
软件分析与验证前沿

苏亭
软件科学与技术系

Big Picture

2

□ Introduction to static analysis
□ Many ways of formulating and

implementing analyses
□ One popular way of formulating a

static analysis: Data flow analysis

Big Picture

3

□ Introduction to static analysis
□ Many ways of formulating and

implementing analyses
□ One popular way of formulating a

static analysis: Data flow analysis

课程资料：http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/

Questions about programs

• Does the program terminate on all inputs?
• How large can the heap become during execution?
• Can sensitive information leak to non-trusted users?
• Can non-trusted users affect sensitive information?
• Are buffer-overruns possible?
• Data races?
• SQL injections?
• Cross-Site Scripting (XSS)?
• …

5

foo(p,x) {
var f,q;
if (*p==0) { f=1; }
else {

q = alloc 10;
*q = (*p)-1;
f=(*p)*(x(q,x));

}
return f;

}

Program points

Invariants:
A property holds at a program point if it holds in any
such state for any execution with any input

any point in the program
= any value of the PC

6

Questions about program points

7

• Will the value of x be read in the future?
• Can the pointer p be null?
• Which variables can p point to?
• Is the variable x initialized before it is read?
• What is a lower and upper bound on the value of the

integer variable x?
• At which program points could x be assigned its

current value?
• Do p and q point to disjoint structures in the heap?
• Can this assert statement fail?

Why are the answers interesting?

• Increase efficiency
– resource usage
– compiler optimizations

• Ensure correctness
– verify behavior
– catch bugs early

• Support program understanding
• Enable refactorings

8

Testing?

“Program testing can be used to show
the presence of bugs, but never to show
their absence.”

[Dijkstra, 1972]

9

Nevertheless, testing often takes 50% of the development cost

a program analyzer A

a program P
P always
works
correctly

1
0

P fails
for some
inputs

Programs that reason about programs

SOUNDNESS (don’t miss any errors)

COMPLETENESS (don’t raise false alarms)

TERMINATION (always give an answer)

Requirements to the perfect program
analyzer

Rice’s theorem, 1953

Rice’s theorem

Any non-trivial property of the behavior of programs
in a Turing-complete language is undecidable!

图灵完备语言（Turing-Complete Language）: https://en.wikipedia.org/wiki/Turing_completeness

Approximation

• Approximate answers may be decidable!

Soundness & Completeness
Program P, Input i, Behavior P(i)

All possible behaviors (what we want, ideally)

Under-approximation (e.g., testing, dynamic analysis)

Over-approximation (most static analysis)

P(i1)

P(i2)

P(i3)

P(i4)

False negative
(e.g., missed bugs)

✕ False positive
(e.g., benign warnings)

Sound &
Complete

Sound

Complete

Ground Truth

Approximation

• Approximate answers may be decidable!

Approximation

• Approximate answers may be decidable!

• The approximation must be conservative:
– i.e. only err on “the safe side”
– which direction depends on the client application

• We'll focus on decision problems
• More subtle approximations if not only “yes”/“no”

– e.g. memory usage, pointer targets

Example approximations

• Decide if a given function is ever called at runtime:
– if “no”, remove the function from the code
– if “yes”, don’t do anything
– the “no” answer must always be correct if given

• Decide if a cast (A)x will always succeed:
– if “yes”, don’t generate a runtime check
– if “no”, generate code for the cast
– the “yes” answer must always be correct if given

Beyond “yes”/“no” problems

• How much memory / time may be used in any
execution?

• Which variables may be the targets of a pointer
variable p?

The engineering challenge

• A correct but trivial approximation algorithm may just
give the useless answer every time

• The engineering challenge is to give the useful answer
often enough to fuel the client application

• ... and to do so within reasonable time and space

• This is the hard (and fun) part of static analysis!

Bug finding

gcc –Wall foo.c
lint foo.c

No errors!
19

int main() {
char *p,*q;
p = NULL;
printf("%s",p);
q = (char *)malloc(100);
p = q;
free(q);
*p = 'x';
free(p);
p = (char*)malloc(100);
q = (char*)malloc(100);
q = p;

strcat(p,q);
}

https://en.wikipedia.org/wiki/Lint_(software)

1
2
3
4
5
6
7
8
9
10
11
12
13
14

https://en.wikipedia.org/wiki/Lint_(software)

Static Code Analyzers (Linters)

PMD: https://github.com/pmd/pmd
SpotBugs: https://github.com/spotbugs/spotbugs
SonarQube: https://github.com/SonarSource/sonar-java

Does anyone use static program
analysis?

For optimization:
• every optimizing compiler and modern JIT

For verification or error detection:
•
•

•
•

20

•

•

•

Big Picture

2
5

□ Introduction to static analysis
□ Many ways of formulating and

implementing analyses
□ One popular way of formulating a

static analysis: Data flow analysis

Big Picture

2
6

□ Introduction to static analysis
□ Many ways of formulating and

implementing analyses
□ One popular way of formulating a

static analysis: Data flow analysis

How Programs are Represented?

Abstract Syntax Trees

ite(n) {
var f;
f = 1;
while (n>0) {

f = f*n;
n = n-1;

}
return f;

}

Control flow graphs

var f

f=1

n>0

f=f*n

n=n-1

return f

ite(n) {
var f;
f = 1;
while (n>0) {

f = f*n;
n = n-1;

}
return f;

}

true

false

Control flow graphs

• A control flow graph (CFG) is a directed graph:
– nodes correspond to program points

(either immediately before or after statements)
– edges represent possible flow of control

• A CFG always has
– a single point of entry
– a single point of exit
(think of them as no-op statements)

• Let v be a node in a CFG
– pred(v) is the set of predecessor nodes
– succ(v) is the set of successor nodes

CFG construction (1/3)

• CFGs are constructed inductively

• CFGs for simple statements etc.:

X = E output E return E var X

CFG construction (2/3)

For a statement sequence S1 S2:
– eliminate the exit node of S1 and the entry node of S2

– glue the statements together

S1 S2

S1

S2

CFG construction (3/3)

Similarly for the other control structures:

E

S

E

S1 S2

E

S

true false true
falsefalse

true

Normalization

• Sometimes convenient to ensure that each CFG node
performs only one operation

• Normalization (A-normal form): flatten nested
expressions, using fresh variables

x = f(y+3)*5;
t1 = y+3;
t2 = f(t1);
x = t2*5;

Data Flow Analysis

3
5

Basic idea
□ Propagate analysis information along the edges of

a control flow graph

□ Goal: Compute analysis state at each program
point

□ For each statement, define how it affects the
analysis state

□ For loops: Iterate until fix-point reached

Outline

□ First example: Available expressions
□ Basic principles
□ More examples
□ Solving data flow problems
□ Inter-procedural analysis
□ Sensitivities

3
6

Available Expression Analysis

3
7

Goal: For each program point, compute
which expressions must have already
been computed, and not later modified

□ Useful, e.g., to avoid re-computing an expression

□ Used as part of compiler optimizations

https://en.wikipedia.org/wiki/Available_expression

To be available on a program point, the operands of the expression should not be
modified on any path from the occurrence of that expression to the program point.

https://en.wikipedia.org/wiki/Available_expression

Example

6 - 1

var x = a + b;
var y = a * b;
while(y > a + b) {
a = a - 1;
x = a + b;

}

https://en.wikipedia.org/wiki/Available_expression

To be available on a program point, the operands of the expression should not be
modified on any path from the occurrence of that expression to the program point.

https://en.wikipedia.org/wiki/Available_expression

Example

var x = a + b;
var y = a * b;
while(y > a + b) {
a = a - 1;
x = a + b;

}

Available every time
execution reaches
this point

6 - 2
https://en.wikipedia.org/wiki/Available_expression

To be available on a program point, the operands of the expression should not be
modified on any path from the occurrence of that expression to the program point.

https://en.wikipedia.org/wiki/Available_expression

Transfer Functions

7

□ Transfer function of a statement:
How the statement affects the analysis
state
Q Here: Analysis state = available expressions

□ Two functions
Q gen: Available expressions generated by a

statement

Q kill: Available expressions killed by a statement

gen Function

8

Function gen : Stmt → P(Expr)

□ A statement generates an available expressions e

if

Q it evaluates e and

Q it does not later write any variable used in e

□ Otherwise, function returns empty set

Example:
var x = a * b; generates a * b

kill Function

9

Function kill : Stmt → P(Expr)

□ A statement kills an available expressions e if

Q it modifies any of the variables used in e

□ Otherwise, function returns empty set

Example:
a = 23; kills a * b

Example

10

varx = a + b;
vary = a * b;
while(y > a + b) {
a = a - 1;
x = a + b;

}

12

Propagating Available Expressions

□ Initially, no available expressions
□ Forward analysis: Propagate available expressions in

the direction of control flow

□ For each statement s, outgoing available
expressions are:
incoming avail. exprs. minus kill(s) plus gen(s)

□ When control flow splits, propagate available
expressions both ways

□ When control flows merge, intersect the incoming
available expressions

16

Outline

□ First example: Available expressions
□ Basic principles
□ More examples
□ Solving data flow problems
□ Inter-procedural analysis
□ Sensitivities

Quiz

17 - 1

var m = x - y;
if(random()) {
while(m > 0) {
x = y + 1;

}
}else{
n = x - y;

}
z = x - y;

Quiz

17 - 2

var m = x - y;
if(random()) {
while(m > 0) {
x = y + 1;

}
}else{
n = x - y;

}
z = x - y;

Is x - y an available
expression when entering
this statement?

17 - 3

Quiz

var m = x - y;
if(random()) {
while(m > 0) {
x = y + 1;

}
}else{
n = x - y;

}
z = x - y;

Is x - y an available
expression when entering
this statement?

No, because
modifying x
kills x - y

Defining a Data Flow Analysis

18

Any data flow analysis:
Defined by six properties

□ Domain (facts)

□ Direction

□ Transfer function

□ Meet operator

□ Boundary condition

□ Initial values

Domain

19

□ Analysis associates some information
with every program point

Q “Information” means elements of a set

□ Domain of the analysis: All possible
elements the set may have
Q E.g., for available expressions analysis:

Domain is set of non-trivial expressions

Direction

20

□ Analysis propagates information
along the control flow graph

Q Forward analysis: Normal flow of control

Q Backward analysis:Invert all edges

• Reasons about executions in reverse

□ E.g., available expression analysis:
Forward

Transfer Function

21

□ Defines how a statement affects
the propagated information

□ DFexit(s) = some function of DFentry (s)

□ E.g., for available expression analysis:
AEexit(s) = (AEentry (s) \ kill(s)) ∪ gen(s)

22 - 1

Meet Operator

□ What if two statements s1, s2 flow to a
statement s?

Q Forward analysis: Execution branches merge

Q Backward analysis: Branching point

□ Meet operator defines how to combine
the incoming information

Q Union: DFe n t r y (s) = DFexi t(s1) ∪ DFexi t(s2)

Q Intersection: DFe n t r y (s) = DFexi t(s1) ∩ DFexi t(s2)

22 - 2

Meet Operator

□ What if two statements s1, s2 flow to a
statement s?

Q Forward analysis: Execution branches merge

Q Backward analysis: Branching point

□ Meet operator defines how to combine
the incoming information

Q Union: DFe n t r y (s) = DFexi t(s1) ∪ DFexi t(s2)

Q Intersection: DFe n t r y (s) = DFexi t(s1) ∩ DFexi t(s2)

E.g., available expressions analysis

Boundary Condition

23 - 1

□ What information to start with at the
first CFG node?

Q Forward analysis: First node is entry node

Q Backward analysis: First node is exit node

□ Common choices
Q Empty set

Q Entire domain

Boundary Condition

□ What information to start with at the
first CFG node?

Q Forward analysis: First node is entry node

Q Backward analysis: First node is exit node

□ Common choices
Q Empty set

Q Entire domain
E.g., available expressions analysis

23 - 2

Initial Values

24 - 1

□ What is the information to start with
at intermediate nodes?

□ Common choices
Q Empty set

Q Entire domain

Initial Values

□ What is the information to start with
at intermediate nodes?

□ Common choices
Q Empty set

Q Entire domain
E.g., available expressions analysis

24 - 2

Defining a Data Flow Analysis

25 - 1

Any data flow analysis:
Defined by six properties

□ Domain

□ Direction
□ Transfer function

□ Meet operator

□ Boundary condition

□ Initial values

Example: Available expressions 25 - 2

Defining a Data Flow Analysis

Any data flow analysis:
Defined by six properties

□ Domain

□ Direction
□ Transfer function

□ Meet operator

□ Boundary condition

□ Initial values

□ Non-trivial expressions

□ Forward
□ AEex i t(s) =

(AEe n t r y \ kill(s)) ∪ gen(s)

□ Intersection (∩)

□ AE e n t r y (entryNode) = ∅

□ ∅

Classifying Data Flow Analyses

•Forward or backward, or sometimes both

•Whether facts may or must be true

•Within a procedure (intra-procedural) or between
procedures (inter-procedural)

Ø In a may analysis, we care about the facts that may be true at p.
That is, they are true for some path up to or from p, depending
on the direction of the analysis.

Ø In a must analysis, we care about the facts that must be true at p.
That is, they are true for every path up to or from p.

Outline

□ First example: Available expressions
□ Basic principles
□ More examples
□ Solving data flow problems
□ Inter-procedural analysis
□ Sensitivities

27

Data Flow Analyses

28

□ Seen previously
Q Available expressions

□ Next
Q Reaching definitions

Q Very busy expressions

Q Live variables

