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Outline

- First example: Available expressions
- Basic principles

- More examples «——

- Solving data flow problems

. Inter-procedural analysis

. Sensitivities
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Data Flow Analyses

- Seen previously

o Available expressions
- Next

o« Reaching definitions

a Very busy expressions

o Live variables

28



Reaching Definitions Analysis

Goal: For each program point, compute
which assignments may have been made
and may not have been overwritten

- Useful in various program analyses

- E.g., to compute a data flow graph

A reaching definition for a given instruction is an earlier instruction whose target variable
can reach (be assigned to) the given one without an intervening assignment.

https://en.wikipedia.org/wiki/Reaching definition
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Example

var x =5;

var y 1;

while(x > 1) {
Y=X*Y;
XxX=x-1;

A reaching definition for a given instruction is an earlier instruction whose target variable
can reach (be assigned to) the given one without an intervening assignment.

https://en.wikipedia.org/wiki/Reaching definition
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while (x > 1) { Definition
y=x*y; reaches entry
Xx=x-1; of this

} statement

A reaching definition for a given instruction is an earlier instruction whose target variable
can reach (be assigned to) the given one without an intervening assignment.

https://en.wikipedia.org/wiki/Reaching definition
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All definitions
reach the entry
of this statement

A reaching definition for a given instruction is an earlier instruction whose target variable
can reach (be assigned to) the given one without an intervening assignment.

https://en.wikipedia.org/wiki/Reaching definition
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var y =
while (x > 1) {

V=¥ *Y;

Three definitions
reach entry of this
statement

A reaching definition for a given instruction is an earlier instruction whose target variable
can reach (be assigned to) the given one without an intervening assignment.

https://en.wikipedia.org/wiki/Reaching definition
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Defining the Analysis

- Domain: Definitions (assignments) in
the code

a Set of pairs (v, s)of variables and statements
a (v, symeans a definition of v at s

- Direction: Forward

- Meet operator: Union

o« Because we care about definitions that may

reach a program point

31



Defining the Analysis (2)

. Transfer function:
RD¢xit(S) = (RDentry(s) \ kill(s)) Ugen(S)

- Function gen(s)
a Ifs is assignment to v: (v, s)
a Otherwise: Empty set
. Function kill(s)
o Ifs is assignment to v: (v, s') for all s that define v

a Otherwise: Empty set

32



Defining the Analysis (3)

- Boundary condition: Entry node starts
with all variables undefined

a Special “statement” for undefined variables: ?
a RDeniry(entryNode)={(v,?) | v EVars}

- Initially, all nodes have no reaching
definitions

33
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Outline

- First example: Available expressions
- Basic principles

- More examples «——

- Solving data flow problems

. Inter-procedural analysis

. Sensitivities

37



Very Busy Expression Analysis

Goal: For each program point, find
expressions that must be very busy

- Very busy”: On all future paths, expression

will be used before any of the variables in it
are redefined

- Useful for program optimizations, e.g., hoisting

o Hoisting an expression: Pre-compute it, e.g., before

entering a block, for later use

An expression is very busy at p if it is evaluated on every path from p before it changes in value.
38



Example

if(a >Db) {
XxX=Db - a;
y =a-b;
}else(
y =b - a;

X =a-b;

}

39 -
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if(a>b){ a - bandb -a
X = are very busy here
y:

lelse
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Defining the Analysis

- Domain: All non-trivial expressions
occurring in the code

. Direction: Backward

- Meet operator: Intersection

o« Because we care about very busy expressions

that must be used
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Defining the Analysis (2)

Transfer function:
VBentry(S) = (V Bexit(s) \ kill(s)) Ugen(S)
- Backward analysis: Returns expressions that are
very busy expressions at entry of statement
- Function gen(s)
a All expressions ethat appearins
- Function kill(s)
a If sassigns to x, all expressions in which x occurs

o Otherwise: Empty set
41



Defining the Analysis (3)

- Boundary condition: Final node starts
with no very busy expressions

o VBexit(finalNode) =0

- Initially, all nodes have no very busy
expressions
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Live Variables Analysis

Goal: For each statement, find variables that
are may be “live” at the exit from the statement

- Live”: The variable is used before being redefined

- Useful, e.q., for identifying dead code

o Bug detection: Dead assignments are typically

unintended
o Optimization: Remove dead code

A variable is live at some point if it holds a value that may be needed in the future, or equivalently if
its value may be read before the next time the variable is written to.

https://en.wikipedia.org/wiki/Live-variable analysis
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Example

L T
inn
R & DN

M
Hh

y > x) {
zZ =V,

}else(
Z=YyY *Yy;
X =z;

48 -
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Example

y =4;

x =1;

1f(y > x) {
zZ =V,

}else(
z=yY *y;
X =z;

}

x IS not live
after this
statement



X =2;
y =4;
x =1; |
1f (y >VX)‘{~_ )
Z =y>\\ :_//
}else( o
7 = *y;

Both x and y are live
after this statement



Defining the Analysis

- Domain: All variables occurring In the
code

- Direction: Backward
- Meet operator: Union

o« Because we care about whether a variable may

be used
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Defining the Analysis (2)

Transfer function:
LVentry(S) = (LVexit(s) \ kill(s)) Ugen(S)
- Backward analysis: Returns set of variables that are

live at entry of statement

- Function gen(s)
a All variables v that are used in s

- Function kill(s)
o If sassigns to x, then it kills x

o Otherwise: Empty set

50



Defining the Analysis (3)

- Boundary condition: Final node starts
with no live variables

a LVexil(finalNode) =g

- Initially, all nodes have no live variables
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Quiz: Live Variables

X =2;

y =4;

X =1;

if(y>x){
Z=Y,

}else{
Z=Yy*™y;
X =z;

}

Compute the live
variables before and
after every statement.
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Quiz: Live Variables

X =2;

y =4;

X =1;

if(y>x){
Z=Y,

}else{
Z=Yy*™y;
X =z;

}

Compute the live variables
before and after every
statement.

Compute:
(1) gen(s) and kill(s)
(2) I-Ventry (S) and I-Vexit (S)
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Applications of Four Analyses

*Available Expressions: Optimization
- don't recompute expressions that are still available

*Very Busy Expressions: Optimization
- move expression to a common program point

*Reaching Definitions: Bug-finding and Optimization
- uninitialized variables, constant propagation

*Live Variables: Optimization
- don't store variables that aren't live, eliminate assignments
where variables are dead
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