
Finding and Understanding Bugs in Software Model Checkers
Chengyu Zhang

dale.chengyu.zhang@gmail.com
East China Normal University, China

Ting Su∗
tingsu@inf.ethz.ch

ETH Zurich, Switzerland

Yichen Yan
sei_yichen@outlook.com

East China Normal University, China

Fuyuan Zhang
fuyuan@mpi-sws.org
MPI-SWS, Germany

Geguang Pu
ggpu@sei.ecnu.edu.cn

East China Normal University, China

Zhendong Su
zhendong.su@inf.ethz.ch
ETH Zurich, Switzerland

ABSTRACT

Software Model Checking (SMC) is a well-known automatic pro-
gram verification technique and frequently adopted for checking
safety-critical software. Thus, the reliability of SMC tools them-
selves (i.e., software model checkers) is critical. However, little work
exists on validating software model checkers, an important problem
that this paper tackles by introducing a practical, automated fuzzing

technique. For its simplicity and generality, we focus on control-flow
reachability (e.g., whether or how many times a branch is reached)
and address two specific challenges for effective fuzzing: oracle and
scalability. Given a deterministic program, we (1) leverage its con-
crete executions to synthesize valid branch reachability properties
(thus solving the oracle problem) and (2) fuse such individual prop-
erties into a single safety property (thus improving the scalability
of fuzzing and reducing manual inspection). We have realized our
approach as theMCFuzz tool and applied it to extensively test three
state-of-the-art C software model checkers, CPAchecker, CBMC,
and SeaHorn.MCFuzz has found 62 unique bugs in all three model
checkers – 58 have been confirmed, and 20 have been fixed. We
have further analyzed and categorized these bugs (which are di-
verse), and summarized several lessons for building reliable and
robust model checkers. Our testing effort has been well-appreciated
by the model checker developers, and also led to improved tool
usability and documentation.

CCS CONCEPTS

• Software and its engineering→Model checking; Software

reliability; Software testing and debugging.

KEYWORDS

Software Testing, Software Model Checking, Fuzz Testing

ACM Reference Format:

Chengyu Zhang, Ting Su, Yichen Yan, Fuyuan Zhang, Geguang Pu, and Zhen-
dong Su. 2019. Finding and Understanding Bugs in SoftwareModel Checkers.

∗Co-first and corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3338932

In Proceedings of the 27th ACM Joint European Software Engineering Confer-

ence and Symposium on the Foundations of Software Engineering (ESEC/FSE

’19), August 26–30, 2019, Tallinn, Estonia.ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3338906.3338932

1 INTRODUCTION

Software model checking (SMC) is a well-known verification tech-
nique that statically proves program correctness w.r.t. properties
(or specifications) of interest [23, 29]. Specifically, given a program
P and a safety property ϕ, the primary goal of SMC is to prove that
the property ϕ holds on all executions of P . It returns safe if every
execution of P satisfies ϕ, or unsafe otherwise. In practice, this goal
is formulated as reachability checking of a particular error location
E in P because any safety property ϕ (e.g., expressed in a temporal
logic) reduces to checking the reachability of E [29] — P is safe
w.r.t. ϕ if the error location E is unreachable; otherwise, P is unsafe,
and a counterexample, i.e., an execution that reaches E, is given.

Significant recent advances have made SMC a practical, auto-
mated approach for verifying real-world software. For example, it
was successfully applied in verifying OS device drivers [3, 7, 8] and
generating test cases for bug detection [6, 9, 25]. These successes
have further driven active research (e.g., the annual SV-COMP com-
petition [44]) and industrial adoption [3, 24, 31, 41].

However, like all software, SMC implementations (i.e., software
model checkers) also have bugs, and may give wrong verification
results even for simple programs. The bugs in software model check-
ers can lead to missed program errors, which may be disastrous
for safety-critical software (e.g., aerospace, airborne, and railway
signal systems). However, no prior work exists that systematically
validates the correctness of software model checkers themselves.
The goal of this paper is to fill this important gap.

To this end, we develop an effective fuzzing technique that can
automatically generate a large number of verification tasks (i.e.,
a program P and a valid property ϕ for P) to test software model
checkers.We stress “automatically” as creatingmanual tests is labor-
intensive and error-prone. For example, the de facto SV-COMP
benchmarks were manually created by injecting artificial bugs or
collecting real-world bugs (cf. [5], Section 4). The prominent chal-
lenge is the oracle problem [4]. To tackle it in our problem setting,
we focus on control-flow reachability and specifically branch reach-
ability. In particular, given a valid, deterministic and terminating
program P , our key idea is to leverage information on P ’s concrete
executions to synthesize a valid branch reachability property ϕ for
P , and couple it with P to generate a verification task. More specifi-
cally, for a particular branch b in P , given an input i , we monitor
the control-flow information of b (e.g., whether b is reached or how

https://doi.org/10.1145/3338906.3338932
https://doi.org/10.1145/3338906.3338932

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Chengyu Zhang, Ting Su, Yichen Yan, Fuyuan Zhang, Geguang Pu, and Zhendong Su

many times it is reached). This information is used to synthesize
a guaranteedly valid safety property ϕ for P . If a model checker
concludes that the oracle ϕ does not hold for P , the model checker
has an actual bug.

The above approach allows us to test model checkers as black-
boxes despite many state-of-the-art software model checkers (e.g.,
CPAchecker [8], SeaHorn [27], CBMC [18]) combine different tech-
niques [5] (e.g., CEGAR [3, 7, 8], IC3 [11, 12, 16, 27], BMC [18]).
In particular, we realize our approach as two distinct property-
synthesizing strategies for each individual branch, i.e., enumerative
reachability (ER) and enumerative counting reachability (ECR).
However, these approach instances face scalability issues because
(1) a seed program P can have a large number of branches, and
(2) the model checkers can spend much time checking each test
program. To tackle this scalability issue, we develop an optimized
strategy, fused counting reachability (FCR), by validating all branch
properties at once to improve fuzzing performance. Section 3 details
our approach and the three testing strategies.

We implemented our approach for validating C software model
checkers in a tool called MCFuzz (Model Checker Fuzzer), and ap-
plied it to test three state-of-the-artmodel checkers, CPAchecker [8],
SeaHorn [27] and CBMC [18]. For evaluation, we selected 4,609 seed
programs from the GCC regression test suite [48], from which we
systematically generated 48,505 test programs. Finally, we found
62 unique bugs – 58 bugs have been confirmed, and 20 have al-
ready been fixed. Our bug reports and testing effort have been very
well-received by the developers. We have also carefully analyzed
these bugs and the developer comments, and found that the bugs
are diverse and reside in different modules of the model checkers,
including front-end, memory model, pointer alias analysis, third-
party components, etc. Our work has also led to improvements in
the usability (e.g., better warning messages) and documentation of
these model checkers.

This paper makes the following main contributions:

• It proposes a fully-automated branch reachability fuzzing ap-
proach to validating software model checkers. To our knowledge,
this is the first systematic and extensive effort to automatically
validate the correctness of software model checkers.
• It realizes the approach as a tool MCFuzz with three property-
synthesizing strategies, which can effectively and efficiently vali-
date C softwaremodel checkers.MCFuzz is general and flexible to
test any software model checker, and will be made publicly avail-
able to benefit the community once our paper is deanonymized.
We have already made our detailed bug reports available from
an anonymized GitHub repository [1].
• It reports our experience in applying MCFuzz to test three state-
of-the-art model checkers (CPAchecker, SeaHorn and CBMC) and
found 62 unique bugs — 58 were confirmed and 20 already fixed.
We analyzed the characteristics of these bugs and summarized
several lessons for building reliable and robust model checkers.

The rest of the paper is organized as follows. Section 2 motivates
and illustrates our approach via two examples, and Section 3 formu-
lates the problem, and presents our approach and implementation
details. Next, Section 4 reports the evaluation of MCFuzz and dis-
cusses some representative bugs that we found. Finally, we survey
related work (Section 5) and conclude (Section 6).

2 ILLUSTRATIVE EXAMPLES

This section presents two examples to motivate the problem and
illustrate our approach. Both examples are real bugs that we found
in CPAchecker, a state-of-the-art CEGAR-based model checker.

2.1 CPAchecker Bug #529

Figure 1b shows the test program that manifests an incorrect check-
ing result of CPAchecker. It is generated from the seed program
in Figure 1a by inserting the error label __VERIFIER_error() before
line 5. Here, the error label __VERIFIER_error() can be interpreted as
an error location under checking, which enforces CPAchecker to
do reachability querying. Obviously, by concretely executing the
program in Figure 1b, the error label should be reached since i is
assigned to 1 on line 9 (thus > 0) after the first loop iteration.

However, CPAchecker concludes the program as safe, which
means the error label is unreachable. This incorrect result is caused
by an intricate bug in the predicate analysis component, which
is the core component of such CEGAR-based model checkers as
CPAchecker. The reason is the following: Firstly, CPAchecker de-
tects a spurious counterexample in the first loop iteration. Then the
refinement procedure produces the predicate i>0, which rules out
the counterexample. The analysis continues and encounters the last
statement (line 9) of the loop body. It notices that the address of i is
taken. The predicate analysis thus switches from tracking i directly
to tracking i indirectly via its address (as if it were on the heap).
When the analysis encounters the loop head again after the first
loop iteration, the counterexample trace formula is something like
!(i@2>0) && ((i@2!=0) || (p))1, with p being the formula that
indirectly increments the value of i. Unfortunately, when applying
the predicate i>0, the variable i gets matched with the old value
i@2 from the beginning of the first loop iteration, which is outdated
and its value is always equal to 0. This leads to the wrong proof
(since the trace formula is always unsatisfiable). The CPAchecker
developers confess this bug is very difficult to fix and they are still
working on it at the time of submission.
Approach I: Enumerative Reachability. As the above example
shown, the test program in Figure 1b is created by inserting an
error label at a particular program branch (line 4). Thus, our basic
approach is designed to enumeratively checking the reachability of
each program branch2, which we called enumerative reachability.
For example, Figure 1 illustrates this approach. Figure 1a is the seed
program. Figure 1b, 1c and 1d are the three test programs created
from Figure 1 by inserting the error labels at the three branches,
respectively. By running the executables of these test programs, we
can get the test oracles (i.e., whether the error labels are reachable).
Then we run model checkers to do reachability checking on each
test program. If the checking result is different from the oracle, a
bug may exist. This approach is effective but has two limitations.
• Querying the reachability of an error label only checks whether
the target branch is reachable or not, but cannot check how
many times the branch can be reached. Thus, it may miss those
intricate bugs related to the computations of loops.

1The clause !(i@2>0) denotes the previous state before the loop against the predicate
i > 0 in the first loop iteration. i@2 denotes the value of i during the second iteration
of CEGAR analysis.
2Note that checking the reachability of each branch is semantically equal to checking
each program location.

Finding and Understanding Bugs in Software Model Checkers ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

1 void main() {

2 int i = 0;

3 while (1) {

4 if (i > 0) {

5 break;
6 }

7 if (i == 0)

8 *(&i) = *(&i) + 1;

9 }

10 }

(a) Seed program

1 void main() {

2 int i = 0;

3 while (1) {

4 if (i > 0) {

5 __VERIFIER_error();

6 break;
7 }

8 if (i == 0)

9 *(&i) = *(&i) + 1;

10 }

11 }

(b) Test program 1 which leads

to the bug #529 in CPAchecker.

1 void main() {

2 int i = 0;

3 while (1) {

4 __VERIFIER_error();

5 if (i > 0) {

6 break;
7 }

8 if (i == 0)

9 *(&i) = *(&i) + 1;

10 }

11 }

(c) Test program 2.

1 void main() {

2 int i = 0;

3 while (1) {

4 if (i > 0) {

5 break;
6 }

7 if (i == 0){

8 __VERIFIER_error();

9 *(&i) = *(&i) + 1;

10 }

11 }

12 }

(d) Test program 3.

Figure 1: Illustrative example for the bug #529 of CPAchecker.

1 int main(void){
2 int a[3] = {1};

3 int i = 0;

4 while(i < 3){

5 if(a[i] == 1) {

6 i++; continue;
7 }

8 i++;

9 }

10 return 0;

11 }

(a) Seed program

1 int main(void){
2 int a[3] = {1};

3 int i = 0;

4 int br = 0;

5 while(i < 3){

6 if(a[i] == 1) {

7 br++;

8 i++; continue;
9 }

10 i++;

11 }

12 if(br != 1)

13 __VERIFIER_error();

14 return 0;

15 }

(b) Test program 1 which leads

to the bug #534 in CPAchecker.

1 int main(void){
2 int a[3] = {1};

3 int i = 0;

4 int br = 0;

5 while(i < 3){

6 br++;

7 if(a[i] == 1) {

8 i++; continue;
9 }

10 i++;

11 }

12 if(br != 3)

13 __VERIFIER_error();

14 return 0;

15 }

(c) Test program 2.

1 int main(void){
2 int a[3] = {1};

3 int i = 0;

4 int br1=0;int br2=0;

5 while(i < 3){

6 br1++;

7 if(a[i] == 1) {

8 br2++;

9 i++; continue;
10 }

11 i++;

12 }

13 if(br1!=3||br2!=1)

14 __VERIFIER_error();

15 return 0;

16 }

(d) Test program generated by

Approach III.

Figure 2: Illustrative example for the bug #534 of CPAchecker.

• The number of test programs could be large if the given set of
seed programs have many branches. It may bring high overhead
and reduce the testing performance.

Section 2.2 will use the example in Figure 2 to illustrate how we
tackle these limitations.

2.2 CPAchecker Bug #534

Approach II: Enumerative Counting Reachability. To solve
the first limitation, we evolve the basic approach by synthesizing a
safety property of the number of times a branch should be reached.
Figure 2a, 2b and 2c illustrate this enumerative counting reachability

approach. Given the seed program in Figure 2a, it introduces a
counter variable br and initializes it to 0. It then inserts the counting
instruction br++; at each branch to create the two test programs in
Figure 2b and 2c. By running the executables of these test programs,
we can get the exact value of br for each test program. We then
insert a reachability query in the form of value equivalent checking
(e.g., the code of lines 12-13 in Figure 2b and 2c) before the program
exit. Specifically, it checks whether br is equal to the exact value
obtained in the concrete executions. If the check fails, the error label
__VERIFIER_error() is reachable. Obviously, the two test programs

should always be safe. If a model checker answers unsafe (i.e., the
error label is reachable), a bug may exist. We can see Approach II

is stronger than Approach I since Approach II not only checks the
reachability of each branch but also checks the number of times
that each branch should be reached.

Figure 2b shows an intricate bug in CPAchecker (bug #534) that
can only be manifested by Approach II. The bug is introduced be-
cause CPAchecker fails to correctly handle the array initializer
with a single element. According to the C standard [49], if there
are fewer initializers in a brace-enclosed list than the elements of
an aggregate, the remainder of the aggregate shall be initialized
implicitly the same as objects that have static storage duration.
For example, the object with an arithmetic type will be initialized
to (positive or unsigned) zero. In Figure 2b, the array a should be
initialized to {1,0,0}, and has only one element 1 (the value of
br should be 1). The error label __VERIFIER_error() should be un-
reachable. However, CPAchecker incorrectly initializes the array a
to {1,1,1}. As a result, CPAchecker answers unsafe which means
the error label is reachable. In fact, we find this bug is a regression
error caused by the fix of another bug #342. Approach I will miss
this bug since CPAchecker returns correct checking results when
doing reachability querying of each branch, while Approach II can

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Chengyu Zhang, Ting Su, Yichen Yan, Fuyuan Zhang, Geguang Pu, and Zhendong Su

find such deeper bugs by countering the number of times that each
branch is reached.
Approach III: Fused Counting Reachability. Approach II is
more effective than Approach I, but may still generate a large num-
ber of test programs. To solve the second limitation, we evolved
Approach II to the fused counting reachability approach. Figure 2d il-
lustrates this approach, which is as effective as Approach II but only
generates one test program. Specifically, this approach introduces
the counting variables br1,br2, . . . ,brn for each branch and inserts
the corresponding loop counting instructions brk++; (k ∈ 1...n) at
each branch. It then checks the equivalence between these counting
variables and their actual values altogether before the program exit
(e.g., the codes of lines 13-14). Obviously, the test program generated
by Approach III should be always safe, if a model checker answers
unsafe, a bug may exist. Approach III effectively reduces the testing
time from O (n) toO (1) by creating the disjunction checking for all
of the counting variables. Section 3 will give the formal definition
of these approaches and discuss their effectiveness.

3 APPROACH AND IMPLEMENTATION

This section gives the details of our approach and implementa-
tion. In particular, Section 3.1 gives the problem definition and our
high-level approach, Section 3.2 shows the three instances of our
approach to effectively validating software model checkers, and
Section 3.3 details the implementation.

3.1 Definition and High-level Approach

Definition 3.1 (Test Program). A valid test program for a software
model checkerM is a source program P with a safety property ϕ.

Given a test program, a software model checker M verifies
whether the safety property ϕ is satisfied on P . Specifically, this
safety verification problem is formulated to a check for the reacha-
bility of a particular error location E in P . Here, the reachability of
E represents the safety property ϕ. If E is unreachable,M concludes
that P is safe (i.e., ϕ holds on all computations of P). Otherwise, P
is unsafe (i.e., ϕ is violated by one computation ending at E).
Problem Definition. Our problem is to generate a set of valid
test programs to validate the correctness of a model checker M .
Given a test program, if the answer of M is contradictory to the
ground-truth, a potential bug is reported.

The key challenge of this problem is how to generate valid test
programs with known oracles (i.e., the ground-truth of the safety
for P w.r.t. ϕ). To resolve this problem, we propose the approach of
branch reachability fuzzing that can automatically generate safe or
unsafe test programs.

Assume that we are given a seed program Pseed . We insert to
Pseed counter variables to monitor branches of Pseed . For an arbi-
trary branch in Pseed , we are interested in (1) whether the branch is
reachable and (2) how many times the branch can be reached. The
values of counter variables are updated accordingly whenever the
corresponding branches are executed. We construct safety proper-
ties based on the final values of counter variables (derived through
dynamic execution). In the rest of the paper, we assume that seed
programs are valid, terminating and deterministic. We formalize

our way of generating test programs for software model checkers
in the following definition.

Definition 3.2 (Branch Reachability Fuzzing). Let Pseed be a seed
program and P be derived by inserting counter variables c1, ..., cn
to n different branches of Pseed . Assume that we execute P with a
valid input and that ci = vi (1 ≤ i ≤ n) on the final state of P , i.e
when P terminates. The test program we construct is P together
with a safety property ϕ := c1 = v1 ∧ ... ∧ cn = vn , which is meant
to be satisfied on the final state of P .

In practice, for a test program P and ϕ, we can construct a corre-
sponding program P ′ with an error location E such that whether
P satisfies ϕ is reduced to whether E is reachable in P ′. In the fol-
lowing, we also refer to the programs with an error location as test
programs for software model checkers.
Our high-level approach. To validate software model checkers,
we apply Definition 3.2 to generate a large number of test programs
with known oracles. If the conclusion of a model checker is incon-
sistent with the known oracle, a bug will be reported. In this way,
our approach can stress-test model checkers as black-box. Note that
since the reachability problem is in general undecidable, a model
checker may give unknown (i.e., the model checker cannot termi-
nate within a given time bound). In this case, we cannot conclude
any oracle violation.

3.2 Approach Instances

We introduce in this section three specific approach instances to
construct test programs with known oracles. We first introduce
Approach I, which is a simplified application of Definition 3.2.
The safety properties involved there specify the reachabilities of
branches in the seed programs.
Approach I: Enumerative Reachability (ER). Let Pseed be
a seed program. For each branch b in Pseed , we construct a test
program Pb by adding an error label E to branch b of Pseed .

The oracle of the test program in Approach I can be derived as
follows. Imagine that we construct an intermediate program P by
initializing a boolean variable c to 0 at the beginning of Pseed and
then inserting the instruction c := 1 to branch b of Pseed . Assume
that v is the value of c when P terminates. It is easy to see that
branch b is reachable (resp. unreachable) in Pseed iff v = 1 (resp.
v = 0). Therefore, we have that Pb is safe iff v = 0.
Example. For the seed program in Figure 1a, Approach I generates
three test programs in Figure 1b, Figure 1c and Figure 1d. All of
these programs are unsafe since the error labels are reachable in
the concrete executions.

Approach II further considers safety properties that constrain
the number of times a branch can be executed. For each branch in a
seed program, we insert a counter variable and increment its value
by 1 in each execution of the branch.
Approach II: EnumerativeCountingReachability (ECR) Let
Pseed be a seed program. For each branch b in Pseed , we first con-
struct a program P by initializing a counter variable c to 0 at the
beginning of Pseed and then inserting instruction c := c + 1 to
branch b of Pseed . Let ϕ := c = v be a safety property, where v
is the value of c when P terminates. We construct a test program
Pb := P ; if (¬ϕ) {E} and we have that Pb is safe.

Finding and Understanding Bugs in Software Model Checkers ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Software
Model

Checker

instrument

Checking
results

profile

Compare Bug
reports

[inconsistent][consistent]

Seed
programs

Test
programs

Intermediate
Programs

Oracles

1

2

mutate3 4 validate

Figure 3: Workflow of our testing frameworkMCFuzz.

Example. For the seed program in Figure 2a, Approach II generates
two test programs in Figure 2b and Figure 2c, wherebr is the counter
variable. All of these two programs are safe.

For a seed program with n branches, both Approach I and II
constructn test programs, each of whichmonitors a different branch
in the seed program. To optimize the test cost, we propose Approach
III that reduces testing time from O (n) to O (1).
Approach III: FusedCountingReachability (FCR). Let Pseed
be a seed program. Assume that b1, ...,bn are all the branches
in Pseed . We construct a program P by initializing counter vari-
ables c1, ..., cn to 0 at the beginning of Pseed and then inserting
instruction ci := ci + 1 (1 ≤ i ≤ n) into branch bi of Pseed . Let
ϕ := c1 = v1∧...∧cn = vn be a safety property, wherevi (1 ≤ i ≤ n)
is the value of ci when P terminates. We construct a test program
Pall := P ; if (¬ϕ) {E} and we have that Pall is safe.
Example. For the seed program in Figure 2a, Approach III gener-
ates the test program in Figure 2d, where br1 and br2 are the two
counter variables. Obviously, this test program subsume the two
test programs in Figure 2b and Figure 2c.

Since the test program generated in Approach III subsumes all
test programs that Approach II generates, Approach III can be
viewed as an optimization of Approach II. Approach III is the most
efficient and scalable one among the three approach instances with-
out sacrificing effectiveness. The evaluation of these three approach
instances will be given in Section 4. In the next subsection, we will
introduce the workflow of our toolMCFuzz and its implementation
with Approach III.

3.3 Implementation

Figure 3 gives the overview of our testing framework MCFuzz.
Given a set of seed programs,MCFuzz instruments the seed pro-
grams and transforms them to intermediate programs. By profiling
the execution of these intermediate programs,MCFuzz generates
the test programs with the corresponding oracle. Given a test pro-
gram, if the checking result and the oracle is inconsistent, a bug
is reported for further inspection. The three approach instances
presented in Section 3.2 can be easily adapted to this framework.

Algorithm 1 details our implementation by using Approach III.
It takes as input a model checkerM and a closed program P , and
then follows the following four steps.
Step 1: Instrument. In the function Instrument(), MCFuzz in-
struments probes (i.e., counter variables) into the program P . Specif-
ically, the declarations of counter variables are inserted at the begin-
ning of P , and the counting instructions are inserted at each branch.

Algorithm 1: Fused counting reachability
Procedure Test(Software model checkerM , Program P):

P ′,C ← Instrument(P);
(C,V)← Profile(P ′,C);
P̂ ← Mutate (P ′,(C,V));
if M.check(P̂) == unsafe then

reportBug();

Function Instrument(Program P):
P ′ ← P , i ← 0;
B ← P ′.Branches();
C ← ∅;
foreach b ∈ B do

P ′ ← P ′.firstLoc().insert(ci ← 0);
P ′ ← P ′.getBr(b).firstLoc().insert(ci ← ci + 1);
C ← C ∪ ci ;
i ← i + 1;

return P ′,C;
Function Profile(Program P , Counters C):

E ← P .execute();
pair(C,V)← E.getFinalValue(C);
return (C,V);

Function Mutate(Program P , Pair (C,V)):
O ← true;
foreach (c,v) ∈ (C,V) do

O ← O ∧ (c = v) ;

P̂ ← P .lastLoc().insert(¬O ⇒ E);
return P̂ ;

At last, an intermediate program P ′ is created and C contains all
inserted counter variables.
Step 2: Profile. In the function Profile(), MCFuzz compiles P ′

by using an off-the-shelf compiler, e.g., GCC [48], and executes P ′.
The final values of counter variables in C (when P ′ terminates) are
recorded in V .
Step 3: Mutate. In the function Mutate(), MCFuzz exploits the
execution results from the profiling step to generate a safety prop-
erty. This property is represented as a reachability query ¬O ⇒ E,
and inserted before the program exit. At last, it generates the test
program P̂ from P ′ with the oracle safe.
Step 4: Validate. MCFuzz runs P̂ to get the verification result. If
the result is inconsistent with the provided oracle (i.e., unsafe for
Approach III), a bug is reported.

In our actual implementation, Algorithm 1 is realized using
python scripts and C++. In particular, we use LLVM’s LibTool-
ing library [45] to instrument and mutate the seed program, and
generate test programs. GCC [48] is used to compile the intermedi-
ate programs for concrete execution.MCFuzz has approximately
2000 lines of python scripts and 800 lines of C++ code.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Chengyu Zhang, Ting Su, Yichen Yan, Fuyuan Zhang, Geguang Pu, and Zhendong Su

4 EMPIRICAL EVALUATION

In this section, we appliedMCFuzz on three state-of-the-art soft-
ware model checkers, i.e., CPAchecker, CBMC, SeaHorn, to demon-
strate its effectiveness.We finally found 62 unique bugs with diverse
types. Our testing effort has been well-appreciated by the model
checker developers, also leads to improved tool usability and doc-
umentation. All the detailed bug reports submitted by us to the
developers can be accessed at [1].

4.1 Evaluation Setup

Testing environment. MCFuzz and the three model checkers all
run on a workstation with the following configurations: Ubuntu
14.04, Intel i7 7800X 3.5GHz 6-core CPU, and 32GB memory.
Software model checkers. We selected the three model checkers,
i.e., CPAchecker, CBMC, and SeaHorn, as the testing subjects. We
chose them based on the following considerations. First, they im-
plemented different SMC techniques, including CEGAR, BMC and
IC3. Second, they all support C programs, which makes the tool
comparison and result analysis more fair and convenient. Third,
they are mature and widely-used in both industry and academia.
Validating their correctness is of importance.

CPAchecker is a state-of-art CEGAR [17] based model checker
proposed by Beyer et al. [8]. It is the champion in SV-COMP 2018,
and performs the best in the ReachSafety track [50]. Besides CE-
GAR, CPAchecker also supports other SMC techniques, e.g., k-
induction [22]. In the evaluation, we use the default predicate ab-
straction [2, 26] configuration predicateAnalysis.properties
with -skipRecursion. The CPAchecker version is svn-28771.

CBMC is a state-of-art BMC [10] based software model checker
proposed by Clarke et al. [18]. It won the silver medal in SV-COMP
2018 falsification overall track [50]. CBMC is an under-approximation
model checker with bit-precision. If the given checking bound is
not large enough, it is allowed to answer safe for unsafe programs.
Thus, we only generate safe programs in the evaluation for Ap-
proach II and III. We used the default CBMC configuration without
specifying any checking bounds. The CBMC version is 5.10.

SeaHorn is a state-of-art LLVM [33] based model checker [27]. It
employs several IC3 [11, 12] based model checking engines. It also
supports abstract interpretation [19] and BMC. In the evaluation,
we use the default configuration pf, which uses the IC3 engine
Spacer [32]. The SeaHorn version is 21a1c0.

Although the outputs of these tools can be different, we consis-
tently record safe if the tool concludes the error label is unreach-
able, or unsafe if reachable. For each model checker, we set the time
bound of each checking as 5 minutes. If the tool timeouts, we record
the conclusion as unknown.
Seed programs. In theory, the seed program can be any program
that can be handled by software model checkers. In the evalua-
tion, we selected seed programs from the GCC regression test suite,
which is a set of programs for testing GCC. Most of them are closed
program, which can be directly handled by model checkers. Specif-
ically, we only selected the programs that can be independently
compiled with a single file since most model checkers cannot han-
dle programs with multiple files. We selected 4,609 out of 25,292
GCC regression test cases as seed programs, which contains 219,636
lines of code.

Table 1: Bugs overview.

CPAchecker CBMC SeaHorn Total
Fixed 14 4 2 20

Confirmed 22 2 14 38
Unconfirmed 0 4 0 4

Total 36 10 16 62

4.2 Results

This section presents our results and anlysis via the following three
research questions RQ1∼RQ3.
RQ1: Can MCFuzz find model checker bugs? The answer is
yes.MCFuzz discovered 62 unique bugs in the three software model
checkers, of which 58 were confirmed. In particular, we found 36
bugs in CPAchecker, 10 bugs in CBMC and 15 bugs in SeaHorn,
respectively. Since the semantics of undefined behaviors are not
defined in C standard, the undefined behaviors in general allow
a model checker to output any result. Thus, we did not report
any undefined behaviors related issues as bugs. Table 1 gives an
overview of the bugs we found by using MCFuzz. The numbers in
Table 1, represent the bugs that have been fixed, confirmed (but not
fixed) or unconfirmed in each software model checker, respectively.
Fixed means developers have confirmed the bugs and fixed them by
committing to the up-to-date version. Confirmed means developers
have confirmed and explained the reason but have not fixed yet.
Unconfirmed means we have confirmed the bugs and reported to
the developers, but they have not replied yet.

We used both manual inspection and automated filtering via
scripts to facilitate bug reporting from the generated incorrect test
programs. For automated script filtering, we used CompCert’s C
interpreter [46] to automatically remove invalid bugs caused by
undefined behaviors (UBs). Through reporting and discussing bugs
with the SMC developers, we gained more domain knowledge,
which helped further automatically remove duplicate cases (e.g., we
used the keywords "float" and "double" to remove duplicate cases
for Seahorn as it does not support floating-point types). We then
manually inspected the remaining cases. In total, it took us about
3-4 person-weeks for bug reporting. We tried our best to report
high-quality bugs and not to burden the developers unnecessarily.

In summary, MCFuzz can indeed findmany bugs in all three state-

of-the-art software model checkers. Specifically, MCFuzz discovered

62 unique bugs, of which 58 were confirmed.

RQ2: Which fuzzing approach instance is more effective and

efficient? As we proposed the three fuzzing approach instances
in Section 3.2, we intend to evaluate which approach instance is
more effective (i.e., find more bugs) and efficient (i.e., cost lower
testing time). We evaluated these three approaches, respectively, by
runningMCFuzz on the three model checkers. Table 2 shows the
statistics of the evaluation. Column #Mutants means the number of
test programs generated by the corresponding approach instance
from the selected GCC test suite. Column #Incorrect cases means
the number of test programs which lead to inconsistent checking
results. In particular, for Approach II and III, the oracles of test
programs generated byMCFuzz are safe, so all unsafe results given
by model checkers are incorrect cases; for Approach I, the oracle
can be safe or unsafe, so any inconsistent results are incorrect cases.
Note that each incorrect case in Table 2 may not indicate a valid bug,

Finding and Understanding Bugs in Software Model Checkers ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 2: Statistics of the three approach instances in terms of the generated test programs (mutants), incorrect cases, average

checking time of one test program (in seconds), and the total fuzzing time (in hours). The time is measured in CPU time.

Approach instance #Mutants #Incorrect cases Average time (s) Total time (h)
CPAchecker CBMC SeaHorn CPAchecker CBMC SeaHorn CPAchecker CBMC SeaHorn

Approach I: ER 21,948 2,091 1,567 3,665 28.55 25.63 6.30 168.41 151.23 37.17
Approach II: ECR 21,948 5,972 4,690 6,752 42.32 21.67 15.65 258.03 132.08 95.35
Approach III: FCR 4,609 699 356 727 31.81 15.83 9.86 32.95 16.89 10.50

51

ECR/FCR ER

10 1

Figure 4: Relation of the bugs found by the three fuzzing

approach instances

since the case could be duplicated, caused by undefined behaviors
or invalid for software model checkers (e.g., macro, third-party
library). Column Average time means the average checking time of
a model checker for one test program. Column Total time means
the total fuzzing time of an approach instance.

FromTable 2, we can see Approach III generated the least number
of test programs, i.e., 4,609 tests, while Approach I and II generated
the same number of test programs, i.e., 21,948 tests, respectively.
Approach III reduced over 79% of test programs. From the total
testing time, Approach III saved hundreds of hours, compared with
Approach I and II. In particular, Approach III reduced more than
80% of fuzzing time in total. This huge performance improvement
is enabled by fusing all the reachability checkings into one test
program. Additionally, although Approach I and II generated the
same number of test programs, Approach II can find more incorrect
cases. It indicates Approach II is stronger than Approach I, i.e.,
Approach II may find more bugs.

The Venn diagram in Figure 4 shows the relation of the bugs
found by three approach instances. We can see Approach I found 52
bugs in total, while Approach II and III found the same number of
bugs, i.e., 61 bugs. Approach II and III can find all the bugs found by
Approach I except one bug, which is shown in Figure 1b. The reason
is that CPAChecker reports safe when this bug was triggered. This
cannot be detected by Approach II and III as they use safe as the
oracle. On the other hand, there are 10 bugs that can only be found
by Approach II and III but cannot be found by Approach I. Figure 2
is one sample bug of these ten bugs.

In summary, Approach III is themost effective and efficient fuzzing

approach instance. It fuses oracles to achieve testing scalability with-

out sacrificing effectiveness.

RQ3: What types of bugs can be found by MCFuzz? In total,
we found 62 unique bugs in the three software model checkers.
To understand these bugs found by MCFuzz, we categorized them
into seven categories according to the module in which the bug re-
sides: front-end related,memory model related, pointer alias related,
third-party component related, C standard library related, language
feature related and configuration related bugs. Front-end related
bugs are usually caused when incorrectly compiling or optimizat-
ing the program source code. Incomplete memory modeling usually

0

2

4

6

8

10

12

14

16

CPAchecker CBMC SeaHorn

Figure 5: Numbers of the bugs found by MCFuzz across dif-

ferent categories.

causes memory model related bugs. Incorrect pointer alias analysis
may lead to pointer alias related bugs. The bugs in third-party com-
ponents of software model checkers cause third-party component
related bugs. The incomplete supporting for C standard library
functions and language features causes C standard library and lan-
guage feature related bugs, respectively. Configuration related bugs
are the bugs that can be solved by switching the configurations of
software model checker via the command line options.

Figure 5 shows the number of bugs in each category. Most bugs
of CPAchecker found by us are related to pointer alias analysis and
language features, while most bugs of SeaHorn are related to the
unexpected behaviors of the front-end and tool configurations. As
for CBMC, we found a few front-end and memory model related
bugs, but most bugs are related to standard library functions and
language features. In the next subsection, we will explain and dis-
cuss more details about each bug category, and give assorted bug
samples for each bug category.

In summary, the bugs found by MCFuzz in software model check-

ers are diverse and categorized into seven groups, of which front-end,

pointer alias and language features related bugs are common.

4.3 Assorted Bug Samples

Figure 6 gives eight bug samples to illustrate each bug category
we found. All of the samples are reduced from more complicated
test programs and all these error labels __VERIFIER_error() should be
unreachable, i.e., all these test programs are safe.
Front-end related bugs. In software model checkers, the front-
end component is used to transform and optimize the program
source code to an intermediate representation for model checking.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Chengyu Zhang, Ting Su, Yichen Yan, Fuyuan Zhang, Geguang Pu, and Zhendong Su

1 void f(int a, int b){

2 if (a != b)

3 __VERIFIER_error ();

4 }

5 int main(){

6 int c = 4, d = 7;

7 int e = 2;

8 f (d=c&&e, 1);

9 return 0;

10 }

11

(a) The program triggers

front-end related bug

in CPAchecker.

1 int main(){

2 int array [6] =

3 { 1,2,3,4,5,6 };

4 for (int i = 0;

5 i < 5; i++)

6 array[i] = 0;

7 if (array [5] != 6)

8 __VERIFIER_error ();

9 return 0;

10 }

11

(b) The program triggers

front-end related bug

in SeaHorn.

1 union{int a;int b; } u;

2 int main() {

3 u.a = 1;

4 u.b = 2;

5 if (u.a != 2) {

6 __VERIFIER_error ();

7 }

8 return 0;

9 }

10
11

(c) The program triggers

memory model related bug

in CPAchecker.

1 typedef int T[];

2 struct f{int w;T x;};

3 static struct f f =

4 { 4, { 0, 1, 2, 3 } };

5 int main(){

6 for (int i = 0;

7 i < f.w;++i) {

8 if (f.x[i] != i)

9 __VERIFIER_error ();}

10 return 0;}

11

(d) The program triggers

memory model related bug

in CBMC.

1 int x,*p=&x;

2 int main()

3 {

4 int i=0;

5 x=1;

6 p[i]=2;

7 if (x != 2)

8 __VERIFIER_error ();

9 return 0;

10 }

11

(e) The program triggers

pointer alias related bug

in CPAchecker.

1 typedef _Bool bool;

2 const bool false = 0;

3
4 int main ()

5 {

6 bool a = 1;

7 if (a != false)

8 __VERIFIER_error ();

9 return 0;

10 }

11

(f) The program triggers

third-party component

related bug in CPAchecker.

1 struct {

2 int a:4; int :4;

3 int b:4; int c:4;

4 } x = { 2,3,4 };

5 int main (){

6 if (x.b != 3)

7 __VERIFIER_error ();

8 return 0;

9 }

10
11

(g) The program triggers

language feature related bug

in CBMC.

1 void test(int x,int y,

2 int q){

3 if ((x / y) != q)

4 __VERIFIER_error ();

5 }

6 int main (){

7 test (7, 6, 1);

8 test (-7, -6, 1);

9 return 0;

10 }

11

(h) The program triggers

configuration related bug

in SeaHorn.

Figure 6: Assorted samples that trigger software model checker bugs.

For example, in SeaHorn, the front-end Clang transforms and op-
timizes the C language code into LLVM IR bitcode before model
checking [27]. In CPAchecker, the front-end CDT [47] constructs
the control-flow automata (CFA), which consist of control-flow loca-
tions and edges. The CEGAR algorithm later runs on CFA. Incorrect
transformations or optimizations could lead to incorrect checking
results. Figure 6a is a program which triggers a front-end bug in
CPAchecker. CPAchecker answers unsafe because the front-end
creates a temporary variable __CPAchecker_TMP_0 for the c&&e
expression, but d=__CPAchecker_TMP_0 is added to the CFA before
the value of the temporary variable is computed. This bug is due to
the incorrect transformation. Figure 6b is a program that triggers a
font-end bug in SeaHorn. The loop (lines 4-6) is silently optimized
into a memset (a standard library function), which however is not
supported in SeaHorn and leads to the unsafe conclusion. This bug
is due to the incorrect optimization. These front-end bugs affects
the first step of SMC. The model checker developers should be care-
ful when choosing the front-end implementations, and pay more
attention to the reliability and the unexpected behavior.
Memory model related bugs. The memory model is a key com-
ponent that simulates thememory operationswhenmodel checking.
It would be error-prone when some memory operations involve
complex data structures, e.g. unions and structs. Figure 6c is the
program which triggers the union related bug in CPAchecker. In
Figure 6c, u.a should be assigned to 2 at line 4 since the variables a
and b share the same memory location in the union u. CPAchecker
should always treat the union as heap memory. Unfortunately, it
fails on this case and answers unsafe, unless the union address is

explicitly taken in the program. Similarly, CBMC does not initialize
the nested struct correctly in the case of Figure 6d, and thus an-
swers unsafe. Such memory model bugs usually involve complex
data structures or corner cases that were easily ignored.
Pointer alias related bugs. The pointer alias analysis is a chal-
lenging problem in program analysis area [28], and also difficult for
SMC. To precisely check programs, software model checkers ana-
lyze pointer aliases in the front-end or during the checking process.
For example, SeaHorn analyzes pointer aliases by transforming
the source code into the static single assignment (SSA) form of
LLVM IRs. CPAchecker analyzes pointer aliases while doing predi-
cate analysis. Figure 6e is the program that triggers a pointer alias
related bug in CPAchecker. CPAchecker has an optimization in
the predicate analysis component, which reduces a program by
ignoring the irrelevant variables w.r.t. the property under check.
The problem here is that the predicate analysis does not detect that
the address of x is taken, and thus regards x as a primitive variable
instead of a potentially aliased variable. As a result, it ignores the
assignment of x via the pointer alias p at line 6. Thus, to avoid the
pointer alias related bugs, it is important to implement the pointer
alias analysis algorithm correctly.
Third-party component related bugs. In practice, software
model checkers usually integrate a few third-party components.
For example, CPAchecker integrates CDT as the front-end and
SMTInterpol [51] as the SMT solver, while SeaHorn integrates the
LLVM framework into its implementation. However, the third-party
components are not always reliable. Figure 6f is the program that
crashes CPAchecker due to an issue of using SMTInterpol. In the

Finding and Understanding Bugs in Software Model Checkers ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

program, a variable named false is defined, which is a reserved
token in SMTInterpol. In fact, the variables false, true or select
are all reserved tokens in SMTInterpol. Using any of them will
crash SMTInterpol and then fail CPAchecker. It is usually hard for
developers to note such issues when using third-party components.
Additionally, the bugs of third-party components themselves can
also affect the correctness of model checkers. Thus, ensuring the re-
liability of these components (e.g., compilers, solvers) is important
for building a more reliable software model checker.
C standard library related bugs. In C, there are many standard
library functions. For example, malloc allocates a block of memory,
memset(s,c,n) replaces each of the first n characters of s by c and
returns s, and isdigit(c) returns nonzero if c is a numeric digit.
However, we find such standard library functions are not well sup-
ported in most software model checkers. SeaHorn and CPAchecker
do not support most of the standard library functions, and usually
give incorrect checking results silently without any warning. It lets
user erroneously believe that the checking results are correct. As for
CBMC, it supports quite a number of standard library functions by
implementing the corresponding built-in functions. But the built-in
functions are not always reliable. For example, CBMC sometimes
falls into infinite unwindings while there are some string related
C standard library functions (e.g. strlen in the program). It may
be infeasible for model checkers to support all functions in the
standard library. But model checkers should give clear warning
messages if some unsupported functions exist in the program or
conservatively answer unknown.
Language feature related bugs. There are many language fea-
tures defined in C standard. In principle, model checkers for C
program should support all of the language features in C standard
to correctly comprehend the semantics of program. In practice, it is
difficult for software model checker developers to completely follow
the C standard. For example, Figure 6g is the program that leads to
an incorrect checking result of CBMC. In this program, there is an
unnamed member in the struct x. The C standard says “unnamed
members of objects of structure and union type do not participate
in initialization”, and “unnamed members of structure objects have
indeterminate value even after initialization”. Thus, the variables a,
b, and c should be assigned as 2, 3, 4, respectively. But CBMC does
not follow these rules, and the member b is not correctly assigned
as 3. The bug in Figure 2b is also a language feature related bug.
Although it may not be possible to follow every rule in C standard,
software model checkers should clearly explain which rules are
supported, and define the boundary of their abilities.
Configuration related bugs. Software model checkers usually
have many configuration options. For example, CBMC has the op-
tions to set the loop unwinding bounds, and CPAchecker has the
options to setup the specification file, SMT solver, and model check-
ing mode (e.g., k-inductive, BMC). Figure 6h shows the program
which triggers a bug in SeaHorn but can be solved by changing
the configuration. SeaHorn incorrectly gives the unsafe result on
this program. This bug appears when using both the IC3 and BMC
engines of SeaHorn. The developers comment that SeaHorn can
give the expected safe result with the inline configuration. Be-
sides this bug, SeaHorn gives different answers in many other cases
when switching between the pf and bpf configurations. While pf

is the default configuration in SeaHorn which unrolls the loop dy-
namically, bpf means unrolling the loop statically. In many cases,
SeaHorn gives incorrect answers when using pf, because pf unrolls
the loop incorrectly. Using bpf can avoid these issues. However,
without clear documentations, it is hard for users to figure out
which configurations should be used to get the correct results.

4.4 Discussions

SV-COMP benchmarks & Undefined behaviors. We also se-
lected the seed programs from SV-COMP benchmarks [44], which
are the de facto benchmarks for software verification competition.
These benchmarks consist of six categories of programs with dif-
ferent features. We selected the programs from two categories,
i.e., ReachSafety and SoftwareSystems, as the seed programs, since
these categories focus on reachability checking. To adapt the bench-
mark programs for our purposes, we (1) removed the original error
labels, and (2) replaced the symbolic inputs (e.g., specified by __VER-
IFIER_nondet_int) in each program with the randomly generated
concrete values for the variables of different types. In particular, we
generated 5 groups of random inputs for each program. At last, we
selected 1,123 seed programs and generated 5,615 test programs,
and used Approach III to test the three model checkers.

We finally found 5 unique bugs (3 SeaHorn bugs and 2 CPAchecker
bugs). Among these bugs, 1 bug in SeaHorn and 1 bug in CPAchecker
are duplicate with the bugs we found by the GCC regression test
suite, and the rest are new bugs. Figure 7a shows a new bug found
by a SV-COMP program in SeaHorn. The variables st1 and st2
are less than 0, so that st1+st2 should be less than 0. Then br1
should be 1 and br2 should be 0, the error label should be unreach-
able. However, SeaHorn answers unsafe to this case which means
the error label should be reachable. The SeaHorn developers have
confirmed this bug and fixed in the newest version.

Compared with the GCC test suite, the SV-COMP benchmarks
only found a few bugs. Then, we carefully inspected the test pro-
grams, and found this can be explained by three main reasons. First,
the software model checkers have been thoroughly tested by these
benchmark programs when participating in the competition. If
some bugs were found, they have already been fixed. Second, most
of the inconsistent cases reported by using SV-COMP benchmarks
are related to undefined behaviors (e.g., uninitialized arrays and
local variables, visiting the memory out of bound), and some un-
supported features (e.g., floating point variables and recursions).
Figure 7b shows a case reduced from a SV-COMP program with
undefined behavior. The array arg is uninitialized, and thus the el-
ements in this array are non-deterministic. The variable br1 equals
to 5 at line 10 whenMCFuzz profiles the program. However, br1
may not be equal to 5 since the elements in arg could be assigned
by any value due to the undefined behavior. In such a case, model
checkers are allowed to output any checking result. Therefore, all
the inconsistent cases due to undefined behaviors cannot be con-
cluded as bugs of model checkers.
Usability of softwaremodel checkers. The usability of software
model checkers is very important in practice. However, we find it is
not that satisfactory due to unclear user manuals, lack of necessary
warning messages, or even crash failures. First, we find the user
manuals are not very informative for us (as experienced users of pro-
gram analyzers) to choose appropriate configurations. Especially

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Chengyu Zhang, Ting Su, Yichen Yan, Fuyuan Zhang, Geguang Pu, and Zhendong Su

1 int st1 ,st2 ,br1 ,br2;

2 void check(){

3 if (st1 + st2 <= 1)

4 br1++;

5 else br2++;

6 }

7 int main(){

8 st1 = -3; st2 = -1;

9 br1 = 0; br2 = 0;

10 check();

11 if (br2 != 0)

12 __VERIFIER_error ();

13 return 0;

14 }

15

(a) Sample bug found in SeaHorn

1 int main(){

2 int arg [5];

3 int i=0, br1=0, br2=0;

4 int num = 5;

5 while (i < num){

6 if(arg[i]%2==0)
7 br1++;

8 i++;

9 }

10 if(br1 != 5)

11 __VERIFIER_error ();

12 return 0;

13 }

14
15

(b) Undefined behavior example

Figure 7: Evaluation on SV-COMP benchmarks

for SeaHorn, sometimes when we chose different configurations,
the opposite verification results may be given. We believe it should
not be the obligation for users to infer the effect of different con-
figurations. An informative user manual with clear examples can
greatly improve usability. Second, we find themodel checkers do not
fully support the features of C language. However, they sometimes
silently give incorrect verification results without any warnings
if some unsupported library functions or language features exists
in the program under check. It is necessary for model checkers to
give some warning messages to alert the users, or conservatively
answer unknown. Third, it is also better to clearly define which
language features are supported in user manual. Benefited from
our bug reports, the developers of software model checkers have
improved their user manuals and warning messages.
Developers feedback. We have received very positive feedback
from the developers of software model checkers. The CPAchecker
developers said, "Thank you very much for finding and reporting
these cases! This is very helpful for us". They enhanced the original
test suite by the test programs we reported, and further found more
bugs in other verification modes by using these programs. The
SeaHorn developers said, "I am working on improving soundness
on such small examples. Thank you for the examples. They are
very useful.". The CBMC developers also thanked for the bugs we
reported and added the test programs to their test suite.
Generality and limitations. In this paper, we propose the branch
reachability fuzzing approach to validate software model check-
ers. In general, our approach could be adapted to any other static
analysers or verifiers. The modular design of MCFuzz is flexible to
test any software model checker. Our approach can also be used
to generate benchmark programs for the software model checker
competition. But our approach requires the seed program should
be valid, deterministic and terminating for generating test oracles.

5 RELATEDWORK

The reliability of program analysis tools is very crucial since these
tools are now widely used to improve the quality or ensure the cor-
rectness of software systems [14]. There exists work on validating
various program analyzers, e.g., static analyzers [20], symbolic exe-
cution engines [30], pointer analyses [52], refactoring engines [21],
abstract interpreters [13, 39], and compliers [34, 36, 43, 53, 54].

Kapus et al. [30] use random program generation with differen-
tial testing to find bugs in several symbolic execution tools (e.g.,
KLEE, CREST and FuzzBALL).Wu et al. [52] cross-check the pointer
aliases during concrete program execution with the aliases found by
static pointer alias analyzers to find bugs. Daniel et al. [21] detect
potential bugs in refactoring engines by inspecting whether the two
tools yield different refactored programs. Bugariu et al. [13] auto-
matically test the soundness and precision of the implementations
of abstract domains, which is the core of abstract interpretation-
based tools. Qiu et al. [42] compare the results of three static ana-
lyzers (e.g., FlowDroid, AmanDroid and DroidSafe) for identifying
information flows in mobile applications, and reveal many inaccu-
racies based on a same set of benchmark. Pauck et al. [40] similarly
evaluate several taint-analysis tools for Android applications to see
whether they keep their promises. Different from these, ours is the
first work to systematically validate software model checkers, a
type of formal program verifier, and uncover many, diverse bugs.

Compilers can be viewed as another particular type of program
analyzer. Yang et al. [53] propose Csmith, which uses differential
testing to hunt bugs in C compilers. Csmith found more than 325
previously-unknown bugs in compilers. Later, the equivalence mod-
ulo inputs (EMI) technique [34] and its variants [35, 43] were applied
to stress-test C compilers, and found over 1,000 unique bugs in GCC
and LLVM. Inspired by EMI, Lidbury et al. [37] test OpenCL compil-
ers to find miscompilation bugs. These work mainly use the idea of
differential testing [38] or metamorphic testing [15] since the test
oracles are not available. In contrast, our work leverage dynamic
execution to produce test oracles, which can directly validate model
checkers. As for differential testing, since the SMC implementations
do not have rigorous standardisation (e.g., CPAchecker supports
floating point while SeaHorn does not), it may not work well for
testing software model checkers.

6 CONCLUSION

In this paper, we have proposed a branch reachability fuzzing ap-
proach to automatically validating software model checkers and
realized it in the MCFuzz tool. MCFuzz discovered 62 unique bugs
in three state-of-the-art software model checkers, almost all of
which have been confirmed or fixed, clearly demonstrating its effec-
tiveness. We have also carefully analyzed these bugs and how they
have been triaged by the developers. The bugs are diverse, which
we classified into seven categories. The developers appreciated our
bug reports and promptly responded to them, further highlighting
the importance of the problem. Our approach is also general and
can be adapted to validate other static analyzers or verifiers.

ACKNOWLEDGMENTS

We thank the anonymous ESEC/FSE reviewers for their valuable
feedback. Our special thanks go to the SMC developers, specifically
Philipp Wendler, Arie Gurfinkel, Jorge Navas, Daniel Kroening,
Michael Tautschnig and Matthias Güdemann, who provided us
with much help, insight and advice. Chengyu Zhang was partially
supported by the China Scholarship Council, and NSFC Projects No.
61572197 andNo. 61632005, Yichen Yan by ECNUProject of Funding
Overseas Short-term Studies, and Geguang Pu by China HGJ Project
No. 2017ZX01038102-002 and NSFC Project No. 61532019.

Finding and Understanding Bugs in Software Model Checkers ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES

[1] Anonymous. 2019. List of bugs found by MCFuzz. Retrieved Feb. 2019 from
https://github.com/MCFuzzer

[2] Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Rajamani. 2001.
Automatic predicate abstraction of C programs. In PLDI. 203–213.

[3] Thomas Ball and Sriram K. Rajamani. 2002. The SLAM project: debugging system
software via static analysis. In POPL. 1–3.

[4] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo.
2015. The oracle problem in software testing: A survey. IEEE TSE 41, 5 (2015),
507–525.

[5] Dirk Beyer. 2017. Software Verification with Validation of Results (Report on
SV-COMP 2017). In TACAS. 331–349.

[6] Dirk Beyer, Adam Chlipala, Thomas A. Henzinger, Ranjit Jhala, and Rupak Ma-
jumdar. 2004. Generating Tests from Counterexamples. In ICSE. 326–335.

[7] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. 2007. The
software model checker Blast. STTT 9, 5-6 (2007), 505–525.

[8] Dirk Beyer and M Erkan Keremoglu. 2011. CPAchecker: A tool for configurable
software verification. In CAV. 184–190.

[9] Dirk Beyer and Thomas Lemberger. 2017. Software Verification: Testing vs. Model
Checking. In HVC. 99–114.

[10] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. 1999. Sym-
bolic model checking without BDDs. In TACAS. 193–207.

[11] Aaron R. Bradley. 2011. SAT-based model checking without unrolling. In VMCAI.
70–87.

[12] Aaron R. Bradley. 2012. IC3 and beyond: Incremental, Inductive Verification.. In
CAV. 4.

[13] Alexandra Bugariu, Valentin Wüstholz, Maria Christakis, and Peter Müller. 2018.
Automatically testing implementations of numerical abstract domains. In ASE.
768–778.

[14] Cristian Cadar and Alastair F. Donaldson. 2016. Analysing the program analyser.
In ICSE Companion. 765–768.

[15] Tsong Y. Chen, Shing C. Cheung, and Shiu Ming Yiu. 1998. Metamorphic testing:

a new approach for generating next test cases. Technical Report. HKUST-CS98-01,
Hong Kong University of Science and Technology.

[16] Alessandro Cimatti and Alberto Griggio. 2012. Software model checking via IC3.
In CAV. 277–293.

[17] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2003.
Counterexample-guided abstraction refinement for symbolic model checking.
JACM 50, 5 (2003), 752–794.

[18] Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A tool for checking
ANSI-C programs. In TACAS. 168–176.

[19] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or approximation of
fixpoints. In POPL. 238–252.

[20] Pascal Cuoq, BenjaminMonate, Anne Pacalet, Virgile Prevosto, John Regehr, Boris
Yakobowski, and Xuejun Yang. 2012. Testing Static Analyzers with Randomly
Generated Programs. In NFM. 120–125.

[21] Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. 2007. Automated
testing of refactoring engines. In ESEC/FSE. 185–194.

[22] Alastair F. Donaldson, Leopold Haller, Daniel Kroening, and Philipp Rümmer.
2011. Software verification using k-induction. In SAS. 351–368.

[23] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. 2008. A survey of
automated techniques for formal software verification. IEEE TCAD 27, 7 (2008),
1165–1178.

[24] Facebook. 2019. Infer static analyzer. Retrieved Feb. 2019 from http://fbinfer.com/
[25] Gordon Fraser, Franz Wotawa, and Paul Ammann. 2009. Testing with model

checkers: a survey. STVR 19, 3 (2009), 215–261.
[26] Susanne Graf and Hassen Saïdi. 1997. Construction of abstract state graphs with

PVS. In CAV. 72–83.

[27] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas.
2015. The SeaHorn verification framework. In CAV. 343–361.

[28] Michael Hind. 2001. Pointer analysis: Haven’t we solved this problem yet?. In
PASTE. 54–61.

[29] Ranjit Jhala and Rupak Majumdar. 2009. Software model checking. ACM CSUR

41, 4 (2009), 21.
[30] Timotej Kapus and Cristian Cadar. 2017. Automatic testing of symbolic execution

engines via program generation and differential testing. In ASE. 590–600.
[31] Alexey V. Khoroshilov, Vadim S. Mutilin, Alexandre Petrenko, and Vladimir

Zakharov. 2009. Establishing Linux Driver Verification Process. In PSI. 165–176.
[32] Anvesh Komuravelli, Arie Gurfinkel, Sagar Chaki, and Edmund M Clarke. 2013.

Automatic abstraction in SMT-based unbounded software model checking. In
CAV. 846–862.

[33] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In CGO. 75.

[34] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equiv-
alence modulo inputs. In PLDI. 216–226.

[35] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding Deep Compiler Bugs via
Guided Stochastic Program Mutation. In OOPSLA. 386–399.

[36] Xavier Leroy. 2009. Formal verification of a realistic compiler. CACM 52, 7 (2009),
107–115.

[37] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson.
2015. Many-core compiler fuzzing. PLDI (2015), 65–76.

[38] William M. McKeeman. 1998. Differential Testing for Software. Digital Technical
Journal 10, 1 (1998), 100–107.

[39] Jan Midtgaard and Anders Møller. 2017. Quickchecking static analysis properties.
STVR 27, 6 (2017).

[40] Felix Pauck, Eric Bodden, and Heike Wehrheim. 2018. Do Android Taint Analysis
Tools Keep Their Promises?. In ESEC/FSE. 331–341.

[41] Zvonimir Pavlinovic, Akash Lal, and Rahul Sharma. 2016. Inferring annotations
for device drivers from verification histories. In ASE. 450–460.

[42] Lina Qiu, Yingying Wang, and Julia Rubin. 2018. Analyzing the Analyzers:
FlowDroid/IccTA, AmanDroid, and DroidSafe. In ISSTA. 176–186.

[43] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding compiler bugs via live
code mutation. In OOPSLA. 849–863.

[44] SV-COMP. 2019. Competition on Software Verification (SV-COMP). Retrieved
Feb. 2019 from https://sv-comp.sosy-lab.org/2019/

[45] The Clang Team. 2019. Clang 9 documentation: LibTooling. Retrieved Feb. 2019
from https://clang.llvm.org/docs/LibTooling.html

[46] The CompCert Team. 2019. Using the CompCert C interpreter. Retrieved Feb.
2019 from http://compcert.inria.fr/man/manual004.html

[47] The Eclipse Team. 2019. Eclipse CDT (C/C++ Development Tooling). Retrieved
Feb. 2019 from https://www.eclipse.org/cdt/

[48] The GCC Team. 2019. GCC, the GNU Compiler Collection. Retrieved Feb. 2019
from https://gcc.gnu.org/

[49] The ISO Team. 2019. ISO/IEC 9899:2018:Information technology – Programming
languages – C. Retrieved Feb. 2019 from https://www.iso.org/standard/74528.
html

[50] The SVCOMP Team. 2019. 7th Competition on Software Verification (SV-
COMP). Retrieved Feb. 2019 from https://sv-comp.sosy-lab.org/2018/results/
results-verified/

[51] The SMTInterpol Team. 2019. SMTInterpol: an Interpolating SMT Solver. Re-
trieved Feb. 2019 from https://ultimate.informatik.uni-freiburg.de/smtinterpol/

[52] Jingyue Wu, Gang Hu, Yang Tang, and Junfeng Yang. 2013. Effective dynamic
detection of alias analysis errors. In ESEC/FSE. 279–289.

[53] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-
standing bugs in C compilers. In PLDI. 283–294.

[54] Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal program enu-
meration for rigorous compiler testing. In PLDI. 347–361.

https://github.com/MCFuzzer
http://fbinfer.com/
https://sv-comp.sosy-lab.org/2019/
https://clang.llvm.org/docs/LibTooling.html
http://compcert.inria.fr/man/manual004.html
https://www.eclipse.org/cdt/
https://gcc.gnu.org/
https://www.iso.org/standard/74528.html
https://www.iso.org/standard/74528.html
https://sv-comp.sosy-lab.org/2018/results/results-verified/
https://sv-comp.sosy-lab.org/2018/results/results-verified/
https://ultimate.informatik.uni-freiburg.de/smtinterpol/

	Abstract
	1 Introduction
	2 Illustrative Examples
	2.1 CPAchecker Bug #529
	2.2 CPAchecker Bug #534

	3 Approach and Implementation
	3.1 Definition and High-level Approach
	3.2 Approach Instances
	3.3 Implementation

	4 Empirical Evaluation
	4.1 Evaluation Setup
	4.2 Results
	4.3 Assorted Bug Samples
	4.4 Discussions

	5 Related Work
	6 Conclusion
	References

