
ProphetAgent: Automatically Synthesizing GUI Tests from Test
Cases in Natural Language for Mobile Apps

Qichao Kong
∗

East China Normal University /

ByteDance

Shanghai, China

kongqichao@bytedance.com

Zhengwei Lv

ByteDance

Beijing, China

lvzhengwei.m@bytedance.com

Yiheng Xiong
∗

East China Normal University

Shanghai, China

xyh@stu.ecnu.edu.cn

Jingling Sun
†

University of Electronic Science and

Technology of China

Chengdu, China

jingling.sun910@gmail.com

Ting Su
∗†

East China Normal University

Shanghai, China

tsu@sei.ecnu.edu.cn

Dingchun Wang

ByteDance

Beijing, China

wangdingchun@bytedance.com

Letao Li

ByteDance

Beijing, China

liletao@bytedance.com

Xu Yang

ByteDance

Beijing, China

yangxu.swanoofl@bytedance.com

Gang Huo

ByteDance

Beijing, China

huogang@bytedance.com

Abstract

GUI tests is crucial for ensuring software quality and user satisfac-

tion of mobile apps. In practice, companies often maintain extensive

test cases written in natural language. Testers need to convert these

test cases into executable scripts for regression and compatibility

testing. Requirement changes or version updates often necessitate

the addition and modification to these test cases. Thus, when faced

with large volumes of test cases and regular updates, this process

becomes costly, which is a common challenge across the indus-

try. To address this issue, this paper proposes ProphetAgent that

can automatically synthesize executable GUI tests from the test

cases written in natural language. ProphetAgent first constructs

a Clustered UI Transition Graph (CUTG) enriched with semantic

information, then leverages large language models to generate the

executable test case based on CUTG and test cases written in natural

language. Experiment results show that ProphetAgent achieved a

78.1% success rate across 120 test cases in Douyin, Doubao, and six

open-source apps, surpassing existing automated approaches (21.4%

for AppAgent and 32.5% for AutoDroid). Additionally, statistical

data from ByteDance’s testing platform show that ProphetAgent

increased testers’ efficiency in synthesizing UI tests by 260%.

∗
Qichao Kong, Yiheng Xiong and Ting Su are affiliated with Shanghai Key Laboratory

of Trustworthy Computing.

†
Ting Su and Jingling Sun are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

FSE ’25, June 23–28, 2025, Trondheim, Norway
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1276-0/25/06

https://doi.org/10.1145/3696630.3728543

CCS Concepts

• Software and its engineering→ Software testing and debugging.

Keywords

Large Language Model Agents, Test Cases, GUI Testing

ACM Reference Format:

Qichao Kong, Zhengwei Lv, Yiheng Xiong, Jingling Sun, Ting Su, Dingchun

Wang, Letao Li, Xu Yang, and Gang Huo. 2025. ProphetAgent: Automat-

ically Synthesizing GUI Tests from Test Cases in Natural Language for

Mobile Apps. In 33rd ACM International Conference on the Foundations of
Software Engineering (FSE ’25), June 23–28, 2025, Trondheim, Norway. ACM,

New York, NY, USA, 6 pages. https://doi.org/10.1145/3696630.3728543

1 Introduction

Mobile apps are ubiquitous in people’s daily life, and some soft-

ware errors can lead to significant financial losses and user dis-

satisfaction [1, 6]. In practice, in addition to automated GUI test-

ing [13, 22, 23], companies typically maintain numerous test cases

written in natural language, and testers need to convert these

test cases into executable GUI tests for validating app function-

alities [24, 30]. These GUI tests can be run automatically to expe-

dite regression and compatibility testing. However, writing and

maintaining GUI tests still requires significant effort. For instance,

ByteDance, the provider of Douyin (a popular social media app with

over 800 million monthly active users worldwide[5]), maintains

tens of thousands of test cases written in natural language. Each

test case contains the start scene and test steps, such as: In the main
page (i.e., the start scene of this test case), click the Friends tab, click
the add friends button, click the Follow button, click the Scan button
and click the My QR code button. ByteDance’s testers are required
to convert these natural language test cases into corresponding ex-

ecutable GUI tests and update them alongside requirement changes

and version updates. This process typically involves: exploring the

app until they find the start UI page, sequentially matching each

https://doi.org/10.1145/3696630.3728543
https://doi.org/10.1145/3696630.3728543

FSE ’25, June 23–28, 2025, Trondheim, Norway Qichao Kong, Zhengwei Lv, Yiheng Xiong, Jingling Sun, Ting Su, Dingchun Wang, Letao Li, Xu Yang, and Gang Huo

test step to the appropriate UI widgets, writing GUI tests based

on the identified UI widgets, and modifying the GUI tests if they

fail during execution. A report from a testing team in ByteDance

shows that each novice tester can only write (synthesizing GUI

tests from natural language) and maintain (updating them with

each app version change) 150 test cases per quarter, while even

experienced testers can only write and maintain 700 test cases.

Therefore, ByteDance needs significant human effort to write and

maintain tens of thousands of test cases.

The rise of automated testing has gained significant attention,

and more companies hope to automate GUI test synthesis to cut

labor costs. Key challenges include accurately parsing natural lan-

guage and aligning test cases with mobile app details (including

matching the start scene with the corresponding UI page, and align-

ing each test step with the target UI widget). Some studies have

explored converting natural language descriptions into executable

GUI tests, which involves challenges similar to those faced in syn-

thesizing GUI tests. Previous approaches [11, 25, 32] typically rely

on Natural Language Processing (NLP) or Deep Learning (DL) to

parse natural language descriptions and complete the automation

conversion. However, traditional NLP and DL techniques have lim-

ited capabilities in natural language understanding, resulting in

low accuracy of the conversion results. The rise of Large Language

Models (LLM) [3, 18] has shown improved potential for addressing

this issue. For example, some work[25, 28, 31] has leveraged LLMs

to automate the execution of simple natural language commands.

However, these techniques face some challenges, making it diffi-

cult to synthesize GUI tests for complex, specialized functionalities.

First, vision-based techniques often face difficulties as visual LLMs

struggle to accurately capture all widgets on a page and interpret

their semantic meanings. Second, these techniques entirely rely on

the general app knowledge learned by LLMs for decision-making.

However, LLMs often fail to predict the interaction outcomes of

candidate widgets, leading to incorrect matches.

To this end, we propose ProphetAgent, an efficient GUI test

case synthesis technique. The key insight of ProphetAgent is to

construct a knowledge graph that characterizes the app’s behavior

and scenarios. By leveraging both the knowledge graph and LLMs,

we enable the synthesis of GUI tests from test cases written in

natural language. Specifically, ProphetAgent starts by exploring

the target app to collect all transition information. It then anno-

tates the UI pages and events in the transition information with

semantic meanings and clusters them, ultimately producing a se-

mantically enriched Clustered UI Transition Graph (CUTG), which

serves as the knowledge graph. Then, ProphetAgent matches

natural language test steps with UI events in the CUTG and gener-

ates executable code based on the matched events. Our approach

offers two advantages over existing techniques: (1) By pre-building

a CUTG with semantically annotated nodes, our approach provides

more precise semantic information to assist LLMs in matching nat-

ural language descriptions with UI widgets, (2) It does not require

using LLM to process all the app information, which cuts down on

training costs and increases accuracy.

To evaluate ProphetAgent, we applied it to 120 test cases

written in natural language from two industrial apps (Douyin

and Doubao), and six open-source apps. The results show that

ProphetAgent achieved a 78.1% completion rate, significantly

outperforming existing tools (21.4% for AppAgent [31] and 32.5%

for AutoDroid [28]). Additionally, ProphetAgent exhibited a high

action accuracy of 83.3% (compared to 28.2% for AppAgent and

36.5% for AutoDroid). Furthermore, the average time to synthe-

size a GUI test with ProphetAgent was 127 seconds, shorter than

AppAgent’s 138 seconds and AutoDroid’s 339 seconds. We also

conducted statistics on ByteDance’s testing platform, revealing that

before using ProphetAgent, testers managed an average of 25 test

cases per day, whereas now they can manage 90 test cases daily,

representing an astonishing 260% increase in tester efficiency. These

findings highlight ProphetAgent ’s efficiency and effectiveness in

enhancing app quality assurance through advanced semantic un-

derstanding and precise action execution. ProphetAgent has been

made publicly available at https://github.com/prophetagent/Home.

A demonstration of ProphetAgent is available at https://youtu.

be/iCsGis__5gg.

2 ProphetAgent

The primary goal of ProphetAgent is to enable developers and

testers to automatically execute test steps in natural language. Fig-

ure 1 provides an overview of our approach, which includes a GUI

Explorer, Graph Builder, and two key Agents: SemanticAgent and

GenerationAgent. The GUI Explorer performs in-depth fuzzing on

the given app and records all GUI transition events. SemanticA-

gent extracts essential information from these raw GUI operation

sequences and annotates them with distinct semantics, setting the

stage for informed decision-making by GenerationAgent. Subse-

quently, the Graph Builder applies clustering and graph construc-

tion rules to create a semantically enriched Clustered UI Transition

Graph (CUTG). Then, GenerationAgent matches a path in this di-

rected graph that conforms to the test steps.

2.1 GUI Explorer

We deploy the GUI Explorer to explore the target app and record

the GUI transition information after each UI event is executed. Each

piece of transition information is represented as a tuple ⟨𝑝, 𝑒, 𝑝′⟩,
where p denotes the UI page before the execution of the UI event,

captured as the XML tree structure of the GUI layout, e describes

the executed UI event, which consists of the action taken (such

as clicking, long pressing, or editing) and the target widget, and

p’ represents the UI page after the execution of the UI event, also

encapsulated as an XML tree.

2.2 SemanticAgent

SemanticAgent annotates each transition information with explicit

semantic information on UI pages and UI events. Next, we will

explain how to annotate pages and events separately.

Semantic annotation of UI pages. To extract semantic informa-

tion from the UI page, we first group and optimize the UI page’s XML

tree to focus exclusively on widgets within the target app, excluding

system widgets such as the device’s battery level. We categorize

these XML entries into two groups: layouts and UI components.

We remove the layout entries and keep only the UI components.

Specifically, we recursively process all nodes, merge non-functional,

invisible, or non-interactive nodes into their parent nodes, and

combine their descriptive information into the parent node. In our

experiments, it can reduce the average number of nodes per page

https://github.com/prophetagent/Home
https://youtu.be/iCsGis__5gg
https://youtu.be/iCsGis__5gg

ProphetAgent: Automatically Synthesizing GUI Tests from Test Cases in Natural Language for Mobile Apps FSE ’25, June 23–28, 2025, Trondheim, Norway

Figure 1: Overview of our ProphetAgent

from 148 to 70, effectively decreasing the number of tokens needed

for LLM input. We also compare the similarity of consecutive pages:

if the difference in nodes is less than five, we provide detailed ex-

planations for these nodes. This reduced the token count for a page

information request from about 40,000 to 1,500. Additionally, Web-

View pages often lack explicit information within the XML tree. To

address this, we use OCR[21] to extract textual information from

the page as supplementary data for further processing by the LLM.

Semantic annotation of UI events. To extract event information,

we focus on the target widget of the event and the changes between

previous and subsequent UI pages. For each target widget, we in-

spect the presence of "text" or "content-desc" attributes, as these

often indicate the widget’s function or semantic meaning. If such

attributes are available, they are stored as semantic information. In

their absence, we use "resource-id" and "class" attributes as substi-

tutes. To get more information, we also extract information from

the target widget’s child and parent widgets. For child widgets, we

focus on the "bounds" attribute to evaluate their spatial relation-

ship with the target widget. If a child widget occupies more than

75% of a target widget’s area, we extract its semantic information

using the same rules as for the target widget. Similarly, if a widget’s

area exceeds 75% of its parent widget’s area, we also extract the

parent widget’s key information. We obtain a regional screenshot

of the event area during operation, which serves as supplementary

information to enhance the GPT-4o[16] model’s understanding.

Additionally, changes between previous and subsequent UI pages

can reveal critical event information. To assist the LLM in under-

standing the event, we extract key UI page details and provide the

model with node changes from both UI pages.

2.3 Graph Builder

The Graph Builder leverages GUI transition data collected by the

GUI Explorer to cluster UI pages and events, constructing the CUTG

enriched with semantic information. The clustering of page nodes

is conducted in real-time during the GUI exploration process, based

on the current UI page’s activity and qualified widget attributes.

Specifically, widgets with a predefined depth range are extracted,

and their Class and Resource-ID attributes are used to characterize

them. The predefined depth is dynamically determined based on

the complexity of the app’s XML structure. All qualified widgets

and activities form a unique identifier for the UI page, which is then

assigned to a unique hash value. The clustering of event nodes is

derived from data recorded during the Fuzzing process. Each event

is uniquely identified based on the hash values of the preceding and

subsequent UI pages, the type of event, and the widget’s Resource-

ID, and is assigned a unique hash value. During graph construction,

both UI pages and events are designated as nodes, which enhances

the representation and storage of event information while clarifying

relationships within the clustered graph.

2.4 GenerationAgent

GenerationAgent is responsible for matching a path in the CUTG

that aligns with the test case written in natural language and gener-

ating executable code for execution. We propose an approach that

combines embedding[17] similarity for initial filtering with an LLM

for fine-grained selection, enabling accurate matching of UI pages

and event nodes in the CUTG. To address potential failures and

hallucinations that can arise from embedding similarity and LLM

matching in some extreme cases, a dynamic rollback mechanism is

employed. Specifically, the start scene of the test case is matched

by calculating the cosine similarity of embeddings for all UI page

nodes in the graph database, from which the top 50 candidates are

selected. The LLM then chooses the UI page node that best matches

the start scene. For the sequence of event nodes, we first locate

the starting UI page node in the graph database and retrieve all

outgoing nodes, which represent the candidate set of event nodes.

For each event description, the resulting UI page information is

obtained from the graph database, predicting the effects of execut-

ing all candidate events. The matching process for the best event

node is the same as for UI page nodes. If the LLM determines that

no node in the candidate set satisfies the current operation, a dy-

namic recursive rollback is triggered to rematch the previous node.

This process continues until all operation sequences are matched,

forming a complete executable code path.

3 Tool Implementation

We have developed a prototype tool, ProphetAgent, to support

our approach. Given an application and a set of prepared test cases.

ProphetAgent traverses the application to generate a CUTG, se-

lects a path in the CUTG that meets the test-case requirements,

and generates an executable script, which is subsequently run.

FSE ’25, June 23–28, 2025, Trondheim, Norway Qichao Kong, Zhengwei Lv, Yiheng Xiong, Jingling Sun, Ting Su, Dingchun Wang, Letao Li, Xu Yang, and Gang Huo

For the traversal task, we employ an improved version of Droid-

bot [12] to perform thorough exploration. We use the graph data-

base Neo4j [15] to store and index the CUTG map data we have

constructed. We utilize Doubao’s embedding model [27] and a

cosine similarity algorithm for text similarity matching. We rely

on the GPT4o model as the foundation for our Agent, enabling

it to accomplish various tasks. Finally, we adopt the uiautoma-

tor2 testing framework [4] to assist in executing the generated

scripts. A demonstration of ProphetAgent is available at https:

//youtu.be/iCsGis__5gg.

4 EVALUATION

Our experiment aims to answer these research questions:

• RQ1 : How effective and efficient is ProphetAgent in synthe-

sizing GUI tests from the test steps in natural language, and

how does it compare with state-of-the-art techniques?

• RQ2 : What is the impact of different LLM agents on the

method we propose?

4.1 Experiment Setup

App subjects. First, we selected two industrial apps fromByteDance,

Douyin (version 29.7.0) and Doubao (version 6.3.0), for the follow-

ing reasons: (1) their popularity (over 800 million monthly active

users) and complexity (with hundreds of app states), which provide

a more realistic evaluation of the method’s effectiveness; (2) our

collaboration with ByteDance, which allowed us to access real-

world test cases as inputs. Additionally, to assess the method’s

generalizability, we selected six additional representative open-

source Android apps from prior research on functional testing of

Android apps [29]. Other apps with similar features or that have

been archived were excluded. The selected apps include AnkiDroid

(version 2.18.1, 9k+ stars in Github), AmazeFileManager (version

3.10, 5.4k+ stars), OmniNotes (version 6.3.1, 2.7k+ stars), NewPipe

(version 0.27.4, 32.3k+ stars), ActivityDiary (version 1.4.2, 73 stars),

and AntennaPod (version 3.2.0, 6.6k+ stars).

Evaluation method of RQ1. To answer RQ1, we evaluated the

effectiveness of ProphetAgent on the app subjects we selected.

Specifically, ByteDance provided us with 30 real-world test cases

each for Douyin and Doubao as test inputs. For the other six open-

source apps, we developed 10 test cases per app, focusing on core

activity pages and functionalities. Each test case consisted of 4–15

steps. We compared our method with two key techniques for con-

verting natural language into executable GUI tests: a most estab-

lished technique (AppAgent [31]) and a recent state-of-the-art tech-

nique (AutoDroid [28]), both of which utilize LLMs to generate

executable GUI tests for Android apps from sentences describing

GUI tasks.We excluded other research that was either closed-source

or too costly to include, but we still discuss the differences with

them in section 6. AppAgent and AutoDroid were configured with

the latest GPT-4o [16] across the same 120 test cases for a fair com-

parison. To effectively compare the performance of different agents,

we executed each test case three times and adopted the average

values from these runs for four key metrics.

• Completion Rate (CR): This metric measures the overall

completion rate (number of correctly synthesized test cases

the total number of test cases
) in con-

sistently and successfully synthesizing the test case within the

app. Note that the "correctly synthesized test cases" refer to

the cases synthesized by the tool that were manually judged as

correct, with false positives (cases where the agent incorrectly

assumes success) being manually filtered out.

• Action Accuracy (AAC): This metric measures the accuracy

of the steps (number of correct steps

the total number of steps generated by ProphetAgent
)

performed. Despite the tool not always achieving success in

fully generating GUI tests, each successfully synthesized step

reduces the time required for testing.

• Average Time to Success (ATS): We recorded the average

time required to successfully execute test cases, reflecting the

agent’s response speed and processing capabilities in actual

operations. Notably, this metric is rarely recorded in other

real-time executing agents.

• Average Time to Failure (ATF): We also recorded the aver-

age time taken when test cases fail. Ideally, the agent should

immediately terminate operations and report errors when the

fault occurs, thereby saving resources and enhancing the over-

all efficiency of the test.

Among the four metrics mentioned above, higher CR and AAC

indicate greater effectiveness of the tool, while lower ATS and ATF

(measured in seconds) represent higher efficiency of the tool.

Furthermore, to assess the efficacy of ProphetAgent in re-

ducing testing overhead, we measured the efficiency of test case

conversions by testers on ByteDance’s testing platform (used by

over 1000 testers), both before and after using ProphetAgent.

Evaluation method of RQ2. To answer RQ2, we conducted tests

using a different LLM, Doubao-pro-128k, under the same exper-

imental conditions as in RQ1. Specifically, we replaced the GPT-

4o model in both SemanticAgent and GenerationAgent with the

Doubao model. We manually analyzed and recorded the evaluation

results, focusing on four same metrics and identifying the causes

of any discrepancies.

4.2 Results for RQ1.

Figure 2 shows the detailed performance metrics. ProphetAgent

still exhibits a clear advantage in mobile app automation testing,

reaching an average completion rate (CR) of 78.1%—markedly sur-

passing both AppAgent (21.4%) and AutoDroid (32.5%). This reflects

ProphetAgent’s superior capability to complete test cases. Such an

improved CR largely stems from the use of CUTG, which not only

provides semantic insights into UI widgets and their subsequent ef-

fects but also employs a dynamic rollback mechanism when tracing

reachable paths. In terms of action accuracy (AAC), ProphetA-

gent posts 83.3%, while AppAgent and AutoDroid achieve 28.2%

and 36.5%, respectively, indicating that ProphetAgent tends to ex-

ecute a larger portion of the necessary steps, even if it does not fully

complete certain test scenes. We explored why these two tools fell

short of expectations, and found that the primary reason lies in the

underlying LLMs. They lack sufficient knowledge of GUI pages and

are thus unable to fully grasp the semantics of the widgets, which in

turn prevents them from accurately mapping the test steps to the ap-

propriate UI widgets. Meanwhile, ProphetAgent ’s average time to

success (ATS) is 127 seconds, falling below AppAgent’s 138 seconds

and considerably under AutoDroid’s 339 seconds, thereby high-

lighting more efficient test execution. Lastly, ProphetAgent ’s

https://youtu.be/iCsGis__5gg
https://youtu.be/iCsGis__5gg

ProphetAgent: Automatically Synthesizing GUI Tests from Test Cases in Natural Language for Mobile Apps FSE ’25, June 23–28, 2025, Trondheim, Norway

Figure 2: Comparative Performance Analysis of AppAgent, AutoDroid and ProphetAgent Across Various Apps

average time to failure (ATF) of 104 seconds also proves notably

shorter compared to 202 seconds for AppAgent and 345 seconds for

AutoDroid, as it rapidly terminates when path matching fails in the

CUTG and does not execute the GUI tests on a real device, thereby

enhancing overall testing efficiency.

In terms of reducing testing overhead, ByteDance’s testing plat-

form statistics show that ProphetAgent significantly reduced

testing overhead, boosting tester efficiency from 25+ to 90+ test

cases per day. Additionally, testers at ByteDance mentioned that

ProphetAgent can help them handle over 70% of the test case

synthesis, leaving them with less than 30% of the original workload,

which significantly improves their work efficiency.

4.3 Results for RQ2.

Our evaluation of 120 test cases shows only a modest decline in

performance after replacing the GPT-4o model with the Doubao

model. Specifically, the completion rate decreased from 78.1% to

69.8%, while the action accuracy increased from 83.3% to 77.5% .

Notably, the average execution time decreased by 13%, indicating

a more efficient runtime when using Doubao. These observations

suggest that our tool does not heavily depend on GPT-series models;

substituting GPT-4o with other open-source LLMs results in only

a moderate reduction in effectiveness. In practice, this flexibility

allows developers to balance performance, cost, and other factors by

choosing among different LLM providers. Furthermore, Doubao’s

cost per million tokens is approximately one-seventh that of GPT-

4o [2, 19], offering a significant economic advantage for large-scale

or continuous deployments. Consequently, our approach provides

both adaptability and cost-effectiveness, making it more accessible

to a broader range of users and apps.

5 Discussion

Limitations of ProphetAgent. Despite our evaluation results

demonstrating that ProphetAgent is highly effective and accurate

in synthesizing textual test cases, ProphetAgent does have some

limitations. First, ProphetAgent is designed to handle specific test

cases rather than high-level intents. This means that each sentence

in a test case description must denote a single action. In contrast to

research focused on mobile task automation, which targets more

general scenarios, our work concentrates on app-specific and intri-

cate testing steps and scenarios in mobile apps. Second, ProphetA-

gent can only generate executable test scripts for scenarios that are

included in our constructed knowledge graph. In our experiments,

we employ Droidbot [12] for exploration, utilizing basic exploration

algorithms, and have achieved a high generation rate of over 70%.

We believe that as exploration techniques continue to advance—a

field that is receiving considerable attention—the effectiveness of

our algorithm will further improve, allowing ProphetAgent to

handle a broader range of scenarios.

Threats to Validity. The external validity of our results could be

compromised by the representativeness of the selected apps and the

precision of the input textual test cases. We addressed these threats

by choosing widely used industrial apps and emphasizing the need

for meticulous formatting of test cases to ensure accurate parsing

and execution, aiming to make our findings more generalizable to

typical industry settings. When it comes to internal threats, the

semantic annotation accuracy is a potential threat to the method’s

effectiveness. To evaluate the accuracy of SemanticAgent, we re-

cruited five professionals to verify 3,500 instances of GUI transition

information in our Douyin test dataset. The results showed that

SemanticAgent achieved an accuracy rate of 88%.

6 Related Work

Automating test automation. Research on automating test au-

tomation is limited. Early studies[20, 26] focused on converting

natural language test cases into executable GUI tests, addressing

ambiguities through backtracking. With AI advancements, recent

approaches[9, 10] focused on utilizing pretrained models to trans-

late test intents into GUI tests. Our method diverges by integrating

knowledge graph data and leveraging advanced model judgment,

marking the first initiative to separate test generation from execu-

tion. Although we cannot compare our tool directly with those from

previous studies (because these works have not made their tools

public), our approach appears to be more efficient and effective

based on their published results.

Mobile task automation. Recent years have seen a surge in re-

search [11, 25, 28, 31] on mobile task automation (i.e., enabling

hands-free user interaction with smartphones). For instance, META-

GUI [25] introduces a GUI-based dialogue system that directly ma-

nipulates app interfaces to execute tasks, AppAgent [31] builds a

knowledge base from autonomous exploration or human demon-

strations to execute tasks, and AutoDroid [28] integrates large

language models with dynamic app analysis to automate arbitrary

FSE ’25, June 23–28, 2025, Trondheim, Norway Qichao Kong, Zhengwei Lv, Yiheng Xiong, Jingling Sun, Ting Su, Dingchun Wang, Letao Li, Xu Yang, and Gang Huo

tasks on Android apps. Unlike these techniques, which focus on

simple, general tasks, ProphetAgent shows better performance in

experiments (as shown in Section 4), highlighting the limitations

of these approaches in complex scenarios.

Bug Report Reproduction. Some work [7, 8, 13, 14] aims to auto-

matically reproduce user-written bug reports. These studies also

involve the automated execution of interaction steps written in

natural language. These work primarily attempt to reproduce bugs

by trying all possible paths until the same exception is triggered.

Since test case synthesis tasks lack a clear termination condition

(i.e., the specific erroneous behavior of the app), these approaches

cannot be directly applied to test case synthesis tasks.

7 Conclusion

This paper presents ProphetAgent, a novel agent that automati-

cally synthesizes executable GUI tests from the test cases written

in natural language. By leveraging large-scale GUI fuzzing testing,

semantic annotations, and constructing a Clustered User Transition

Graph (CUTG), ProphetAgent accurately matches test cases and

anticipates GUI transitions . This approach achieves an execution

completion rate of 78.1% across 120 test cases and maintains a low

false positive rate of 6.8%, which surpasses existing tools in experi-

ments. Furthermore, ProphetAgent significantly reduces testing

overhead, increasing tester efficiency by 260% (from 25+ to 90+ test

cases per day). The ability to pre-generate and review executable

code before execution enhances the reliability and speed of test case

automation, making ProphetAgent a valuable tool for handling

complex test cases while reducing operational costs.

Acknowledgments

We thank the anonymous FSE reviewers for their valuable feedback.

This work was partially supported by NSFC Project (No.62072178),

ByteDance Research Fund, Shanghai Collaborative Innovation Cen-

ter of Trusted Industry Internet Software, “Digital Silk Road” Shang-

hai International Joint Lab of Trustworthy Intelligent Software

(No.22510750100), Sichuan Provincial Natural Science Foundation

(2025ZNSFSC0510), Key Laboratory of Large-Scale Electromagnetic

Industrial Software, Ministry of Education (EMCAE202402), and

Grant ZYGX2024XJ036 of the “Fundamental Research Funds for the

Central Universities”.

References

[1] 9to5Mac. 2024. App Store experiences downtime, affecting users worldwide.

https://9to5mac.com/2024/04/03/app-store-down/

[2] ByteDance. 2024. Pricing Doubao. https://console.volcengine.com/ark/region:

ark+cn-beijing/model/detail?Id=doubao-pro-128k.

[3] Claude. 2023. The Claude 3 Model Family: Opus, Sonnet, Haiku. https://api.

semanticscholar.org/CorpusID:268232499

[4] Appium Contributors. 2023. Appium UIAutomator2 Driver. https://github.com/

appium/appium-uiautomator2-driver.

[5] Digital Crew. 2023. Douyin Trends Every Marketer Should Know. https:

//www.digitalcrew.agency/douyin-trends-every-marketer-should-know/

[6] TechNode Feed. 2024. Alipay bugs allow users to get 20% discount on orders, no

reimbursement to follow. https://technode.com/2025/01/17/alipay-bugs-allow-

users-to-get-20-discount-on-orders-no-reimbursement-to-follow/

[7] Sidong Feng and Chunyang Chen. 2022. GIFdroid: automated replay of visual

bug reports for Android apps. In Proceedings of the 44th International Conference
on Software Engineering. 1045–1057. https://doi.org/10.1145/3510003.3510048

[8] Sidong Feng and Chunyang Chen. 2024. Prompting Is All You Need: Automated

Android Bug Replay with Large Language Models. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering. https://doi.org/10.1145/

3597503.3608137

[9] Chun Li. 2022. Mobile GUI test script generation from natural language de-

scriptions using pre-trained model. In Proceedings of the 9th IEEE/ACM In-
ternational Conference on Mobile Software Engineering and Systems. 112–113.
https://doi.org/10.1145/3524613.3527809

[10] Chun Li, Yifan Xiong, Zhong Li, Wenhua Yang, and Minxue Pan. 2023. Mobile

Test Script Generation from Natural Language Descriptions. In Proceedings of
the IEEE International Conference on Software Quality, Reliability and Security
Companion. 348–359. https://doi.org/10.1109/QRS60937.2023.00042

[11] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. 2020. Mapping

Natural Language Instructions to Mobile UI Action Sequences. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics. 8198–
8210. https://doi.org/10.18653/v1/2020.acl-main.729

[12] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. DroidBot: a

lightweight UI-Guided test input generator for android. In Proceedings of the 39th
International Conference on Software Engineering. https://doi.org/10.1109/ICSE-

C.2017.8

[13] Zhengwei Lv, Chao Peng, Zhao Zhang, Ting Su, Kai Liu, and Ping Yang. 2023.

Fastbot2: Reusable Automated Model-based GUI Testing for Android Enhanced

by Reinforcement Learning. In Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering. https://doi.org/10.1145/3551349.

3559505

[14] Leonardo Mariani, Ali Mohebbi, Mauro Pezzè, and Valerio Terragni. 2021. Se-

mantic matching of GUI events for test reuse: are we there yet?. In Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis.
177–190. https://doi.org/10.1145/3460319.3464827

[15] Neo4j. 2023. Neo4j: The Leader in Graph Databases. https://neo4j.com/.

[16] OpenAI. 2023. Hello, GPT-4o. https://openai.com/index/hello-gpt-4o/.

[17] OpenAI. 2023. New Embedding Models and API Updates. https://openai.com/

index/new-embedding-models-and-api-updates/.

[18] OpenAI. 2024. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL] https://arxiv.

org/abs/2303.08774

[19] openAI. 2024. Pricing GPT. https://openai.com/api/pricing/.

[20] Pablo Pedemonte, Jalal Mahmud, and Tessa Lau. 2012. Towards automatic func-

tional test execution. In Proceedings of the 2012 ACM International Conference on
Intelligent User Interfaces. 227–236. https://doi.org/10.1145/2166966.2167005

[21] pytesseract. 2023. pytesseract. https://pypi.org/project/pytesseract/.

[22] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang

Pu, Yang Liu, and Zhendong Su. 2017. Guided, stochastic model-based GUI testing

of Android apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering. 245–256. https://doi.org/10.1145/3106237.3106298

[23] Ting Su, JueWang, and Zhendong Su. 2021. Benchmarking automated GUI testing

for Android against real-world bugs. In Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 119–130. https://doi.org/10.1145/3468264.3468620

[24] Ting Su, Yichen Yan, JueWang, Jingling Sun, YihengXiong, Geguang Pu, KeWang,

and Zhendong Su. 2021. Fully automated functional fuzzing of Android apps for

detecting non-crashing logic bugs. (2021), 31. https://doi.org/10.1145/3485533

[25] Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai, Zichen Zhu, and Kai Yu. 2022.

META-GUI: Towards Multi-modal Conversational Agents on Mobile GUI. In

Proceedings of the Conference on Empirical Methods in Natural Language Processing.
https://api.semanticscholar.org/CorpusID:248986378

[26] Suresh Thummalapenta, Saurabh Sinha, Nimit Singhania, and Satish Chandra.

2012. Automating test automation. In Proceedings of the 34th International Confer-
ence on Software Engineering. 881–891. https://doi.org/10.5555/2337223.2337327

[27] volcengine. 2025. volcengine Embeddings. Retrieved 2025-1 from https://www.

volcengine.com/docs/82379/1302003/

[28] Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li,

Shiqi Jiang, Yunhao Liu, Yaqin Zhang, and Yunxin Liu. 2024. AutoDroid: LLM-

powered Task Automation in Android. In Proceedings of the the 30th Annual
International Conference on Mobile Computing and Networking. 543–557. https:

//doi.org/10.1145/3636534.3649379

[29] Yiheng Xiong, Ting Su, Jue Wang, Jingling Sun, Geguang Pu, and Zhendong

Su. 2024. General and Practical Property-based Testing for Android Apps. In

Proceedings of the 39th IEEE/ACM International Conference on Automated Software
Engineering. 53–64. https://doi.org/10.1145/3691620.3694986

[30] Yiheng Xiong, Mengqian Xu, Ting Su, Jingling Sun, Jue Wang, He Wen, Geguang

Pu, Jifeng He, and Zhendong Su. 2023. An Empirical Study of Functional Bugs in

Android Apps. In Proceedings of the 32nd ACM SIGSOFT International Symposium
on Software Testing and Analysis. 1319–1331. https://doi.org/10.1145/3597926.

3598138

[31] Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin

Fu, and Gang Yu. 2023. AppAgent: Multimodal Agents as Smartphone Users.

arXiv:2312.13771 [cs.CV] https://arxiv.org/abs/2312.13771

[32] Yu Zhao, Tingting Yu, Ting Su, Yang Liu, Wei Zheng, Jingzhi Zhang, and

William GJ Halfond. 2019. Recdroid: automatically reproducing android ap-

plication crashes from bug reports. In Proceedings of the 2019 IEEE/ACM 41st
International Conference on Software Engineering. 128–139.

https://9to5mac.com/2024/04/03/app-store-down/
https://console.volcengine.com/ark/region:ark+cn-beijing/model/detail?Id=doubao-pro-128k
https://console.volcengine.com/ark/region:ark+cn-beijing/model/detail?Id=doubao-pro-128k
https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://github.com/appium/appium-uiautomator2-driver
https://github.com/appium/appium-uiautomator2-driver
https://www.digitalcrew.agency/douyin-trends-every-marketer-should-know/
https://www.digitalcrew.agency/douyin-trends-every-marketer-should-know/
https://technode.com/2025/01/17/alipay-bugs-allow-users-to-get-20-discount-on-orders-no-reimbursement-to-follow/
https://technode.com/2025/01/17/alipay-bugs-allow-users-to-get-20-discount-on-orders-no-reimbursement-to-follow/
https://doi.org/10.1145/3510003.3510048
https://doi.org/10.1145/3597503.3608137
https://doi.org/10.1145/3597503.3608137
https://doi.org/10.1145/3524613.3527809
https://doi.org/10.1109/QRS60937.2023.00042
https://doi.org/10.18653/v1/2020.acl-main.729
https://doi.org/10.1109/ICSE-C.2017.8
https://doi.org/10.1109/ICSE-C.2017.8
https://doi.org/10.1145/3551349.3559505
https://doi.org/10.1145/3551349.3559505
https://doi.org/10.1145/3460319.3464827
https://neo4j.com/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://openai.com/api/pricing/
https://doi.org/10.1145/2166966.2167005
https://pypi.org/project/pytesseract/
https://doi.org/10.1145/3106237.3106298
https://doi.org/10.1145/3468264.3468620
https://doi.org/10.1145/3485533
https://api.semanticscholar.org/CorpusID:248986378
https://doi.org/10.5555/2337223.2337327
https://www.volcengine.com/docs/82379/1302003/
https://www.volcengine.com/docs/82379/1302003/
https://doi.org/10.1145/3636534.3649379
https://doi.org/10.1145/3636534.3649379
https://doi.org/10.1145/3691620.3694986
https://doi.org/10.1145/3597926.3598138
https://doi.org/10.1145/3597926.3598138
https://arxiv.org/abs/2312.13771
https://arxiv.org/abs/2312.13771

	Abstract
	1 Introduction
	2 ProphetAgent
	2.1 GUI Explorer
	2.2 SemanticAgent
	2.3 Graph Builder
	2.4 GenerationAgent

	3 Tool Implementation
	4 EVALUATION
	4.1 Experiment Setup
	4.2 Results for RQ1.
	4.3 Results for RQ2.

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

