR OUR STUDY

Table 2 lists the selected tools for our study. Note that we use the

latest versions of these tools at the time of our study.

Monkey.Monkey [29] is a pure random testing tool. In principle,

Monkey emits pseudo-random streams of UI events (e.g., touch, ges-

tures, random texts) and some system events (e.g., volume controls,

navigation).Monkey is widely-used in industry for stress-testing

because it is easy-to-use and compatible with any Android version.

It is a popular baseline to evaluate new testing techniques.

Ape. Ape [12] is a novel model-based GUI testing tool. Different

from prior model-based testing tools like Stoat which use static GUI

abstraction criteria, Ape uses the runtime information to dynami-

cally evolve its abstraction criterion via a decision tree, which can

effectively balance the size and precision of the model. Specifically,

with this dynamically refined model, Ape generates UI events via a

random and greedy depth-first state exploration strategy. Moreover,

Ape also internally utilizes Monkey to occasionally emits random

UI events and system events to avoid stucking at local states.

Humanoid. Humanoid [21] is the first deep learning-based test-

ing tool. The core is a deep neural network model that predicts

which UI elements on the current GUI page are more likely to be

interacted with by users and how to interact with it. The model

was trained upon a large-scale crowd-sourced human interactions

dataset. Humanoid is expected to drive the GUI exploration to-

wards important states faster as it prioritizes UI elements according

to their importance and meaningfulness like a human. Humanoid

is built on DroidBot [20], a lightweight, model-based GUI testing

tool, which received 500+ stars on GitHub at the time of our study.

ComboDroid. ComboDroid [15] is a novel model-based testing

tool. Its core idea is to generate long and meaningful event se-

quences by combining a number of short, independent use cases,

to explore deep app states. ComboDroid obtains such use cases

either from humans or automatically generates from a GUI model

constructed by GUI exploration. It then analyzes the data-flow and

GUI-transition relations between obtained use cases, and combines

them (i.e., concatenating use cases in specific orders) to generate

final tests. Moreover, it works in a feedback loop, i.e., generating

additional use cases when prior tests reached new app states.

TimeMachine. TimeMachine [9] is a novel state-based testing

tool. Different from prior tools like Sapienz [25] and Stoat [37] that

evolve event sequences to maximize code coverage, TimeMachine

instead evolves a population of states which can be captured upon

discovery and resumedwhen needed for finding deep errors. During

test execution, its core is to take a snapshot of every interesting state

and add into the state corpus, and travel back to a most progressive

state and execute next test when the current exploration cannot

reach new interesting states. Its uniqueness is the ability to snapshot

and resume specific app state for further testing via the underlying

Android-based virtual machine.

Q-testing.Q-testing [31] is a reinforcement learning-based test-

ing tool. It uses a trained neural network to compare GUI pages. If a

page is similar to any of prior explored GUI pages, the comparator

will give a small reward. Otherwise, the comparator will give a

large reward. These rewards are used and iteratively updated to

guide the testing to cover more functionalities of apps.

Sapienz and Stoat. We also evaluated Sapienz and Stoat, al-

though the tools in Table 2 outperform them. Sapienz uses genetic

algorithms, while Stoat uses the stochastic model learned from

an app to optimize test suite generation. Despite Sapienz is closed-

source and only compatible with Android 4.4, we still include it

because it is well-known and its technique is unique.

3 EXPERIMENTAL SETUP

3.1 Themis’s Dataset

Collect open-source apps. We chose the open-source Android

apps on GitHub as the main source of collecting real-world bugs. To

include as many candidate apps as possible, we use two strategies:

(1) We crawled all the apps from F-Droid [42], the largest open-

source app market, because most of these apps are maintained on
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GitHub. (2) We used the keyword łAndroidž and AndroidMani-

fest.xml, the unique file of any Android project, to collect missing

Android apps that are only maintained on GitHub but not released

on F-Droid. We finally got 1,829 unique Android apps on GitHub.

Filter apps with critical issues. We designate the importance

of bugs w.r.t. the issue labels assigned by developers. To collect

as many critical issues as possible, we built a GitHub API [43]

based crawler to collect all the issue labels from 1,829 candidate

apps, and manually identified 111 different labels denoting criti-

cal issues. Then, we extracted 12 shorten forms of keywords from

these 111 labels for matching concrete issue labels. For example,

we use łblockž to match łblocking-releasež, łblockedž; łseverž to

match łseverity-highž, łseverity: crashž; łpriž to match łhigh prior-

ityž, łPriority-Criticalž, łMajor priorityž; łurgenž to match łurgency:

HIGHž, łp1-urgentž; łimportanž to match łimportant!ž, łP2: Very

Importantž, łBUG: High Importancež etc. We find these shorten

forms of keywords can effectively reduce the false negatives of crit-

ical issues. By filtering those apps whose issue labels contain one

of these 12 shorten forms of keywords, 200 valid apps remained.

From the above results, we find many apps do not have critical

issue labels. To further avoid missing critical issues, we continued

to scan the remaining 1,629 apps by checking whether any issue

whose title, body or comments contain the keywords such as łblockž,

łseverež, łcriticalž, łmajorž, łurgentž, łimportantž, łheavyž (derived

from the 12 shorten forms of keywords). We got 209 valid apps with

such issues. Thus, we obtained 409 (=200+209) valid apps in total.

Collect raw data of critical issues. Based on the previous data,

we manually inspected each issue of the 200 apps with explicit crit-

ical issue labels, and the issues of the 209 apps which have matched

keywords. Specifically, a candidate issue for our study should sat-

isfy these criteria: (1) was a crash bug with the keywords łcrashž or

łexceptionž; (2) have explicit reproducing steps; (3) was submitted

after 1st Jan, 2017 to avoid apps that could have outdated depen-

dencies. We finally got 228 critical issues from 51 apps. Many issues

were excluded because the bug reports do not have clear reproducing

steps and the corresponding app was outdated for a long time.

Validate and archive critical issues. We manually checked and

validated each of these 228 critical issues. The typical process is: (1)

reviewing and understanding the bug report, (2) locating the buggy

code version, (3) building and instrumenting the buggy app version,

(4) reproducing the bug, and (5) archiving the bug data. Note that in

practice we often have to iterate between step (2) and (4). Because

many bug reports are not well-formatted (e.g., missing buggy code

version or code fixing commits), we have to manually locate the

right version by trial and error until we can reproduce the described

bug. Moreover, building apps is very time-consuming because we

usually have to resolve outdated or missing dependencies and set up

necessary building environments (e.g., local servers). Reproducing

bugs also takes time because we have to link the steps to reproduce

in text with the app functionalities in GUIs. Many bug reports are

not well-written; and many apps do not have clear documentation.

During this process, an issue would be excluded if (1) we cannot

fully understand the bug report; (2) the buggy app version cannot be

located; (3) the buggy app version cannot be built into an executable

APK; (4) the issue cannot be faithfully reproduced on Android 7.1

(the version supported by the selected tools), e.g., the backend

server was obsoleted, the bugs were concurrency or compatibility

issues; and (5) the issue is deadly simple (e.g., start-up crashes).

In addition, we excluded an issue if its corresponding app is not

łself-containedž, i.e., testing such an app requires the non-trivial

collaborations with humans or other devices. For example, a GitHub

client app was excluded because none of existing GUI testing tools

can automatically test it without any appropriate, complicated app

data preparation (e.g., manually creating a sample project repository

with proper code commits, issues, branches and other info).

In our experience, it usually took 1∼4 hours to validate one issue

without the guarantee of success. We spent nearly two person-

months on validating the 228 issues, and obtained 52 valid critical is-

sues from 20 apps. For each successfully validated issue, we archived

its corresponding bug data, which includes (1) an executable APK

file (Jacoco-instrumented), (2) a bug-reproducing video, (3) the ex-

ception stack trace, and (4) other necessary information (e.g., login

script). Table 3 lists these 52 critical crash bugs. It gives the app

name, issue id, app feature, code version, number of stars on GitHub,

lines of code (LOC), number of steps to reproduce (#STR) and other

bug information (e.g., whether it needs network access, account

login or system setting changes for reproducing). Note that #STR

denotes the number of shortest steps observed by us, and does not

include the steps to login or change external system settings.

Discussion. Note that the 20 apps in Table 3 have diverse features

and many of them are highly-starred. Thus, these apps could serve

a good basis for evaluation. On the other hand, all these 52 bugs

can be deterministically reproduced by a GUI test in our evaluation

setting, i.e., an ideal testing tool could find each of them. Thus,

these bugs provide a fair basis for all testing tools. We note that

some prior work [11, 36, 39, 51] provides crash bug dataset. But we

did not reuse those datasets. Because those bugs are selected only

based on whether the bug reports describe bug-reproducing steps

rather than the agreed-upon criterion of critical bugs in our study.

3.2 Themis’s Infrastructure

We built a unified, extensible infrastructure for our study. Any

testing tool can be integrated into this infrastructure and deployed

on a given machine with one line of command:

Themis: themis --avd avd_name -n dev_cnt --apk apk_name

-o output_dir --time testing_time --repeat run_cnt

--tool tool_name [--login login_script] [--gui]

[--check_crash] [--coverage]

One can specify the target device (avd_name), size of device pool

(dev_cnt), target app (apk_name), testing time (testing_time),

number of runs (run_cnt), the target testing tool (tool_name), au-

tomatic login (via UiAutomator-based scripts [45]), showing GUI

screens, checking crashes and dumping coverage at runtime.

Efforts under the hood. To build this infrastructure, we took

considerable time to coordinate with the authors of the selected

tools to assure correct and rigorous setup. We tried our best efforts

to minimize the bias and ensure that each tool is at łits best statež

in bug finding. We detail our efforts on each tool as follows.

Ape. We spent slight efforts to setup Ape, but around two weeks

to coordinate with the tool authors to ensure its usability. For ex-

ample, we observe Ape frequently throws OutOfMemory and No

Disk Space errors when given a long running time. To resolve these
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Table 3: List of 52 real-world, reproducible crash bugs. ł#STRž denotes the number of shortest steps to reproduce.łNž, łLž and

łSž denote whether reproducing the bug requires network access, account login and system setting changes, respectively.

App Name Issue Id App Feature
Code

Version
#GitHub
Stars

LOC #STR N L S ∅ M A H C T Q Sa St

ActivityDiary #118 personal diary 1.1.8 58 2,011 9 ✗ -
ActivityDiary #285 personal diary 1.4.0 58 4,250 8 ★ - ★

AmazeFileManager #1232 file manager 3.2.1 3.2K 16,969 8 ✗ -
AmazeFileManager #1558 file manager 3.3.2 3.2K 19,456 6 ✗ -
AmazeFileManager #1796 file manager 3.3.2 3.2K 19,457 9 ★ ★ ★ ★ ★

AmazeFileManager #1837 file manager 3.4.2 3.2K 21,070 3 ★ ★ -
and-bible #261 bible study 3.0.286 259 16,162 17 ✓ ✗ -
and-bible #375 bible study 3.1.309 259 16,611 25 ✓ ★

and-bible #480 bible study 3.2.327 259 17,205 14 ✓ ★ ★

and-bible #697 bible study 3.2.369 259 20,225 16 ✓ ★ -
and-bible #703 bible study 3.3.377 259 20,301 10 ✓ ★ -
AnkiDroid #4707 flashcard learning 2.9 3.4K 29,390 5 ★ ★ ★ ★ ★ - ★

AnkiDroid #4200 flashcard learning 2.6 3.4K 28,572 10 ✗

AnkiDroid #5638 flashcard learning 2.9.1 3.4K 29,298 4 ✗ -
AnkiDroid #4451 flashcard learning 2.7 3.4K 28,673 17 ★ ★ ★

AnkiDroid #6145 flashcard learning 2.10 3.4K 29,874 17 ✓ ✗

AnkiDroid #5756 flashcard learning 2.9.4 3.4K 29,657 15 ★ ★ ★ ★ ★ ★ ★

AnkiDroid #4977 flashcard learning 2.9 3.4K 29,775 2 ★ ★ ★ ★ ★ ★ ★

APhotoManager #116 photo manager 0.6.4 148 8,969 2 ★ ★ ★ ★ ★ ★ ★ ★

collect #3222 online form 1.23.0 528 25,946 7 ✓ ★ ★ ★ ★ ★

commons #3244 wiki media 2.11.0 661 20,069 8 ✓ ✓ ✗ -
commons #2123 wiki media 2.9.0 661 15,540 5 ✓ ✓ ★ ★ ★ ★ ★ ★ - ★

commons #1391 wiki media 2.6.7 661 9,182 10 ✓ ✓ ✗ -
commons #1385 wiki media 2.6.7 661 9,221 6 ✓ ✓ ✗ -
commons #1581 wiki media 2.7.1 661 9,287 6 ✓ ✓ ✓ ✗ -
FirefoxLite #4881 web browser 2.1.12 251 13,626 7 ✓ ★ ★ ★ ★

FirefoxLite #5085 web browser 2.1.20 251 12,060 5 ✓ ★ ★ ★ ★ ★

FirefoxLite #4942 web browser 2.1.16 251 13,661 5 ✓ ★ ★ ★

Frost-for-Facebook #1323 facebook wrapper 2.2.1 377 7,749 5 ✓ ✓ ✓ ★ -
geohashdroid #73 geohashing app 0.9.4 13 5,275 2 ✓ ★ ★ ★ ★ ★ ★

MaterialFBook #224 facebook client 4.0.2 122 1,740 1 ✓ ✓ ★ ★ -
nextcloud #5173 file-sharing app 3.10.0 2.3K 36,589 5 ✓ ✓ ★ ★ ★ ★ ★ ★ - ★

nextcloud #4026 file-sharing app 3.6.1 2.3K 32,798 3 ✓ ✓ ★ ★ ★ ★ ★ ★ - ★

nextcloud #4792 file-sharing app 3.9.2 2.3K 35,302 9 ✓ ✓ ✗

nextcloud #1918 file-sharing app 2.0.0 2.3K 28,505 3 ✓ ✓ ★ ★ ★ ★ - ★

Omni-Notes #745 notebook app 6.1.0 2.1K 8,882 10 ★ ★ ★ ★

open-event-attendee #2198 open event app 0.5 1.5K 6,624 7 ✓ ★ ★ ★ - ★

openlauncher #67 home screen app 0.3.1 256 5,591 2 ✓ ★ ★ ★ ★ -
osmeditor4android #729 map editor 11.0.0.8 196 36,887 11 ✓ ★

osmeditor4android #637 map editor 0.9.10 196 32,594 30 ✓ ✗ -
Phonograph #112 music player 0.15.0 2.4K 10,800 1 ✗

Scarlet-Notes #114 notebook app 6.9.5 300 2,860 12 ★

sunflower #239 gallery app 0.1.6 12K 1,687 4 ★ ★ ★

WordPress #8659 blog manager 11.3 2.5K 68,171 10 ✓ ✓ ✗ -
WordPress #7182 blog manager 9.2 2.4K 59,571 2 ✓ ✓ ✗

WordPress #6530 blog manager 8.1 2.4K 54,211 24 ✓ ✓ ✗

WordPress #11992 blog manager 14.9 2.4K 67,784 6 ✓ ✓ ★ ★ -
WordPress #11135 blog manager 13.6 2.4K 64,499 9 ✓ ✓ ★ ★ ★ ★ - ★

WordPress #10876 blog manager 13.7 2.4K 64,564 5 ✓ ✓ ✗ -
WordPress #10547 blog manager 13.3 2.4K 64,795 10 ✓ ✓ ★ -
WordPress #10363 blog manager 13.1 2.4K 72,387 3 ✓ ✓ ★ ★ ★ - ★

WordPress #10302 blog manager 12.9 2.4K 72,202 2 ✓ ✓ ★ ★ ★ ★ ★ - ★

#Total 52 18 22 24 18 21 15 10 3 19

issues, we discussed with the tool authors, and finally reached the

consensus that allocating 2GB RAM, 1 GB internal storage and 1

GB external SDCard storage for the Android devices could greatly

mitigate this issue. The reason is that Ape maintains all GUI states

in memory and dumps large output files and logs. Thus, we also

assigned the similar hardware setup for other tools under study to

ensure a fair basis. In addition, during the early stage of our study,

Ape frequently crashed on a number of apps in our dataset. Thus,

we reported all the encountered issues; and the tool authors fixed

all those issues before our deployment.

Humanoid. We spent around three days to setup Humanoid.

The main effort goes to setting up the compatible TensorFlow

version and resolving outdated library dependencies. Other effort

includes fixing some obvious implementation bugs in DroidBot

(which Humanoid was built on) that affected the usability.

ComboDroid. We spent around one week to coordinate with

the tool authors to adapt ComboDroid into our infrastructure.

For example, to meet our requirements, the tool authors modi-

fied ComboDroid to (1) support running multiple tool instances in

parallel, and (2) provide separate tool modules to support our login

scripts. During the early stage of our study, we reported some tool

crash issues because ComboDroid may fail to instrument some

apps by Soot. They fixed all the issues before our deployment.

TimeMachine. We spent around two weeks to adapt the tool

into our infrastructure. We made three major modifications, which

were later verified by the tool authors before our deployment. (1)

TimeMachine requires code coverage information for running. But

its original EMMA based coverage collection module cannot work

on recent Android apps (created after 2015) which only support

Jacoco [44] based coverage profiling. Thus, we replace EMMAwith

Jacoco. (2) Because TimeMachine uses VirtualBox to snapshot and

resume emulator states, all the time-sensitive information will be

lost or imprecise. Thus, we added an additional module to enable

profiling time-sensitive information (e.g., the time duration to trig-

ger a crash bug). (3) We enhanced TimeMachine to support parallel
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Table 4: Results of bug finding for the selected tools.

ł#Found Bugsž denotes the total number of bugs found by

each tool. łn / 5ž (0≤𝑛≤5) denotes the breakdown, i.e., which

bugs were found in 𝑛 runs out of the five independent runs.
M A H C T Q Sa St

#Found Bugs 22 24 18 21 15 10 3 19
5 / 5 6 10 7 4 4 2 2 4
4 / 5 3 2 1 4 3 3 0 2
3 / 5 3 4 2 4 0 2 1 3
2 / 5 5 2 4 5 1 1 0 4
1 / 5 5 6 4 4 7 2 0 6
0 / 5 30 28 34 31 37 42 49 33

running on server machines, automatic login scripts, Google ser-

vice apps (required by some apps in our dataset), and fixed several

obvious implementation issues to improve its usability.

Other tools. It is easy to setup Monkey and Q-testing. We

spent around one week to setup Sapienz and Stoat by supporting

parallel running and resolving some usability issues.

3.3 Experimental Setup

We deployed our experiment on a 64-bit Ubuntu 18.04 machine

(64 cores, AMD 2990WX CPU, and 128GB RAM). We evaluated all

the selected tools on Google Android 7.1 emulators (API level 25).

Each emulator is configured with 2GB RAM, 1GB SDCard, 1GB

internal storage, and X86 ABI image. Different types of external

files (including PNGs/MP3s/PDFs/TXTs/DOCXs) are stored on the

SDCard to facilitate file access from apps. We registered separate

accounts for each bug that requires login and wrote the login scripts,

and during testing reset the account data before each run to avoid

possible interference. Note that since Sapienz is only compatible

with Android 4.4, we were unable to run Sapienz on all the 52 bugs

but only 19 bugs (verified to be reproducible on Android 4.4). The

symbol ł-ž in column łSaž in Table 3 denotes that the corresponding

bug is not reproducible on Android 4.4. For Stoat, we allocated

one hour for model learning and five hours for model mutation.

We allocated one device (i.e., one emulator) for each bug/tool in

one run (one run required 6 hours), and repeated 5 independent

runs for each bug/tool. This time setting was decided based on the

setup of these tools in their original papers (Ape uses 1 hour & 5

runs, Humanoid uses 1 hour & 3 runs, ComboDroid uses 12 hours

& 3 runs, TimeMachine uses 6 hours & 5 runs, andQ-testing uses

1 hour & 4 runs) and two prior studies (Choudhary et al. [7] use 1

hour and 10 runs; Wang et al. [50] use 3 hours and 3 runs). Thus,

our time setting is large enough. The whole evaluation took over

52×5×6×7 = 10,920 machine hours (not including Sapienz). Due to

Android’s limitation, we can only run 16 emulators in parallel on

one physical machine. Thus, the evaluation took us around 28 days,

in addition to around one week for deployment preparation.

4 EXPERIMENTAL RESULTS AND ANALYSIS

4.1 RQ1: Quantifying Bug Finding Abilities

The ultimate goal of testing tools is to find bugs. We measured

the bug finding abilities of the selected tools from three different

perspectives: (1) effectiveness: howmany bugs can be found by these

tools? Are there any differences between the bugs found by these

tools? (2) stability: can these tools stably (deterministically) trigger

these bugs across the five runs? (3) efficiency: how many resources

(e.g., time) are required by these tools to trigger these bugs?

Effectiveness. In Table 3, the last eight columns give the testing re-

sults of Monkey (łMž), Ape (łAž), Humanoid (łHž), ComboDroid

(łCž), TimeMachine (łTž), Q-testing (łQž), Sapienz (łSaž), and

Stoat (łStž) on each bug, respectively. The symbol ★ denotes that

the tool found the corresponding bug. In column ł∅ž, the symbol

ł✗ž denotes none of the tools can detect the corresponding bug. We

can see, out of the 52 bugs, 18 (≈34.6%) cannot be detected by any

tool. It indicates a considerable gap exists between all the testing tools

and the collected real-world bugs. We will look into the gap in RQ2.

Table 4 summarizes the bug finding results of individual tools.

The row ł#Found Bugsž denotes the total number of bugs that were

found by individual tools across the five runs. We can see Ape,

Monkey, ComboDroid, respectively, found 24, 22, and 21 bugs,

while Humanoid, TimeMachine, Q-testing found 18, 15, and 10

bugs, respectively. The former three tools found a few more bugs

than the latter three ones. Stoat found 19 bugs, while Sapienz

only found 3 bugs out of the 19 bugs which it targets. We find Ape,

the most effective one among these tools, only found nearly half of

all bugs. Monkey, Ape, Humanoid, ComboDroid, TimeMachine,

Q-testing and Stoatmissed 30 (≈57.7%), 28 (≈53.8%), 34 (≈65.4%),

31 (≈59.6%), 37 (≈71.2%), 41 (≈78.8%), and 33 (≈63.5%) bugs, respec-

tively. It indicates the gap becomes larger, i.e., more bugs were missed

when these tools were applied individually.

To take a close look, Fig. 1(a) (the bottom-left section) reports the

pairwise comparison between the tools on their found bugs. The

comparison reports which bugs were found by both tools (reported

in gray), and which bugs were found by only one of the two tools.

This provides us a closer look at the bug finding abilities of these

tools. We can clearly see these tools have obvious differences in

the bugs that they found. For example, althoughMonkey, Ape, and

ComboDroid are close in the numbers of found bugs, each of them

can still find some bugs that the others cannot. This phenomenon

also applies to those tools that have obvious differences in the

number of found bugs, e.g., Ape and TimeMachine. It indicates

that no one can absolutely outperform the others in finding bugs, and

instead they do complement each other by finding different bugs. We

will analyze which factors affecting these tools in bug finding in RQ3..

Stability. Table 4 gives the breakdown of which bugs were success-

fully found in how many runs, which indicates the stability of these

tools in bug finding. Row𝑛/5 (0≤𝑛≤5) denotes which bugs were trig-

gered in 𝑛 runs out of the five runs. For example, row ł1/5ž and col-

umn łMž means there are 5 bugs ofMonkey were triggered in only

one run out of five runs. This is another importantmetric to consider

when adopting a testing tool, which indicates how random a GUI

testing tool could be in detecting bugs. However, this metric has not

been reported by the prior studies [7, 50] or by the authors of these

tools. We can see a non-negligible number of bugs were only found

in one run but missed in the other four runs (see row ł1/5ž). For

example, TimeMachine and Ape found 7 and 6 bugs, respectively,

in only one run. In detail,Monkey,Ape,Humanoid, ComboDroid,

TimeMachine andQ-testing have 22.7%, 25%, 22.2%, 19%, 46% and

18.2% bugs, respectively, which were detected in only one run. It

indicates that existing tools have obvious randomness in bug finding,

and a non-negligible number of bugs were actually detected by chance.

Efficiency. Fig. 1(b) gives the bug detection time of individual tools

on their found bugs. We can see Ape, ComboDroid and Q-testing
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(a) Pairwise comparison between pairs of tools
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Figure 1: (a) Pairwise comparison of the tools in terms of found bugs and bug detection time (inminutes). The plots on bottom-

left section report the differences of found bugs between the pairs of tools (the grey bars shows the common bugs found by

both tools), while the plots on top-right section report the bug detection times between the pair of tools on the common bugs

(the p-value and the standardized effect size𝑑 are reported on top-right within each plot if the comparison result is statistically

significant). (b) The bug detection time (in minutes) of individual tools on their found bugs. We did not include Sapienz and

Stoat in Figure 1 because comparing the recent tools listed in Table 2 are our main focus.

are relatively faster than the other tools in bug finding. Specifically,

Ape,ComboDroid andQ-testing detect 20/24, 19/21 and 9/10 bugs

within the first one hour respectively, while Monkey, Humanoid,

and TimeMachine detect 14/22, 14/18, and 10/15 bugs respectively.

Fig. 1(a) (the top-right section) reports a pairwise comparison

between these tools in boxplots on the bug detection time. Note that

(1) The comparison reports the running times on the bugs found

by both tools. We did not consider the bugs found by only one tool

because that is unfair. (2) The detection time is the offset between

the first bug triggering time and the exact start running time of a

tool. For example, TimeMachine takes around 10 minutes to create

and setup the VM image before it actually starts the testing. We

excluded such preparation time for any tool. Thus, the bug detection

time we measured is head-to-head. We can see the detection times

of these tools have obvious differences. To validate the significance

of these differences, we used Mann-Whitney U test [1], a non-

parametric statistical hypothesis test for independent samples, to

compare the detection times between two tools. We report the p-

value and standardized effect size at the top-right corner for any

pairwise comparison which is statistically significant. Here, the

significance level 𝛼 is set as 0.05 (i.e., if p-value<0.05, the difference

is big enough to be statistically significant). The standardized effect

size 𝑑 indicates the magnitude of the difference (𝑑<0.3 is small,

0.3≤𝑑<0.5 is medium, 𝑑>0.5 is large). From the results, we can

see Ape is more efficient than all the other tools in finding bugs.

ComboDroid is more efficient thanHumanoid and TimeMachine,

while Monkey is more efficient than TimeMachine. The major

reason of such results is due to the differences of testing strategies

and tool implementations.

4.2 RQ2: Common Challenges and Weaknesses

This section aims to identify the common challenges for existing

GUI testing techniques and tools in finding the collected bugs.

Analysis Methods. To achieve this analysis, we focus on the 18

bugs (listed in Table 5) which have not been found by any tool.

Specifically, we used the following analysis methods to identify the

challenges. First, we carefully reviewed the 18 bugs to understand

their features from both the GUI and code levels. Second, we exam-

ined the implementations of these tools to understand their testing

strategies. Third, we conducted the online discussions with the tool

authors: we show the bug videos, discuss the possible reasons why

their tools miss these bugs, and confirm our observations.
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Table 5: Characteristics of the 18 bugs missed by all tools.

ł#STRž is the number of shortest steps to reproduce.

#Issue Id #STR
#Distinct
Transit.

Text
Inputs

Setting
Changes

Interact.
Patterns

Exter.
Interact.

#118 9 6 ✓ ✓

#261 17 17
#4200 10 7 ✓

#5638 4 3 ✓

#6145 17 17 ✓ ✓

#1232 8 8 ✓

#1558 6 3 ✓

#3244 8 8 ✓

#1581 6 5 ✓ ✓ ✓

#1391 10 9 ✓ ✓

#1385 6 6 ✓

#4792 9 8
#637 30 27 ✓ ✓

#112 1 1 ✓

#8659 10 9 ✓ ✓

#7182 2 2 ✓

#6530 24 10 ✓

#10876 5 4 ✓ ✓

Analysis Results. Table 5 summarizes the characteristics of the 18

bugs via our analysis methods.We distilled fivemajor challenges: (1)

deep use case scenarios, (2) specific text inputs, (3) changing system or

app settings, (4) specific user interaction patterns, and (5) external app

interactions. Note that one bug may impose multiple challenges at

the same time, any of which could block a testing tool. We illustrate

these challenges as follows.

C1 (event trace): hard to reach deep use case scenarios. Ta-

ble 5’s column ł#Distinct Transit.ž denotes the number of distinct

GUI page transitions along the bug triggering trace. This number

approximates how deep a bug resides in the app. We can see that 12

out of 18 bugs (≈66.6%) can only be reached after bypassing more

than 5 distinct page transitions. Specifically, nextcloud’s #4792 and

and-bible’s #261 are the two bugs that pose this sole challenge for

the selected tools. For example, nextcloud’s #4792 has 8 distinct

page transitions, and its search space of event traces is at least

16×12×2×1×7×5×2×3=80,642 (each number denotes the number

of executable events on one distinct GUI page). This big number

blocks any tool from finding the bug within six hours.

Insight: It remains an open challenge for existing tools to reach

deep use case scenarios, although some tools like ComboDroid and

TimeMachine were designed to reach deep app states; Humanoid

was designed to act like humans to cover more app functionalities.

C2 (text inputs): no careful design of text input generation.

Text inputs are important to trigger some bugs in addition to the

GUI actions. In Table 5, 4 bugs out of the 18 bugs require text inputs,

and 3 out of these 4 bugs (≈75%) require corner-case (or invalid) text

inputs rather than meaningful (or valid) ones. In detail, AnkiDroid’s

#5638 requires to input the backslash codes (e.g., ł&bsol;ž, ł&#92;ž);

osmeditor’s #637 requires to fill two invalid, 1-length characters ł*ž

and ł0ž into the text fields of value and age, respectively;WordPress’s

#10876 requires that the content of a post under writing is left as

empty; only WordPress’s#8659 requires to input a valid text (not

necessarily meaningful) that can obtain non-empty search entries.

However, existing tools usually generate pure random texts with-

out careful designs, and thus hard to detect these bugs. For exam-

ple,ComboDroid and TimeMachine simply inheritMonkey’s text

generation strategy, which generates random texts of digits, letters,

or other symbols; Ape optimizes Monkey by additionally generat-

ing random integer/float numbers and time/date formatted strings.

Humanoid randomly picks texts from the training data.

Insight: Testing tools should improve the text input generation

strategies for bug finding. In addition to generate meaningful text

inputs [22], they should also stress test apps with corner-case or

invalid text inputs by analyzing app code or the meaning of text

fields, or defining a list of risky text inputs [28]. Note that the prior

studies [3, 7, 52] only suggest generating valid text inputs because

they aim for improving code coverage rather than bug finding.

C3 (system/app settings): no dedicated consideration of chang-

ing system/app settings. Changing system or app settings are

common user behaviors [23]. However, we find none of the se-

lected tools dedicatedly considers the necessity of such changes in

bug finding, especially for system settings (because changing sys-

tem setting usually requires interacting with system app Settings).

This leads to the incapability of detecting such bugs. In Table 5, 3

bugs out of the 18 bugs involve setting changes, and 2 out of these

3 bugs (≈66.6%) involve system settings. Specifically, AnkiDroid’s

#6145 requires changing the default system language from English

to another language and turning on one app preference option;

commons’s #1581 requires that the system location service is turned

off before entering into the Nearby page and then is turned on to

use GPS for location; and commons’s #1391 requires turning on the

app’s łnight modež theme in the middle of a specific event trace.

None of the tools can detect these bugs.

Insight: The key challenge of considering system or app settings

during GUI testing is the large space of possible GUI tests caused by

two major reasons.One reason is the diversity of setting options. For

example, Android 7.1 provides 9 main categories of system settings

with over 50 concrete setting options [40, 41], all of which could

affect app behaviors. But only limited types of system settings were

considered before [23, 35]. Another reason is the interleavings be-

tween the setting changes and the GUI events. Prior work [23, 35]

only changes settings before an app starts and does not change set-

tings at runtime. However, all the 3 bugs require changing settings

at specific points at runtime. Note that the prior studies [3, 52] have

not systematically observed this challenge. Because they analyze

the main app code (i.e., Java code) coverage but we observe not all

setting changes (especially for system settings) will lead to obvious

coverage changes in Java code (e.g., changing system languages

mainly involves an app’s XML resource code). In addition, the im-

plication from prior studies (see Table III in [52]) to generate system

events (i.e., sending broadcast intents) cannot work on changing

system settings (e.g., security-related settings like permissions and

location cannot be changed by sending intents) or app settings.

C4 (interaction patterns): no explicit consideration of spe-

cific user interaction patterns. Another major challenge which

blocks these tools from finding bugs is the lack of generating spe-

cific user interaction patterns to pose adverse conditions. We can

see that 12 out of the 18 bugs (≈66.6%) pose this challenge. For

example, WordPress’s #6530 requires uploading a number of pic-

tures (making the uploading takes some time) to publish a post

and then deleting the post when the uploading is still in progress;

osmeditor4android’s #637 requires removing all entries but the last

one from its page of validator preference; commons’s #1385 requires

a rotation action at one specific page; WordPress’s #8659 requires

scrolling down and back the sites page (revoking the page loading

of new items) and select some specific items. AnkiDroid’s #4200

requires putting one specific activity in the background for a while
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and returning back to it (making the Android system destroy and

recreate the activity). Despite these bugs seem corner cases, the

corresponding user interaction patterns are common in reality.

Insight: We carefully examined the relevant covered code of

these bugs. It reveals that manifesting these bugs requires exercising

specific sequences of callback interactions. For example, WordPress’s

#6530 involves the interactions between the callbacks of GUI events

(for deleting the post) and those of the background thread (for

uploading the pictures); commons’s #1385 involves the interactions

between the lifecycle callbacks of an activity. However, existing

tools only focus on maximizing line or activity coverage, which

is hard to stress test different callback interactions. One plausible

way is to design specific coverage criteria (e.g., callback sequence

coverage [33]) or mutation operators [30] to guide testing. Note that

this insight cannot be obtained by prior studies [3, 52] because such

bugs will not show differences in terms of line or activity coverage.

C5 (external interactions): seldom consider the interactions

with other apps. 5 out of the 18 bugs (≈27.8%) require interacting

with other apps on the device to obtain the desired data (e.g., a

picture file) to enable testing the follow-up functionalities. How-

ever, most tools do not explicitly consider the necessity of these

interactions in bug finding, and instead they constrain the testing

efforts within the app under test. For example, Humanoid will sim-

ply restart the tested app after certain steps of exploration if it is

still exploring the other apps. C5 may be related with C1 and C3.

Insight: It is much desirable for these testing tools to construct

external intents provided with desired data or files to simulate the

purpose of external app interactions.

4.3 RQ3: Factors and Opportunities

This section discusses the factors we observed that affect bug find-

ing on the collected real-world bugs and the opportunities for tool

improvements. Specifically, we conduct the analysis based on the

testing results of each tool in Table 3 and the pairwise comparison

results in Figure 1. We follow the same analysis methods in RQ2,

and summarize our major findings in the following aspects.

GUI exploration (testing) strategies affect bug finding. The

tools we studied employ different GUI exploration strategies. Indeed,

these strategies show their unique advantages in finding specific bugs.

For example,Monkey, Ape, ComboDroid, TimeMachine found 4,

1, 2, and 1 bugs, respectively, which the other tools cannot find.

But we also observe that the exploration strategies with more di-

rect and fine-grained guidance seem more effective in finding bugs.

For example, in Table 4, Ape, ComboDroid and Stoat detect more

bugs than Humanoid, TimeMachine and Q-testing. Specifically,

bothHumanoid andQ-testing use trained deep neural network to

guide exploration: Humanoid explores towards human-preferred

pages, while Q-testing prefers exploring pages with different us-

age scenarios. TimeMachine heuristically deprioritizes those pages

that have been visited more times (see Section 3.3 in [9]). Basically,

these three tools are only guided to cover more GUI pages. How-

ever, this may not be directly linked with bug finding. In contrast,

Ape differentiates and explores distinct app states by dynamically

refining state abstraction, ComboDroid stress-tests the data-flow

relations at the app code level, while Stoat optimizes different

event compositions in GUI tests via the stochastic model. These

three tools are informed by more fine-grained analysis, and thus

are likely to detect more bugs.

Opportunities: Integrating fine-grained (program) analysis re-

sults into GUI exploration could be beneficial for bug finding.

State abstraction granularity affects bug finding. GUI layouts

are usually used to abstractly represent concrete app states during

testing. Due to the large search space of GUI pages, GUI state ab-

straction strategies (or GUI comparison criteria [2]) are commonly

adopted by testing tools to improve testing scalability. We observe

that the bug finding abilities could be affected by the state abstraction

granularity, which unfortunately has not been well-recognized by

existing tools. Specifically, we observe that the tools with more fine-

grained abstraction could detect more bugs, which corroborates the

preliminary findings of [2] (see Section 6.3).

For example, we observe that TimeMachine and Q-testing

missed some trivial bugs likeWordPress’s #11135 and nextcloud’s

#1918. The tool authors of TimeMachine explained to us that one

major reason could be TimeMachine’s state abstraction criterion

is too coarse. In practice, TimeMachine uses a variant of the C-Lv3

abstraction criterion [2] (which only uses layout widgets to abstract

GUI states) to decide whether a given state is a (new) interesting

state. However, this abstraction criterion could be too coarse, and

TimeMachine thus fails to identify and snapshot some łcriticalž

states (which are the preconditions of the bugs) into its state pool.

As a result, it may miss the chance to trigger the bug. Q-testing

uses a more coarse-grained abstraction criterion (between C-Lv2

and C-Lv3 [2]), which only differentiates two GUI pages if they are

from two different app usage scenarios. In fact, TimeMachine and

Q-testing find the least numbers of bugs, compared to other tools.

Meanwhile, all the aforementioned three bugs can be detected

by Ape, Humanoid and ComboDroid. Because ComboDroid and

Humanoid use the fine-grained C-Lv4 criterion (which uses both

the layout and executable widgets to abstract states), whileApe ded-

icatedly proposes a dynamically refined state abstraction strategy

to achieve better balance between state precision and scalability.

On the other hand, Monkey is pure black-box and does not

do any abstraction. It treats every GUI page as unique and emits

GUI events at any random screen coordinates, and thus sometimes

suffers from scalability issues. For example, Monkey cannot detect

FirefoxLite’s #5085, which only requires 5 GUI events. The reason

is that this bug requires clicking a small widget at the bottom-right

corner of the first GUI page, and then clicking one specific setting

option among many others on the next page. As a result, Monkey

has very low chance to bypass these two pages to trigger the bug.

Opportunities: Defining appropriate state abstraction criterion

is important for bug finding but still an open problem. One possible

solution is to define specific granularity for specific types of apps

or functionalities to reduce the chance of missing important states.

Small heuristics affect bug finding. We find some tools imple-

mented small heuristics. Despite these heuristics are not the funda-

mental advantages of the core testing techniques, they do improve the

bug finding abilities.

For example,Monkey by default does not support long-touch, so

it cannot detect AmazeFileManager’s #1796, which requires a long-

touch event. But other monkey-based tools, i.e., Ape, ComboDroid,

TimeMachine found it because they implemented long-touch.
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Table 6: Concrete new insights obtained from our study and the comparison with prior studies on these new insights (ł✓ž, ł✗ž

and ł?ž denote that the corresponding study does, does not or only partially does obtain the new insight).

Studies
RQ1 (bug finding abilities) RQ2 (common challenges in finding bugs) RQ3 (factors and opportunities)

False
Negatives

Testing
Stability

Testing
Efficiency

C1
(event
trace)

C2
(text

inputs)

C3
(system/app
settings)

C4
(interaction
patterns)

C5
(external

interactions)

Testing
Strategies

State
Abstraction

Small
Heuristics

Choudhary et al. [7] ✗ ✗ ✗ ✗ ? ✗ ✗ ✗ ✗ ✗ ✗

Wang et al. [50] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Zheng et al. [52] ✗ ✗ ✗ ✓ ? ? ✗ ✓ ✗ ✗ ✗

Behrang et al. [3] ✗ ✗ ✗ ✗ ? ✗ ✗ ✓ ✗ ✗ ✗

Our study ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

In addition,Ape and ComboDroid implements a special strategy

to input texts (one of the common user behaviors to input text): (1)

long touch the target text field to select the original text, (2) clear the

whole content, and then (3) input the new random text. Due to this

heuristic, only Ape and ComboDroid found MaterialFBook’s #224,

which requires a long-touch to invoke the copy-paste operation.

All the other tools cannot find this bug because they input texts via

directly overwriting the original text.

Some tools internally complement their core testing technique

with some heuristics to improve testing effectiveness. For example,

Ape and ComboDroid occasionally invoke the default Monkey to

do random testing. As a result, they can trigger some bugs that are

only likely to be triggered by Monkey. For example, Monkey may

slide down the notification bar by random swipes and change some

settings therein by random touches. As a result, all Monkey-based

tools can detect openlauncher’s #67, which requires opening the łdo

not disturbž setting. Humanoid and Q-testing cannot detect this

bug due to the lack of any Monkey-like random testing strategies.

Opportunities: Designing and integrating small heuristics by

simulating human-app interaction patterns (e.g., specific UI actions,

text input styles, putting apps in the background and returning

back to it) can improve bug finding.

4.4 Discussion

New insights obtained from our study. Table 6 summarizes the

concrete new insights obtained from our study.We can see thatmost

of the new insights have not been identified by the prior studies [3,

7, 50, 52]. Specifically, due to the lack of a ground-truth benchmark,

the studies [7, 50] are difficult to do the in-depth analysis like

RQ1∼RQ3, while the studies [3, 7, 52] can only identify some or

partial insights in RQ2 because they identify the tool limitations in

achieving high code coverage rather than bug finding. We note that

the prior studies [3, 7, 52] identified some other tool limitations like

requiring account-login and collaboration with other devices. We

excluded such limitations in the evaluation setup, e.g., by providing

auto-login scripts and focusing on łself-containedž apps, because

these are not the limitations of the core testing techniques.

Applications of our study. Our study can have three major ap-

plications. First, the detailed analysis in RQ1∼RQ3 distilled many

important findings, which can help enhance, optimize and extend

existing testing tools. It also pointed out some open research prob-

lems, e.g., how to efficiently find system setting related crashes [38]

and better balance between different GUI abstraction criteria. Sec-

ond, the Themis benchmark can be used to quantitatively and quali-

tatively evaluate new testing techniques for Android in a controlled,

rigorous environment like Defects4J for Java. For example, a new

testing technique could compare itself with the results of selected

tools to validate its effectiveness, and challenge itself with the 18

critical bugs (which no tool can find) to prove its advancement.

Third, the infrastructure can be used to facilitate other research like

bug reproducing [51], fault localization [10] and program repair for

Android.

Threats to validity The validity of our study may be subject to

some threats.One threat is the representativeness of our bug dataset

and the generability of our findings. To reduce this threat, we in-

terviewed the industrial practitioners to obtain the agreed-upon

selection criterion of bugs that conforms to real industrial practices.

The data collection is based on a large set of Android apps, and

all the issues with critical labels are assigned by developers. We

carefully inspected each issue and collect valid ones without any

bias (see Section 3.1). Table 3 shows the apps are diverse, and the

analysis in RQ2/RQ3 also shows the bugs have different features.

Moreover, the interviewees observe that critical bugs do not have

obvious differences from other less important ones in bug mani-

festation (e.g., the difficulty of bug-triggering and the test length).

Thus, our study findings based on critical bugs could be generalized

to real-world bugs. In the future, we could incorporate more bugs

to further mitigate this threat. Another threat is the correctness of

evaluation and result analysis. To counter this, we made consid-

erable effort to setup a rigorous experimental infrastructure, and

resolved many tool issues before the deployment (see Section 3.2).

We carefully examined tool implementations and discussed with

the tool authors to analyze tool abilities and validate our observa-

tions. The experimental data and results were cross-checked by

the two co-authors. We also made the Themis benchmark publicly

available for replication.

5 CONCLUSION

In this paper, we take the first step to empirically evaluate auto-

mated GUI testing for Android against real-world bugs. We evaluate

several testing tools on the 52 real, reproducible bugs, and reveal

many new findings. We find a considerable gap in these tools find-

ing the collected bugs. We identify five common major challenges

that future work should address, and the factors that affect these

tools in bug finding. Our study provides a new, complementary

perspective from prior studies to analyze existing testing tools.
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