
软件分析与验证前沿

苏亭
软件科学与技术系

Outline

□ First example: Available expressions
□ Basic principles
□ More examples
□ Solving data flow problems
□ Inter-procedural analysis
□ Sensitivities

27

Data Flow Analyses

28

□ Seen previously
Q Available expressions

□ Next
Q Reaching definitions

Q Very busy expressions

Q Live variables

Reaching Definitions Analysis

29

Goal: For each program point, compute
which assignments may have been made
and may not have been overwritten

□ Useful in various program analyses

□ E.g., to compute a data flow graph

A reaching definition for a given instruction is an earlier instruction whose target variable
can reach (be assigned to) the given one without an intervening assignment.
https://en.wikipedia.org/wiki/Reaching_definition

https://en.wikipedia.org/wiki/Reaching_definition

Example

30 - 1

var x = 5;
var y = 1;
while(x > 1) {
y = x * y;
x = x - 1;

}

A reaching definition for a given instruction is an earlier instruction whose target variable
can reach (be assigned to) the given one without an intervening assignment.
https://en.wikipedia.org/wiki/Reaching_definition

https://en.wikipedia.org/wiki/Reaching_definition

Example

var x = 5;
var y = 1;
while(x > 1) {
y = x * y;
x = x - 1;

}

Definition
reaches entry
of this
statement

30 - 2

A reaching definition for a given instruction is an earlier instruction whose target variable
can reach (be assigned to) the given one without an intervening assignment.
https://en.wikipedia.org/wiki/Reaching_definition

https://en.wikipedia.org/wiki/Reaching_definition

Example

var x = 5;
var y = 1;
while(x > 1) {
y = x * y;
x = x - 1;

}

All definitions
reach the entry
of this statement

30 - 3

A reaching definition for a given instruction is an earlier instruction whose target variable
can reach (be assigned to) the given one without an intervening assignment.
https://en.wikipedia.org/wiki/Reaching_definition

https://en.wikipedia.org/wiki/Reaching_definition

Example

var x = 5;
var y = 1;
while(x > 1) {
y = x * y;
x = x - 1;

}

Three definitions
reach entry of this
statement

30 - 4

A reaching definition for a given instruction is an earlier instruction whose target variable
can reach (be assigned to) the given one without an intervening assignment.
https://en.wikipedia.org/wiki/Reaching_definition

https://en.wikipedia.org/wiki/Reaching_definition

Defining the Analysis

31

□ Domain: Definitions (assignments) in
the code

Q Set of pairs (v, s) of variables and statements

Q (v, s) means a definition of v at s

□ Direction: Forward
□ Meet operator: Union

Q Because we care about definitions that may

reach a program point

Defining the Analysis (2)

32

□ Transfer function:
RDexit(s) = (RDentry (s) \ kill(s)) ∪ gen(S)

□ Function gen(s)

Q If s is assignment to v: (v, s)

Q Otherwise: Empty set

□ Function kill(s)

Q If s is assignment to v: (v, s') for all s' that define v

Q Otherwise: Empty set

Defining the Analysis (3)

33

□ Boundary condition: Entry node starts
with all variables undefined

Q Special “statement” for undefined variables: ?

Q RD e n t r y (entryNode) = {(v, ?) | v ∈ Vars}

□ Initially, all nodes have no reaching
definitions

Outline

□ First example: Available expressions
□ Basic principles
□ More examples
□ Solving data flow problems
□ Inter-procedural analysis
□ Sensitivities

37

Very Busy Expression Analysis

38

Goal: For each program point, find
expressions that must be very busy

□ ”Very busy”: On all future paths, expression
will be used before any of the variables in it
are redefined

□ Useful for program optimizations, e.g., hoisting

Q Hoisting an expression: Pre-compute it, e.g., before

entering a block, for later use

An expression is very busy at p if it is evaluated on every path from p before it changes in value.

Example

39 - 1

if(a > b) {
x = b - a;
y = a - b;

}else{
y = b - a;
x = a - b;

}

Example

if(a > b) {
x = b - a;
y = a - b;

}else{
y = b - a;
x = a - b;

}

a - b and b - a
are very busy here

39 - 2

Defining the Analysis

40

□ Domain: All non-trivial expressions
occurring in the code

□ Direction: Backward
□ Meet operator: Intersection

Q Because we care about very busy expressions
that must be used

Defining the Analysis (2)

41

Transfer function:
V Bentry (s) = (V Bexit(s) \ kill(s)) ∪ gen(S)

□ Backward analysis: Returns expressions that are
very busy expressions at entry of statement

□ Function gen(s)

Q All expressions e that appear in s

□ Function kill(s)

Q If s assigns to x, all expressions in which x occurs

Q Otherwise: Empty set

Defining the Analysis (3)

42

□ Boundary condition: Final node starts
with no very busy expressions
Q V Bex i t(f inalNode) = ∅

□ Initially, all nodes have no very busy
expressions

47

Live Variables Analysis
Goal: For each statement, find variables that
are may be “live” at the exit from the statement

□ ”Live”: The variable is used before being redefined

□ Useful, e.g., for identifying dead code

Q Bug detection: Dead assignments are typically

unintended
Q Optimization: Remove dead code

A variable is live at some point if it holds a value that may be needed in the future, or equivalently if
its value may be read before the next time the variable is written to.
https://en.wikipedia.org/wiki/Live-variable_analysis

https://en.wikipedia.org/wiki/Live-variable_analysis

Example

48 - 1

x = 2;
y = 4;
x = 1;
if(y > x) {
z = y;

}else{
z = y * y;
x = z;

}

Example

x = 2;
y = 4;
x = 1;
if(y > x) {
z = y;

}else{
z = y * y;
x = z;

}

x is not live
after this
statement

48
- 2

Example

x = 2;
y = 4;
x = 1;
if(y > x) {
z = y;

}else{
z = y * y;
x = z;

}

Both x and y are live
after this statement

48
- 3

Defining the Analysis

49

□ Domain: All variables occurring in the
code

□ Direction: Backward
□ Meet operator: Union

Q Because we care about whether a variable may

be used

Defining the Analysis (2)

50

Transfer function:
LVentry (s) = (LVexit(s) \ kill(s)) ∪ gen(S)

□ Backward analysis: Returns set of variables that are
live at entry of statement

□ Function gen(s)
Q All variables v that are used in s

□ Function kill(s)

Q If s assigns to x, then it kills x

Q Otherwise: Empty set

Defining the Analysis (3)

51

□ Boundary condition: Final node starts
with no live variables
Q LVexit(finalNode) = ∅

□ Initially, all nodes have no live variables

Quiz: Live Variables

52

x = 2;
y = 4;
x = 1;
if(y > x) {

z = y;
}else{

z = y * y;
x = z;

}

Compute the live
variables before and
after every statement.

Quiz: Live Variables

52

x = 2;
y = 4;
x = 1;
if(y > x) {

z = y;
}else{

z = y * y;
x = z;

}

Compute the live variables
before and after every
statement.

Compute:
(1) gen(s) and kill(s)
(2) LVentry (s) and LVexit (s)

Applications of Four Analyses

52

•Available Expressions: Optimization
- don't recompute expressions that are still available

•Very Busy Expressions: Optimization
- move expression to a common program point

•Reaching Definitions: Bug-finding and Optimization
- uninitialized variables, constant propagation

•Live Variables: Optimization
- don't store variables that aren't live, eliminate assignments

where variables are dead

