Benchmarking Automated GUI Testing for Android against Real-World Bugs

Ting Su
Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, China
tsu@sei.ecnu.edu.cn

Jue Wang
State Key Lab for Novel Software Tech. and Dept. of Computer Sci. and Tech., Nanjing University, China
juewang591@gmail.com

Zhendong Su
Department of Computer Science, ETH Zurich, Switzerland
zhendong.su@inf.ethz.ch

ABSTRACT
For ensuring the reliability of Android apps, there has been tremendous, continuous progress on improving automated GUI testing in the past decade. Specifically, dozens of testing techniques and tools have been developed and demonstrated to be effective in detecting crash bugs and outperform their respective prior work in the number of detected crashes. However, an overarching question “How effectively and thoroughly can these tools find crash bugs in practice?” has not been well-explored, which requires a ground-truth benchmark with real-world bugs. Since prior studies focus on tool comparisons w.r.t. some selected apps, they cannot provide direct, in-depth answers to this question.

To complement existing work and tackle the above question, this paper offers the first ground-truth empirical evaluation of automated GUI testing for Android. To this end, we devote substantial manual effort to set up the THEMIS benchmark set, including (1) a carefully constructed dataset with 52 real, reproducible crash bugs (taking two person-months for its collection and validation), and (2) a unified, extensible infrastructure with six recent state-of-the-art testing tools. The whole evaluation has taken over 10,920 CPU hours. We find a considerable gap in these tools finding the collected real bugs — 18 bugs cannot be detected by any tool. Our systematic analysis further identifies five major common challenges that these tools face, and reveals additional findings such as factors affecting these tools in bug finding and opportunities for tool improvements. Overall, this work offers new concrete insights, most of which are previously unknown/unstated and difficult to obtain. Our study presents a new, complementary perspective from prior studies to understand and analyze the effectiveness of existing testing tools, as well as a benchmark for future research on this topic. The THEMIS benchmark is publicly available at https://github.com/the-themis-benchmarks/home.

CCS CONCEPTS
• Software and its engineering → Software testing and debugging.

1 INTRODUCTION
Android apps typically run in complex end-user environments post-deployment. Ensuring their reliability and correctness — avoiding fatal crashes in particular — is thus a top priority of any app development team. Since the first effort by Hu and Neamtiu [13] in 2011, tremendous and continuous efforts have been made to improve automated GUI testing for Android [19, 47, 49], which complement the commonly-adopted manual testing in this field [18, 48]. Specifically, dozens of automated GUI testing or fuzzing tools (e.g., [5, 9, 12, 15, 24, 25, 29, 31, 37]) have been developed and demonstrated to be effective in detecting crash bugs and outperform their respective prior work in the number of detected crashes.

Thus, an overarching question is “How effectively and thoroughly can these tools find crash bugs in practice?”. To answer this question, an ideal approach is to directly assess these tools against a ground-truth benchmark with real-world bugs, and check how many bugs are found or missed by a given tool. Indeed, such a benchmarking approach is well-justified and widely-adopted in practice for evaluating software testing or analysis tools [17], e.g., LAVA [8], Defects4J [16] and DeCapo [4]. It has two key benefits: (1) enabling many direct, in-depth analyses (e.g., analyzing the false negatives and common weaknesses of tools), and (2) consolidating the evaluation validity (e.g., avoiding such false positives as bug overcounting due to the imprecision of bug de-duplication strategies). In contrast, evaluating testing tools against only apps (without known bugs) is difficult to obtain such benefits if not impossible.

On the other hand, no effort exists in the literature yet to answer the aforementioned question against ground-truth. For example, by investigating the recent literature reviews [19, 47, 49] and relevant publications in this field, we identified 32 research papers that propose automated testing techniques for detecting crash bugs in Android apps. However, none evaluated the proposed techniques against real-world bugs, and all compare tools w.r.t. some selected apps alone. Similarly, all prior relevant empirical studies [3, 7, 32, 50, 52] in this field also use only apps (without known bugs) to
evaluate testing tools. Therefore, we still do not have direct, in-depth answers to the aforementioned question.

Our work aims to fill this gap by providing the first ground-truth evaluation of existing testing techniques for Android. To clearly present the necessity and novelty of our study, Table 1 summarizes the key differences between the prior relevant studies [3, 7, 50, 52] and ours. These differences show that our study presents a new, complementary perspective from prior studies.

Specifically, the studies by Choudhary et al. [7] and Wang et al. [50] compare one tool to another based on some selected apps in terms of the numbers of found unique crashes and achieved code coverage. However, due to the lack of ground-truth, we cannot analyze the false negatives of these tools on a common basis. As a result, quantifying the degree of effectiveness of these tools becomes difficult. In practice, these two studies face two additional challenges. First, existing testing tools for Android cannot reliably provide reproducible tests for found crashes (see Section 5 in [7] and Section 5.5 in [50]) due to the open technical challenges like GUI flakiness [27, 46] and lengthy tests [6]. As a result, it is difficult to analyze the bug features, thus unable to offer fine-grained analyses on the tools’ bug finding abilities. Second, existing tools heuristically de-duplicate crashes by hashing stack traces, which is difficult to make reliable, thus likely incurring bug-overcounting [17].

The studies by Zheng et al. [52] and Behrang et al. [3] investigate the tool limitations by analyzing the uncovered code of one or more apps, respectively. But these two studies cannot give direct answers to the raised question, because they only focus on code coverage, which is a proxy indicator of bug finding abilities and the correlation could be weak [14] (our study also observes this in Section 4.2). Moreover, they only evaluate one tool, Monkey [29]. Thus, the generability of the identified tool limitations is unclear.

To achieve our study, one important step is to setup a ground-truth benchmark with real-world bugs based on an agreed-upon criterion. To this end, we resort to the industrial practitioners for gaining insights. Specifically, we contact 8 senior app testing managers (with 3–10 years’ working experience) from five well-known companies, i.e., Google, Facebook, Tencent, ByteDance and T estin (a major mobile app testing service provider in China) within our networks. Their teams are responsible for testing their own apps (like Google Pay, Messenger, WeChat and TikTok which have billions of monthly active users worldwide) or the apps from different vendors. We conduct independent on-line interviews with them per company, and ask them 5 prepared and some follow-up questions to fully understand their testing practice.

Finally, all the interviewees respond that in practice they assign priority labels to the bugs reported by in-house testing or app users, and they prioritize critical bugs (namely important bugs) — the bugs that break the major app functionalities and affect the larger percentage of app users (in practice, realtime crash reporting platforms are used to track crash issues from end-users). In other words, critical bugs are more likely to affect more users in reality. All the interviewees indicate and agree that the ability of finding critical bugs is an objective metric to measure the effectiveness of testing tools in practice. Thus, we decide to choose critical bugs as the agreed-upon criterion to setting up the benchmark. In fact, such ability has already been strongly and widely advocated for evaluating testing tools in both industry and academia [26, 34].

To this end, we take three steps to approach this study. First, we choose open-source apps as the targets to collect critical bugs because their issue repositories are public. Specifically, we designate the importance of bugs w.r.t. their issue labels assigned by app developers themselves. We collect the bugs with critical issue labels like high-priority, blocking-release, P1-urgent. We finally construct a dataset of 52 real bugs from 20 open-source Android apps by crawling the issue repositories of 1,829 Android apps. This process took us substantial manual effort (nearly two person-months) that could not be automated. It involves manually reviewing bug reports, locating buggy code versions, building app binaries, and reproducing and validating bugs. Section 3.1 details this step.

Second, we rigorously setup a unified, extensible experimental infrastructure, and integrate Monkey [29], the state-of-the-practice testing tool, and five most recent state-of-the-art ones for thorough evaluation, namely APKTE [12], HUMANOID [21], COMBODROID [15], TIME-MACHINE [9] and Q-TESTING [31]. Specifically, we run these tools on the collected bugs, and profile different metrics: the number of bugs they can find (i.e., effectiveness), how many times they can trigger a bug given a number of runs (i.e., stability), and how long they take to trigger a bug (i.e., efficiency). Section 3.2 details this step. We name our dataset and infrastructure as the THEMIS benchmark, which aims for an objective evaluation w.r.t. ground-truth.

Finally, we give the detailed quantitative and qualitative analysis on the testing results of these tools by reviewing the bug features, examining these tools’ implementations, and discussing/confirming with the tool authors. We identify the common challenges that existing tools face and the factors that affect bug finding, which have not been well-identified by the prior studies. In particular, we investigated the following research questions (answered in Section 4):

- **RQ1**: How effectively and thoroughly can these testing tools find the collected real-world bugs?
- **RQ2**: Are there any common challenges that all these tools face in finding these bugs (by analyzing the common false negatives)?
- **RQ3**: Are there any factors affect these tools in finding these bugs (by pair-wisely analyzing the testing results of these tools)? What are the opportunities for improving the state-of-the-arts?

Summary of main findings. Out of 52 bugs, 18 (∼34.6%) bugs cannot be detected by any testing tool, which indicates that a considerable gap exists between the existing tools and the collected

<table>
<thead>
<tr>
<th>Studies</th>
<th>Venue</th>
<th>Evaluation Basis</th>
<th>Has the ground-truth?</th>
<th>Basis</th>
<th>Tools</th>
<th>Analysis Basis</th>
<th>New Study Insights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choudhary et al. [7]</td>
<td>ASE 15</td>
<td>multiple apps</td>
<td>✓</td>
<td>crashes, coverage</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Wang et al. [50]</td>
<td>ASE 18</td>
<td>multiple apps</td>
<td>✓</td>
<td>crashes, coverage</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Zheng et al. [52]</td>
<td>ICSE/SEP</td>
<td>one app</td>
<td>✓</td>
<td>coverage</td>
<td>N/A</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Behrang et al. [3]</td>
<td>ASE 20</td>
<td>one app</td>
<td>✓</td>
<td>coverage</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Our study</td>
<td>ESC/SE '21</td>
<td>multiple real bugs</td>
<td>✓</td>
<td>real-world bugs</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 1: Key differences between the prior relevant studies and ours in evaluating automated testing techniques for Android (‘✓’, ‘✗’ and ‘?’ denote that the study can, cannot or can only partially give answers, respectively, and ‘N/A’ is not applicable).
real-world bugs. Specifically, these 18 bugs impose five common major challenges blocking any tool, e.g., deep use case scenarios, changes of system/app settings, and specific user interaction patterns. It indicates that continuous, long-term research effort is needed to tackle these challenges (Section 4.2). On the other hand, the gap is larger when these tools are applied individually—they miss a large portion (53.8~71.2%) of bugs, although we indeed observe their unique advantages in finding specific bugs (Section 4.1). Also, we find these tools have obvious randomness in triggering bugs, and no one can absolutely outperform the others in bug finding. By pairwise comparisons, we find that their testing results are largely affected by the GUI exploration strategies, state abstraction criteria, and small heuristics, which are the opportunities for tool improvement in the short-term (Section 4.3). Table 6 in Section 4.4 summarizes the concrete new insights we obtained from this study, most of which are unknown/unstated and difficult to obtain.

Contributions. Our study makes several contributions:

- It takes the first step to conduct an empirical study against real-world bugs to evaluate GUI testing tools for Android, which presents a new, complementary perspective from prior studies.
- It carefully setups the Themis benchmark, including the first ground-truth dataset of 52 real, reproducible crash bugs and a unified, extensible infrastructure, to achieve this study.
- It gives in-depth quantitative and qualitative analysis on the testing results. It obtains new concrete findings, most of which were unknown/stated before. It also motivates the future research on this topic with a benchmark (discussed in Section 4.4).

2 TESTING TOOLS FOR OUR STUDY

Table 2 lists the selected tools for our study. Note that we use the latest versions of these tools at the time of our study.

Monkey. Monkey [29] is a pure random testing tool. In principle, Monkey emits pseudo-random streams of UI events (e.g., touch, gestures, random texts) and some system events (e.g., volume controls, navigation). Monkey is widely-used in industry for stress-testing because it is easy-to-use and compatible with any Android version. It is a popular baseline to evaluate new testing techniques.

APE. APE [12] is a novel model-based GUI testing tool. Different from prior model-based testing tools like Stoat which use static GUI abstraction criteria, APE uses the runtime information to dynamically evolve its abstraction criterion via a decision tree, which can effectively balance the size and precision of the model. Specifically, with this dynamically refined model, APE generates UI events via a random and greedy depth-first state exploration strategy. Moreover, APE also internally utilizes Monkey to occasionally emit random UI events and system events to avoid getting stuck at local states.

HUMANOID. HUMANOID [21] is the first deep learning-based testing tool. The core is a deep neural network model that predicts which UI elements on the current GUI page are more likely to be interacted with by users and how to interact with it. The model was trained upon a large-scale crowd-sourced human interactions dataset. HUMANOID is expected to drive the GUI exploration towards important states faster as it prioritizes UI elements according to their importance and meaningfulness like a human. HUMANOID is built on DroidBot [20], a lightweight, model-based GUI testing tool, which received 500+ stars on GitHub at the time of our study.

COMBODROID. COMBODROID [15] is a novel model-based testing tool. Its core idea is to generate long and meaningful event sequences by combining a number of short, independent use cases, to explore deep app states. COMBODROID obtains such use cases either from humans or automatically generates from a GUI model constructed by GUI exploration. It then analyzes the data-flow and GUI-transition relations between obtained use cases, and combines them (i.e., concatenating use cases in specific orders) to generate final tests. Moreover, it works in a feedback loop, i.e., generating additional use cases when prior tests reached new app states.

TIME_MACHINE. TIME_MACHINE [9] is a novel state-based testing tool. Different from prior tools like SAPIENZ [25] and STOAT [37] that evolve event sequences to maximize code coverage, TIME_MACHINE instead evolves a population of states which can be captured upon discovery and resumed when needed for finding deep errors. During test execution, its core is to take a snapshot of every interesting state and add into the state corpus, and travel back to a most progressive state and execute next test when the current exploration cannot reach new interesting states. Its uniqueness is the ability to snapshot and resume specific app state for further testing via the underlying Android-based virtual machine.

Q тестинг. Q_TESTING [31] is a reinforcement learning-based testing tool. It uses a trained neural network to compare GUI pages. If a page is similar to any of prior explored GUI pages, the comparator will give a small reward. Otherwise, the comparator will give a large reward. These rewards are used and iteratively updated to guide the testing to cover more functionalities of apps.

SAPIENZ and STOAT. We also evaluated SAPIENZ and STOAT, although the tools in Table 2 outperform them. SAPIENZ uses genetic algorithms, while STOAT uses the stochastic model learned from an app to optimize test suite generation. Despite SAPIENZ is closed-source and only compatible with Android 4.4, we still include it because it is well-known and its technique is unique.

3 EXPERIMENTAL SETUP

3.1 Themis’s Dataset

Collect open-source apps. We chose the open-source Android apps on GitHub as the main source of collecting real-world bugs. To include as many candidate apps as possible, we use two strategies:

1. We crawled all the apps from F-Droid [42], the largest open-source app market, because most of these apps are maintained on
Filter apps with critical issues. We designate the importance of bugs w.r.t. the issue labels assigned by developers. To collect as many critical issues as possible, we built a GitHub API [43] based crawler to collect all the issue labels from 1,829 candidate apps, and manually identified 111 different labels denoting critical issues. Then, we extracted 12 shorten forms of keywords from these 111 labels for matching concrete issue labels. For example, we use “block” to match “blocking-release”, “blocked”; “sever” to match “severity-high”, “severity: crash”; “pri” to match “high priority”, “Priority-Critical”, “Major priority”; “urg” to match “urgency: HIGH”, “p1-urgent”; “important” to match “important!”, “P2: Very Important”, “BUG: High Importance” etc. We find these shorten forms of keywords can effectively reduce the false negatives of critical issues. By filtering those apps whose issue labels contain one of these 12 shorten forms of keywords, 200 valid apps remained.

From the above results, we find many apps do not have critical issue labels. To further avoid missing critical issues, we continued to scan the remaining 1,629 apps by checking whether any issue whose title, body or comments contain the keywords such as “block”, “sever”, “critical”, “major”, “urgent”, “important”, “heavy” (derived from the 12 shorten forms of keywords). We got 209 valid apps with such issues. Thus, we obtained 409 (=200+209) valid apps in total.

Collect raw data of critical issues. Based on the previous data, we manually inspected each issue of the 200 apps with explicit critical issue labels, and the issues of the 209 apps which have matched keywords. Specifically, a candidate issue for our study should satisfy these criteria: (1) was submitted after 1st Jan, 2017 to avoid apps that could have outdated dependencies. We finally got 228 critical issues from 51 apps. Many issues were excluded because the bug reports do not have clear reproducing steps and the corresponding app was outdated for a long time.

Validate and archive critical issues. We manually checked and validated each of these 228 critical issues. The typical process is: (1) reviewing and understanding the bug report, (2) locating the buggy code version, (3) building and instrumenting the buggy app version, (4) reproducing the bug, and (5) archiving the bug data. Note that in practice we often have to iterate between step (2) and (4). Because many bug reports are not well-formatted (e.g., missing buggy code version or code fixing commits), we have to manually locate the right version by trial and error until we can reproduce the described bug. Moreover, building apps is very time-consuming because we usually have to resolve outdated or missing dependencies and set up necessary building environments (e.g., local servers). Reproducing bugs also takes time because we have to link the steps to reproduce in text with the app functionalities in GUIs. Many bug reports are not well-written; and many apps do not have clear documentation.

During this process, an issue would be excluded if (1) we cannot fully understand the bug report; (2) the buggy app version cannot be located; (3) the buggy app version cannot be built into an executable APK; (4) the issue cannot be faithfully reproduced on Android 7.1 (the version supported by the selected tools), e.g., the backend server was obsoleted, the bugs were concurrency or compatibility issues; and (5) the issue is deadly simple (e.g., start-up crashes). In addition, we excluded an issue if its corresponding app is not “self-contained”, i.e., testing such an app requires the non-trivial collaborations with humans or other devices. For example, a GitHub client app was excluded because none of existing GUI testing tools can automatically test it without any appropriate, complicated app data preparation (e.g., manually creating a sample project repository with proper code commits, issues, branches and other info).

In our experience, it usually took 1-4 hours to validate one issue without the guarantee of success. We spent nearly two person-months on validating the 228 issues, and obtained 52 valid critical issues from 20 apps. For each successfully validated issue, we archived its corresponding bug data, which includes (1) an executable APK file (Jacoco-instrumented), (2) a bug-reproducing video, (3) the exception stack trace, and (4) other necessary information (e.g., login script). Table 3 lists these 52 critical crash bugs. It gives the app name, issue id, app feature, code version, number of stars on GitHub, lines of code (LOC), number of steps to reproduce (#STR) and other bug information (e.g., whether it needs network access, account login or system setting changes for reproducing). Note that #STR denotes the number of shortest steps observed by us, and does not include the steps to login or change external system settings.

Discussion. Note that the 20 apps in Table 3 have diverse features and many of them are highly-starred. Thus, these apps could serve a good basis for evaluation. On the other hand, all these 52 bugs can be deterministically reproduced by a GUI test in our evaluation setting, i.e., an ideal testing tool could find each of them. Thus, these bugs provide a fair basis for all testing tools. We note that some prior work [11, 36, 39, 51] provides crash bug dataset. But we did not reuse those datasets. Because those bugs are selected only based on whether the bug reports describe bug-reproducing steps rather than the agreed-upon criterion of critical bugs in our study.

3.2 Themis’s Infrastructure

We built a unified, extensible infrastructure for our study. Any testing tool can be integrated into this infrastructure and deployed on a given machine with one line of command:

```
Themis: themis --avd avd_name -- dev_cnt --apk apk_name
   -o output_dir --time testing_time --repeat run_cnt
   --tool tool_name [--login login_script] [--gui]
   [--check_crash] [--coverage]
```

One can specify the target device (avd_name), size of device pool (dev_cnt), target app (apk_name), testing time (testing_time), number of runs (run_cnt), the target testing tool (tool_name), automatic login (via UiAutomator-based scripts [45]), showing GUI screens, checking crashes and dumping coverage at runtime.

Efforts under the hood. To build this infrastructure, we took considerable time to coordinate with the authors of the selected tools to assure correct and rigorous setup. We tried our best efforts to minimize the bias and ensure that each tool is at “its best state” in bug finding. We detail our efforts on each tool as follows.

APE. We spent slight efforts to setup APE, but around two weeks to coordinate with the tool authors to ensure its usability. For example, we observe APE frequently throws OutOfMemory and No Disk Space errors when given a long running time. To resolve these
issues, we discussed with the tool authors, and finally reached the consensus that allocating 2GB RAM, 1 GB internal storage and 1 GB external SD Card storage for the Android devices could greatly mitigate this issue. The reason is that Ape frequently crashed on a number of apps in our dataset. Thus, we reported all the encountered issues; and the tool authors fixed them. For example, to meet our requirements, the tool authors modified ComboDroid to (1) support running multiple tool instances in parallel, and (2) provide separate tool modules to support our login scripts. During the early stage of our study, we reported some tool crash issues because ComboDroid may fail to instrument some apps by Soot. They fixed all the issues before our deployment.

Humanoid

We spent around three days to setup Humanoid. The main effort goes to setting up the compatible TensorFlow version and resolving outdated library dependencies. Other effort includes fixing some obvious implementation bugs in DroitBot (which Humanoid was built on) that affected the usability.

ComboDroid

We spent around one week to coordinate with the tool authors to adapt ComboDroid into our infrastructure.
Table 4: Results of bug finding for the selected tools. “#Found Bugs” denotes the total number of bugs found by each tool. “n / 5” (0 ≤ n ≤ 5) denotes the breakdown, i.e., which bugs were found in n runs out of the five independent runs.

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>A</th>
<th>H</th>
<th>C</th>
<th>T</th>
<th>Q</th>
<th>Sa</th>
<th>St</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Found Bugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 / 5</td>
<td>22</td>
<td>24</td>
<td>18</td>
<td>21</td>
<td>15</td>
<td>10</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>4 / 5</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3 / 5</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2 / 5</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1 / 5</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>0 / 5</td>
<td>30</td>
<td>28</td>
<td>34</td>
<td>31</td>
<td>37</td>
<td>42</td>
<td>49</td>
<td>33</td>
</tr>
</tbody>
</table>

running on server machines, automatic login scripts, Google service apps (required by some apps in our dataset), and fixed several obvious implementation issues to improve its usability.

Other tools. It is easy to setup Monkey and Q-testing. We spent around one week to setup Sapienz and Stoat by supporting parallel running and resolving some usability issues.

3.3 Experimental Setup

We deployed our experiment on a 64-bit Ubuntu 18.04 machine (64 cores, AMD 2990WX CPU, and 128GB RAM). We evaluated all tools on Google Android 7.1 emulators (API level 25). Each emulator is configured with 2GB RAM, 1GB SDCard, 1GB internal storage, and X86 ABI image. Different types of external files (including PNGs/MP3s/PDFs/TXTs/DOCXs) are stored on the SDCard to facilitate file access from apps. We registered separate accounts for each bug that requires login and wrote the login scripts, and during testing reset the account data before each run to avoid possible interference. Note that since Sapienz is only compatible with Android 4.4, we were unable to run Sapienz on all the 52 bugs but only 19 bugs (verified to be reproducible on Android 4.4). The symbol “-” in column “Sa” in Table 3 denotes that the corresponding bug is not reproducible on Android 4.4. For Stoat, we allocated one hour for model learning and five hours for model mutation.

We allocated one device (i.e., one emulator) for each bug/tool in one run (one run required 6 hours), and repeated 5 independent runs for each bug/tool. This time setting was decided based on the setup of these tools in their original papers (APE uses 1 hour & 5 runs, HUMANOID uses 1 hour & 3 runs, COMBODROID uses 12 hours & 3 runs, TimeMachine uses 6 hours & 5 runs, and Q-testing uses 1 hour & 4 runs) and two prior studies (Choudhary et al. [7] use 1 hour and 10 runs; Wang et al. [50] use 3 hours and 3 runs). Thus, our time setting is large enough. The whole evaluation took over 52.5 × 6 × 7 = 10,920 machine hours (not including Sapienz). Due to Android’s limitation, we can only run 16 emulators in parallel on one physical machine. Thus, the evaluation took us around 28 days, in addition to around one week for deployment preparation.

4 EXPERIMENTAL RESULTS AND ANALYSIS

4.1 RQ1: Quantifying Bug Finding Abilities

The ultimate goal of testing tools is to find bugs. We measured the bug finding abilities of the selected tools from three different perspectives: (1) **effectiveness:** how many bugs can be found by these tools? Are there any differences between the bugs found by these tools? (2) **stability:** can these tools stably (deterministically) trigger these bugs across the five runs? (3) **efficiency:** how many resources (e.g., time) are required by these tools to trigger these bugs?

Effectiveness. In Table 3, the last eight columns give the testing results of Monkey (“M”), APE (“A”), HUMANOID (“H”), COMBODROID (“C”), TIME_MACHINE (“T”), Q-testing (“Q”), SAPIENZ (“Sa”), and STOAT (“St”) on each bug, respectively. The symbol ★ denotes that the tool found the corresponding bug. In column “∅”, the symbol “X” denotes none of the tools can detect the corresponding bug. We can see, out of the 52 bugs, 18 (∼34.6%) cannot be detected by any tool. It indicates a considerable gap exists between all the testing tools and the collected real-world bugs. We will look into the gap in RQ2.

Table 4 summarizes the bug finding results of individual tools. The row “#Found Bugs” denotes the total number of bugs that were found by individual tools across the five runs. We can see APE, Monkey, COMBODROID, respectively, found 24, 22, and 21 bugs, while HUMANOID, TIME_MACHINE, Q-testing found 18, 15, and 10 bugs, respectively. The former three tools found a few more bugs than the latter three ones. STOAT found 19 bugs, while SAPIENZ only found 3 bugs out of the 19 bugs which it targets. We find APE, the most effective one among these tools, only found nearly half of all bugs. Monkey, APE, HUMANOID, COMBODROID, TIME_MACHINE, Q-testing and STOAT missed 30 (∼57.7%), 28 (∼53.8%), 34 (∼65.4%), 31 (∼59.6%), 37 (∼71.2%), 41 (∼78.8%), and 33 (∼63.5%) bugs, respectively. It indicates the gap becomes larger, i.e., more bugs were missed when these tools were applied individually.

To take a closer look, Fig. 1(a) (the bottom-left section) reports the pairwise comparison between the tools on their found bugs. The comparison reports which bugs were found by both tools (reported in gray), and which bugs were found by only one of the two tools. This provides us a closer look at the bug finding abilities of these tools. We can clearly see these tools have obvious differences in the bugs that they found. For example, although Monkey, APE, and COMBODROID are close in the numbers of found bugs, each of them can still find some bugs that the others cannot. This phenomenon also applies to those tools that have obvious differences in the number of found bugs, e.g., APE and TIME_MACHINE. It indicates that no one can absolutely outperform the others in finding bugs, and instead they do complement each other by finding different bugs. We will analyze which factors affecting these tools in bug finding in RQ3.

Stability. Table 4 gives the breakdown of which bugs were successfully found in how many runs, which indicates the stability of these tools in bug finding. Row n / 5 (0 ≤ n ≤ 5) denotes which bugs were triggered in n runs out of the five runs. For example, row “1/5” and column “M” means there are 5 bugs of Monkey were triggered in only one run out of five runs. This is another important metric to consider when adopting a testing tool, which indicates how random a GUI testing tool could be in detecting bugs. However, this metric has not been reported by the prior studies [7, 50] or by the authors of these tools. We can see a non-negligible number of bugs were only found in one run but missed in the other four runs (see row “1/5”). For example, TIME_MACHINE and APE found 7 and 6 bugs, respectively, in only one run. In detail, Monkey, APE, HUMANOID, COMBODROID, TIME_MACHINE and Q-testing have 22.7%, 25%, 22.2%, 19%, 46% and 18.2% bugs, respectively, which were detected in only one run. It indicates that existing tools have obvious randomness in bug finding, and a non-negligible number of bugs were actually detected by chance.

Efficiency. Fig. 1(b) gives the bug detection time of individual tools on their found bugs. We can see APE, COMBODROID and Q-testing
are relatively faster than the other tools in bug finding. Specifically, APE, COMBODROID and Q-TESTING detect 20/24, 19/21 and 9/10 bugs within the first one hour respectively, while MONKEY, HUMANOID, and TIME MACHINE detect 14/22, 14/18, and 10/15 bugs respectively.

Fig. 1(a) (the top-right section) reports a pairwise comparison between these tools in boxplots on the bug detection time. Note that (1) The comparison reports the running times on the bugs found by both tools. We did not consider the bugs found by only one tool because that is unfair. (2) The detection time is the offset between the first bug triggering time and the exact start running time of a tool. For example, TIME MACHINE takes around 10 minutes to create and setup the VM image before it actually starts the testing. We excluded such preparation time for any tool. Thus, the bug detection time we measured is head-to-head. We can see the detection times of these tools have obvious differences. To validate the significance of these differences, we used Mann-Whitney U test [1], a non-parametric statistical hypothesis test for independent samples, to compare the detection times between two tools. We report the p-value and standardized effect size at the top-right corner for any pairwise comparison which is statistically significant. Here, the significance level α is set as 0.05 (i.e., if p-value<0.05, the difference is big enough to be statistically significant). The standardized effect size d indicates the magnitude of the difference ($d<0.3$ is small, $0.3 \leq d<0.5$ is medium, $d>0.5$ is large). From the results, we can see APE is more efficient than all the other tools in finding bugs. COMBODROID is more efficient than HUMANOID and TIME MACHINE, while MONKEY is more efficient than TIME MACHINE. The major reason of such results is due to the differences of testing strategies and tool implementations.

4.2 RQ2: Common Challenges and Weaknesses

This section aims to identify the common challenges for existing GUI testing techniques and tools in finding the collected bugs.

Analysis Methods. To achieve this analysis, we focus on the 18 bugs (listed in Table 5) which have not been found by any tool. Specifically, we used the following analysis methods to identify the challenges. First, we carefully reviewed the 18 bugs to understand their features from both the GUI and code levels. Second, we examined the implementations of these tools to understand their testing strategies. Third, we conducted the online discussions with the tool authors: we show the bug videos, discuss the possible reasons why their tools miss these bugs, and confirm our observations.
Table 5: Characteristics of the 18 bugs missed by all tools.

<table>
<thead>
<tr>
<th>#Issue Id</th>
<th>#STR</th>
<th>#Distinct Transit.</th>
<th>Text Inputs</th>
<th>Setting Changes</th>
<th>Interact. Patterns</th>
<th>Exter. Patterns</th>
<th>#Interact.</th>
<th>#Exter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>#118</td>
<td>9</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>#261</td>
<td>17</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>#4200</td>
<td>10</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>#5638</td>
<td>4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>#6145</td>
<td>17</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>#1232</td>
<td>8</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>#1558</td>
<td>6</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>#2444</td>
<td>8</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>#3581</td>
<td>6</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>#391</td>
<td>10</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>#2385</td>
<td>9</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>#4792</td>
<td>9</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>#637</td>
<td>30</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>#212</td>
<td>1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>#659</td>
<td>10</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>#7182</td>
<td>2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>#6530</td>
<td>24</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>#10876</td>
<td>5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Analysis Results. Table 5 summarizes the characteristics of the 18 bugs via our analysis methods. We distilled five major challenges: (1) **deep use case scenarios**, (2) **specific text inputs**, (3) **changing system or app settings**, (4) **specific user interaction patterns**, and (5) **external app interactions**. Note that one bug may impose multiple challenges at the same time, any of which could block a testing tool. We illustrate these challenges as follows.

C1 (event trace): hard to reach deep use case scenarios. Table 5’s column “#Distinct Transit.” denotes the number of distinct GUI page transitions along the bug triggering trace. This number approximates how deep a bug resides in the app. We can see that 12 out of 18 bugs (∼66.6%) can only be reached after bypassing more than 5 distinct page transitions. Specifically, nextcloud’s #4792 and and-bible’s #261 are the two bugs that pose this sole challenge for the selected tools. For example, nextcloud’s #4792 has 8 distinct page transitions, and its search space of event traces is at least 16×12×2×1×7×5×2×3=80,642 (each number denotes the number of executable events on one distinct GUI page). This big number blocks any tool from finding the bug within six hours.

Insight: It remains an open challenge for existing tools to reach deep use case scenarios, although some tools like **COMBO DROID** and **TIME MACHINE** were designed to reach deep app states; **HUMANOID** was designed to act like humans to cover more app functionalities.

C2 (text inputs): no careful design of text input generation. Text inputs are important to trigger some bugs in addition to the GUI actions. In Table 5, 4 bugs out of the 18 bugs require text inputs, and 3 out of these 4 bugs (∼75%) require corner-case (or invalid) text inputs rather than meaningful (or valid) ones. In detail, AnkiDroid’s #5638 requires to input the backslash codes (e.g., “\”, “\”); osmeditor’s #637 requires to fill two invalid, 1-length characters “+” and “0” into the text fields of value and age, respectively; WordPress’s #10876 requires that the content of a post under writing is left as empty; only WordPress’#8659 requires to input a valid text (not necessarily meaningful) that can obtain non-empty search entries.

However, existing tools usually generate pure random texts without careful designs, and thus hard to detect these bugs. For example, **COMBO DROID** and **TIME MACHINE** simply inherit **MONKEY**’s text generation strategy, which generates random texts of digits, letters, or other symbols; **APE** optimizes **MONKEY** by additionally generating random integer/float numbers and time/date formatted strings. **HUMANOID** randomly picks texts from the training data.

Insight: Testing tools should improve the text input generation strategies for bug finding. In addition to generate meaningful text inputs [22], they should also stress test apps with corner-case or invalid text inputs by analyzing app code or the meaning of text fields, or defining a list of risky text inputs [28]. **Note that the prior studies** [3, 7, 52] **only suggest generating valid text inputs because they aim for improving code coverage rather than bug finding.**

C3 (system/app settings): no dedicated consideration of changing system/app settings. Changing system or app settings are common user behaviors [23]. However, we find none of the selected tools dedicatedly considers the necessity of such changes in bug finding, especially for system settings (because changing system setting usually requires interacting with system app Setting(s)). This leads to the incapability of detecting such bugs. In Table 5, 3 bugs out of the 18 bugs involve setting changes, and 2 out of these 3 bugs (∼66.6%) involve system settings. Specifically, **AnkiDroid**’s #6145 requires changing the default system language from English to another language and turning on one app preference option; **commons**’s #1581 requires that the system location service is turned off before entering into the Nearby page and then is turned on to use GPS for location; and **commons**’s #1391 requires turning on the app’s “night mode” theme in the middle of a specific event trace. None of the tools can detect these bugs.

Insight: The key challenge of considering system or app settings during GUI testing is the large space of possible GUI tests caused by two major reasons. One reason is the diversity of setting options. For example, Android 7.1 provides 9 main categories of system settings with over 50 concrete setting options [40, 41], all of which could affect app behaviors. But only limited types of system settings were considered before [23, 35]. Another reason is the interleavings between the setting changes and the GUI events. Prior work [23, 35] only changes settings before an app starts and does not change settings at runtime. However, all the 3 bugs require changing settings at specific points at runtime. **Note that the prior studies** [3, 52] **have not systematically observed this challenge.** Because they analyze the main app code (i.e., Java code) coverage but we observe not all setting changes (especially for system settings) will lead to obvious coverage changes in Java code (e.g., changing system languages mainly involves an app’s XML resource code). In addition, the implication from prior studies (see Table III in [52]) to generate system events (i.e., sending broadcast intents) cannot work on changing system settings (e.g., security-related settings like permissions and location cannot be changed by sending intents) or app settings.

C4 (interaction patterns): no explicit consideration of specific user interaction patterns. Another major challenge which blocks these tools from finding bugs is the lack of generating specific user interaction patterns to pose adverse conditions. We can see that 12 out of the 18 bugs (∼66.6%) pose this challenge. For example, WordPress’ #6530 requires **uploading a number of pictures** (making the uploading takes some time) to publish a post and then deleting the post when the uploading is still in progress; osmeditor’s #637 requires removing all entries but the last one from its page of validator preference; **commons**’s #1385 requires a **rotation action at one specific page**; WordPress’ #8659 requires **scrolling down and back the site pages** (revoking the page loading of new items) and select some specific items. **AnkiDroid**’s #4200 requires putting one specific activity in the background for a while.
and returning back to it (making the Android system destroy and recreate the activity). Despite these bugs seem corner cases, the corresponding user interaction patterns are common in reality.

Insight: We carefully examined the relevant covered code of these bugs. It reveals that manifesting these bugs requires exercising specific sequences of callback interactions. For example, WordPress’s #6530 involves the interactions between the callbacks of GUI events (for deleting the post) and those of the background thread (for uploading the pictures); commons’s #1385 involves the interactions between the lifecycle callbacks of an activity. However, existing tools only focus on maximizing line or activity coverage, which is hard to stress test different callback interactions. One plausible way is to design specific coverage criteria (e.g., callback sequence coverage [33]) or mutation operators [30] to guide testing. Note that this insight cannot be obtained by prior studies [3, 52] because such bugs will not show differences in terms of line or activity coverage.

C5 (external interactions): seldom consider the interactions with other apps. 5 out of the 18 bugs (≈27.8%) require interacting with other apps on the device to obtain the desired data (e.g., a picture file) to enable testing the follow-up functionalities. However, most tools do not explicitly consider the necessity of these interactions in bug finding, and instead they constrain the testing efforts within the app under test. For example, HUMANOID will simply restart the tested app after certain steps of exploration if it is still exploring the other apps. C5 may be related with C1 and C3.

Insight: It is much desirable for these testing tools to construct external intents provided with desired data or files to simulate the purpose of external app interactions.

4.3 RQ3: Factors and Opportunities

This section discusses the factors we observed that affect bug finding on the collected real-world bugs and the opportunities for tool improvements. Specifically, we conduct the analysis based on the testing results of each tool in Table 3 and the pairwise comparison results in Figure 1. We follow the same analysis methods in RQ2, and summarize our major findings in the following aspects.

GUI exploration (testing) strategies affect bug finding. The tools we studied employ different GUI exploration strategies. Indeed, these strategies show their unique advantages in finding specific bugs. For example, Monkey, APE, ComboDroid, TIMEMACHINE found 4, 1, 2, and 1 bugs, respectively, which the other tools cannot find.

But we also observe that the exploration strategies with more direct and fine-grained guidance seem more effective in finding bugs. For example, in Table 4, APE, ComboDroid and StoAT detect more bugs than HUMANOID, TIMEMACHINE and Q-testing. Specifically, both HUMANOID and Q-testing use trained deep neural network to guide exploration: HUMANOID explores towards human-preferred pages, while Q-testing prefers exploring pages with different usage scenarios. TIMEMACHINE heuristically deprioritizes those pages that have been visited more times (see Section 3.3 in [9]). Basically, these three tools are only guided to cover more GUI pages. However, this may not be directly linked with bug finding. In contrast, APE differentiates and explores distinct app states by dynamically refining state abstraction, ComboDroid stress-tests the data-flow relations at the app code level, while StoAT optimizes different event compositions in GUI tests via the stochastic model. These three tools are informed by more fine-grained analysis, and thus are likely to detect more bugs.

Opportunities: Integrating fine-grained (program) analysis results into GUI exploration could be beneficial for bug finding.

State abstraction granularity affects bug finding. GUI layouts are usually used to abstractly represent concrete app states during testing. Due to the large search space of GUI pages, GUI state abstraction strategies (or GUI comparison criteria [2]) are commonly adopted by testing tools to improve testing scalability. We observe that the bug finding abilities could be affected by the state abstraction granularity, which unfortunately has not been well-recognized by existing tools. Specifically, we observe that the tools with more fine-grained abstraction could detect more bugs, which corroborates the preliminary findings of [2] (see Section 6.3).

For example, we observe that TIMEMACHINE and Q-testing missed some trivial bugs like WordPress’s #11135 and nextcloud’s #1918. The tool authors of TIMEMACHINE explained to us that one major reason could be TIMEMACHINE’s state abstraction criterion is too coarse. In practice, TIMEMACHINE uses a variant of the C-Lv3 abstraction criterion [2] (which only uses layout widgets to abstract GUI states) to decide whether a given state is a (new) interesting state. However, this abstraction criterion could be too coarse, and TIMEMACHINE thus fails to identify and snapshot some “critical” states (which are the preconditions of the bugs) into its state pool. As a result, it may miss the chance to trigger the bug. Q-testing uses a more coarse-grained abstraction criterion (between C-Lv2 and C-Lv3 [2]), which only differentiates two GUI pages if they are from different app usage scenarios. In fact, TIMEMACHINE and Q-testing find the least numbers of bugs, compared to other tools.

Meanwhile, all the aforementioned three bugs can be detected by APE, HUMANOID and ComboDroid. Because ComboDroid and Humanoid use the fine-grained C-Lv4 criterion (which uses both the layout and executable widgets to abstract states), while APE dedicatedly proposes a dynamically refined state abstraction strategy to achieve better balance between state precision and scalability.

On the other hand, Monkey is pure black-box and does not do any abstraction. It treats every GUI page as unique and emits GUI events at any random screen coordinates, and thus sometimes suffers from scalability issues. For example, Monkey cannot detect FirefoxLite’s #5085, which only requires 5 GUI events. The reason is that this bug requires clicking a small widget at the bottom-right corner of the first GUI page, and then clicking one specific setting option among many others on the next page. As a result, Monkey has very low chance to bypass these two pages to trigger the bug.

Opportunities: Defining appropriate state abstraction criterion is important for bug finding but still an open problem. One possible solution is to define specific granularity for specific types of apps or functionalities to reduce the chance of missing important states.

Small heuristics affect bug finding. We find some tools implemented small heuristics. Despite these heuristics are not the fundamental advantages of the core testing techniques, they do improve the bug finding abilities.

For example, Monkey by default does not support long-touch, so it cannot detect AmazeFileManager’s #1796, which requires a long-touch event. But other monkey-based tools, i.e., APE, ComboDroid, TIMEMACHINE found it because they implemented long-touch.
Table 6: Concrete new insights obtained from our study and the comparison with prior studies on these new insights ("✓", "✗" and "✗✗" denote that the corresponding study does, does not or partially does obtain the new insight).

<table>
<thead>
<tr>
<th>Studies</th>
<th>RQ1 (bug finding abilities)</th>
<th>RQ2 (common challenges in finding bugs)</th>
<th>RQ3 (factors and opportunities)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choudhary et al. [7]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Wang et al. [50]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Zheng et al. [52]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Behrang et al. [3]</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Our study</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

In addition, APE and COMBO DROID implements a special strategy to input texts (one of the common user behaviors to input text): (1) long touch the target text field to select the original text, (2) clear the whole content, and then (3) input the new random text. Due to this heuristic, only APE and COMBO DROID found MaterialFBook’s #224, which requires a long-touch to invoke the copy-paste operation. All the other tools cannot find this bug because they input texts via directly overwriting the original text.

Some tools internally complement their core testing technique with some heuristics to improve testing effectiveness. For example, APE and COMBO DROID occasionally invoke the default MONKEY to do random testing. As a result, they can trigger some bugs that are only likely to be triggered by MONKEY. For example, MONKEY may slide down the notification bar by random swipes and change some settings therein by random touches. As a result, all MONKEY-based tools can detect openlauncher’s #67, which requires opening the “do not disturb” setting. HUMANOID and Q-TESTING cannot detect this bug due to the lack of any MONKEY-like random testing strategies.

Opportunities: Designing and integrating small heuristics by simulating human-app interaction patterns (e.g., specific UI actions, text input styles, putting apps in the background and returning back to it) can improve bug finding.

4.4 Discussion

New insights obtained from our study. Table 6 summarizes the concrete new insights obtained from our study. We can see that most of the new insights have not been identified by the prior studies [3, 7, 50, 52]. Specifically, due to the lack of a ground-truth benchmark, the studies [7, 50] are difficult to do the in-depth analysis like RQ1~RQ3, while the studies [3, 7, 52] can only identify some or partial insights in RQ2 because they identify the tool limitations in achieving high code coverage rather than bug finding. We note that the prior studies [3, 7, 52] identified some other tool limitations like requiring account-login and collaboration with other devices. We excluded such limitations in the evaluation setup, e.g., by providing auto-login scripts and focusing on “self-contained” apps, because these are not the limitations of the core testing techniques.

Applications of our study. Our study can have three major applications. First, the detailed analysis in RQ1~RQ3 distilled many important findings, which can help enhance, optimize and extend existing testing tools. It also pointed out some open research problems, e.g., how to efficiently find system setting related crashes [38] and better balance between different GUI abstraction criteria. Second, the THEMIS benchmark can be used to quantitatively and qualitatively evaluate new testing techniques for Android in a controlled, rigorous environment like Defects4J for Java. For example, a new testing technique could compare itself with the results of selected tools to validate its effectiveness, and challenge itself with the 18 critical bugs (which no tool can find) to prove its advancement. Third, the infrastructure can be used to facilitate other research like bug reproducing [51], fault localization [10] and program repair for Android.

Threats to validity The validity of our study may be subject to some threats. One threat is the representativeness of our bug dataset and the generality of our findings. To reduce this threat, we interviewed the industrial practitioners to obtain the agreed-upon selection criteria of bugs that conforms to real industrial practices. The data collection is based on a large set of Android apps, and all the issues with critical labels are assigned by developers. We carefully inspected each issue and collected valid ones without any bias (see Section 3.1). Table 3 shows the apps are diverse, and the analysis in RQ2/RQ3 also shows the bugs have different features. Moreover, the interviewees observe that critical bugs do not have obvious differences from other less important ones in bug manifestation (e.g., the difficulty of bug-triggering and the test length). Thus, our study findings based on critical bugs could be generalized to real-world bugs. In the future, we could incorporate more bugs to further mitigate this threat. Another threat is the correctness of evaluation and result analysis. To counter this, we made considerable effort to setup a rigorous experimental infrastructure, and resolved many tool issues before the deployment (see Section 3.2). We carefully examined tool implementations and discussed with the tool authors to analyze tool abilities and validate our observations. The experimental data and results were cross-checked by the two co-authors. We also made the THEMIS benchmark publicly available for replication.

5 CONCLUSION

In this paper, we take the first step to empirically evaluate automated GUI testing for Android against real-world bugs. We evaluate several testing tools on the 52 real, reproducible bugs, and reveal many new findings. We find a considerable gap in these tools finding the collected bugs. We identify five common major challenges that future work should address, and the factors that affect these tools in bug finding. Our study provides a new, complementary perspective from prior studies to analyze existing testing tools.

ACKNOWLEDGMENTS

We thank the anonymous ESEC/FSE reviewers for their valuable feedback and the generous helps from the studied tools’ authors. This work is partially supported by NSFC Project No. 62072178 and No. 61690204. Ting Su and Zhendong Su were partially supported by a Google Faculty Research Award. Ting Su was also partially supported by a Swiss NSF Spark Award CRSK-2_190302.
REFERENCES

