IR R IRSE ATz TN

T

BARHASHAR R

Big Picture

- Introduction to static analysis
- Many ways of formulating and
implementing analyses

- One popular way of formulating a
static analysis: Data flow analysis

Big Picture

- Introduction to static analysis

Welcome to the web site for the lecture notes on

Static Program Analysis

Static Program Analysis Anders Mgller and Michael |I. Schwartzbach
Anders Miber s Michast | Schusetbach Department of Computer Science, Aarhus University

Last revision: November 2022

/| PDE

CEaly:

BibTeX

Static program analysis is the art of reasoning about the behavior of computer programs without actually running them. This is useful not only in optimizing
compilers for producing efficient code but also for automatic error detection and other tools that can help programmers.

As known from Turing and Rice, all interesting properties of the behavior of programs written in common programming languages are mathematically
undecidable. This means that automated reasoning of software generally must involve approximation. It is also well known that testing may reveal errors
but not show their absence. In contrast, static program analysis can - with the right kind of approximations - check all possible executions of the programs
and provide guarantees about their properties. The challenge when developing such analyses is how to ensure high precision and efficiency to be
practically useful.

This teaching material concisely presents the essential principles and algorithms for static program analysis. We emphasize a constraint-based approach
where suitable constraint systems conceptually divide analysis into a front-end that generates constraints from program code and a back-end that solves
the constraints to produce the analysis results. The style of presentation is intended to be precise but not overly formal. The readers are assumed to be
familiar with advanced programming language concepts and the basics of compiler construction.

The concepts are explained using a tiny imperative programming language, TIP, which suffices to illustrate the main challenges that arise with mainstream
languages.

The lecture notes, slides, implementation, and exercises have been developed since 2008 for our graduate-level course at Aarhus University. We continue
to update the material regularly. Suggestions for improvements are welcome!

1BFEEEL: http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/

Questions about programs

Does the program terminate on all inputs?

How large can the heap become during execution?
Can sensitive information leak to non-trusted users?
Can non-trusted users affect sensitive information?
Are buffer-overruns possible?
Data races?

SQL injections?

Cross-Site Scripting (XSS)?

Program points

foo(p,x) {
var f,q;
if (*p==0) { f=1; }
else { any point in the program

q = alloc 10; = any value of the PC
*aq = (*p)-1;

f=(*p)*(x(a,x));
}

return f;

Invariants:

A property holds at a program point if it holds in any
such state for any execution with any input

Questions about program points

Will t
Cant

Whic

ne value of x be read in the future?
ne pointer p be null?

n variables can p point to?

Is the variable x initialized before it is read?

What is a lower and upper bound on the value of the
integer variable x?

At which program points could x be assigned its
current value?

Do p and g point to disjoint structures in the heap?

Can this assert statement fail?

Why are the answers interesting?

Increase efficiency

— resource usage
— compiler optimizations

Ensure correctness

— verify behavior
— catch bugs early

Support program understanding
Enable refactorings

Testing?

“Program testing can be used to show
the presence of bugs, but never to show

their absence.”

[Dijkstra, 1972]

Nevertheless, testing often takes 50% of the development cost

Programs that reason about programs

a program analyzer A

a program P

=

Requirements to the perfect program

analyzer
R
~JB» SOUNDNESS (don’t miss any errors)
»» COMPLETENESS (don’t raise false alarms)

~JB» TERMINATION (always give an answer)

Rice’s theorem, 1953

CLASSES OF RECURSIVELY ENUMERABLE SETS
AND THEIR DECISION PROBLEMS(})

BY
H. G. RICE

1. Introduction. In this paper we consider classes whose elements are re-
cursively enumerable sets of non-negative integers. No discussion of recur-
sively enumerable sets can avoid the use of such classes, so that it seems de-
sirable to know some of their properties. We give our attention here to the
properties of complete recursive enumerability and complete recursiveness
(which may be intuitively interpreted as decidability). Perhaps our most
interesting result (and the one which gives this paper its name) is the fact
that no nontrivial class is completely recursive.

We assume familiarity with a paper of Kleene [5](%), and with ideas
which are well summarized in the first sections of a paper of Post [7].

I. FUNDAMENTAL DEFINITIONS

2. Partial recursive functions. We shall characterize recursively enumer-

—

CoROLLARY B. There are no nontrivial c.r. classes by the strong definition.

Rice’s theorem

Any non-trivial property of the behavior of programs
in a Turing-complete language is undecidable!

KR 5E44ES (Turing-Complete Language) : https://en.wikipedia.org/wiki/Turing_completeness

Approximation

* Approximate answers may be decidable!

Soundness & Completeness

Program P, Inputi, Behavior P(i)

Sound False positive
(e.g., benign warnings)
Sound &
Complete
False negative
Complete (e.g., missed bugs)

. All possible behaviors (what we want, ideally)
‘ Under-approximation (e.g., testing, dynamic analysis)

Q Over-approximation (most static analysis)

Approximation

* Approximate answers may be decidable!

Approximation

Approximate answers may be decidable!

The approximation must be conservative:
— i.e. only err on “the safe side”
— which direction depends on the client application

We'll focus on decision problems

More subtle approximations if not only “yes”/“*no”

— e.g. memory usage, pointer targets

Example approximations

* Decide if a given function is ever called at runtime:
— if “no”, remove the function from the code
— if “yes”, don’'t doanything
— the “no” answer must always be correct if given

* Decide if a cast (A)x will always succeed:

— if “yes”, don’t generate a runtime check
— if “no”, generate code for the cast
— the “yes” answer must always be correct if given

Beyond “yes”/“no” problems

* How much memory / time may be used in any
execution?

* Which variables may be the targets of a pointer
variable p?

The engineering challenge

A correct but trivial approximation algorithm may just
give the useless answer every time

The engineering challenge is to give the useful answer
often enough to fuel the client application

... and to do so within reasonable time and space

This is the hard (and fun) part of static analysis!

Bug finding

O 00 N O U1 » W DN B

N ol
w N Rk O

14 }

int main() {

char *p,*q;

p = NULL;
printf("%s",p);

g = (char *)malloc(100);
P=0q;

free(q);

*p=x;

free(p);

p = (char*)malloc(100);
g = (char*)malloc(100);
qa=p;

strcat(p,q);

https://en.wikipedia.org/wiki/Lint (software)

gcc —Wall foo.c
lint foo.c

No errors!

19

https://en.wikipedia.org/wiki/Lint_(software)

Static Code Analyzers (Linters)

PMD - source code analyzer

{FMD}

? Specification ? Specification ?_-U Specification
(l Implementation 2) Implementation % Implementation
Analysis Modules

[Data Flow Analysis

Sp@tBugs
Symbol Table
Scope Analysis Type Resolution

[Symbolic Execution

sonarqube\\\

PMD: https://github.com/pmd/pmd
SpotBugs: https://github.com/spotbugs/spotbugs
SonarQube: https://github.com/SonarSource/sonar-java

Does anyone use static program
analysis?

For optimization:

e every optimizing compiler and modern JIT

For verification or error detection:
o Astree

* /& Klocwork
il [Nfer

, MGrammaTlech CodeSonar
 COVERITY

* PVS-Studio * IBM Security AppScan

20

sollware ey

POSTED ON SEP 6, 2017 TO ANDROID, DEVELOPER TOOL

Finding inte
Infer static

@ SAM BLACKSHEAR "'ﬁ

The capabilities of static anal
our work on the Infer static ar
source analysis tools like Fin
procedural bugs, or bugs thai

We'll take a look at two exam
source DuckDuckGo Android
the tools mentioned above, w
Analyzer — only intra-file anz
unit, a file-with-includes).

Inter-procedural bugs are sig
Facebook developers have fi
can have a large impact; we i
Facebook. As we have found

codebases that consist of Miluuiio ur e v vuue anu

BUSINESS

SHARE
'f

Uber Engineering

How Facebook Catches Bugs in Its 100 Million

CULTURE GEAR IDEAS

LILY HAY NEWMAN SECURITY D8.15.19 0S5:03 PM

HOW FACEBOOR GATCHES
BUGS IN TTS 100 MILLION
LINES OF CODE

jram analys

e through

es, synthes
ion and reg
, visualizati

1191818181818

0 - -
BEINSLANILAT INANS W DI NI WAL I RSN A Y.

Big Picture

- Introduction to static analysis

o1 N

Big Picture

- Many ways of formulating and
implementing analyses

- One popular way of formulating a
static analysis: Data flow analysis

o N

How Programs are Represented?

Abstract Syntax Trees

ite(n) {
var f;
f=1;
while (n>0) {
f=f*n;
n=n-1;
}

return f;

Control flow graphs

ite(n) { var f
var f; l
f= 1, f:l
while (n>0) { l

f=f*n;
n=n-1; false n>lo
} true
return f; f=f*pn
n=n-1
return f

:

Control flow graphs

* A control flow graph (CFG) is a directed graph:

— nodes correspond to program points
(either immediately before or after statements)

— edges represent possible flow of control

* A CFG always has

— a single point of entry

— a single point of exit
(think of them as no-op statements)
* LetvbeanodeinaCFG

— pred(v) is the set of predecessor nodes
— succ(v) is the set of successor nodes

CFG construction (1/3)

* CFGs are constructed inductively

* CFGs for simple statements etc.:

Il «—@

E

!

e

output E

!

l

return E

:

var X

CFG construction (2/3)

For a statement sequence S, S,:

— eliminate the exit node of S; and the entry node of S,
— glue the statements together

N
s, [ss |)

CFG construction (3/3)

Similarly for the other control structures:

E
false
trly\fame
5; S,

Normalization

e Sometimes convenient to ensure that each CFG node
performs only one operation

* Normalization (A-normal form): flatten nested
expressions, using fresh variables

tl =y+3;
x = f(y+3)*5; —> t2 = f(t1);
X =t2*5;

Data Flow Analysis

Basic idea

O

Propagate analysis information along the edges of
a control flow graph

Goal: Compute analysis state at each program
point

For each statement, define how it affects the
analysis state

For loops: Iterate until fix-point reached

o1 W

Outline

- First example: Available expressions «—
- Basic principles

- More examples

- Solving data flow problems

. Inter-procedural analysis

. Sensitivities

o W

Available Expression Analysis

Goal: For each program point, compute
which expressions must have already
been computed, and not later modified

- Useful, e.g., to avoid re-computing an expression

- Used as part of compiler optimizations

To be available on a program point, the operands of the expression should not be

modified on any path from the occurrence of that expression to the program point.

https://en.wikipedia.org/wiki/Available expression

~N W

https://en.wikipedia.org/wiki/Available_expression

Example

N oo

var X a
var y = a
while(y > a +
a=a-1;
X=a+b;

+
*

N oo

b
b
b) {

To be available on a program point, the operands of the expression should not be
modified on any path from the occurrence of that expression to the program point.

https://en.wikipedia.org/wiki/Available expression

https://en.wikipedia.org/wiki/Available_expression

Example

var X

var y = — Available every time

Whgl_egf { execution reaches

X =a+ b;

a + b;
a * b

this point

To be available on a program point, the operands of the expression should not be
modified on any path from the occurrence of that expression to the program point.

https://en.wikipedia.org/wiki/Available expression

https://en.wikipedia.org/wiki/Available_expression

Transfer Functions

. Transfer function of a statement:
How the statement affects the analysis

state

o Here: Analysis state = available expressions

- Two functions
o gen: Available expressions generated by a

statement

o Kill: Available expressions killed by a statement

gen Function

Function gen: Stmt - P(Expr)

- A statement generates an available expressions e
if
o It evaluates e and

a It does not later write any variable used in e

- Otherwise, function returns empty set

Example:
var Xx = a * b; generatesa *b

kill Function

Function kill : Stmt - P(Expr)

- A statement kills an available expressions e if
o it modifies any of the variables used in e

- Otherwise, function returns empty set

Example:
a = 23; killsa *b

10

N ov~4¢ 1 vial ek!m 510V S

a*+b

oxb

«-A

Tﬂ\ms{&f {umcfko"\ /(0“ ee S’*od"(w«v\'l' .
Clatenunt s 1 G\Cv\ (s) Vo)

1 § otb y-
2 {a«k 53 y.
3 ¢ axb} g
N 2 fa=1, akb arb}
Iy {od-BX &

Propagating Available Expressions

- Initially, no available expressions
- Forward analysis: Propagate available expressions in
the direction of control flow

- For each statement s, outgoing available
expressions are:

iIncoming avail. exprs. minus kill(s) plus gen(s)

- When control flow splits, propagate available
expressions both ways

- When control flows merge, intersect the incoming

available expressions -

;]),A a

low _¢auaktous
\

AEQV\ f) (9\ .. RVIML wr"‘S5. 0\4 CV\‘\"‘\‘) 0,\,5

AT gat (s\ --

Ag(u-k) (1) =
AE enhy) =
A(Ecv«\‘r\j (3) =
AE vy () =
AEN«\) ()
AC @t (1) =
AC v (D =

n

AE ¥ (3) =

AC (W) =

AE et (S‘) =

ad&:\ - .KF‘}S. o\‘\" .y'f(' O* s

4

AE oat (")

AE ot (2) A AEL+ ()
AC it (3)

AC ot (U)

A€ ety (4) U §a+b]
AE o (2) v {o.*BS
A€ ety Y v §a+bi

Agcw\w\.)(g\ U g&'l- 53

go&wk (L 1% 6‘, ’L\"“Q

kF.wl..,) ("f\ N\ %&*5, od*b' &-43

lauou‘\‘avs .
c ﬁzgw‘-j (S\ AE et (s\
1 2 e+b}
v ZQ‘FBS {i,_g‘ o % lsg
3 ((‘0‘*53 ?a-*- b}
k| fart) 7
s | ~ Lors}

Outline

- First example: Available expressions
- Basic principles «——

- More examples

- Solving data flow problems

. Inter-procedural analysis

. Sensitivities

16

Quiz

var m= X - y;
if (random()) {
while(m > 0) {
x=y +1;
}
}else(
n=x-y;
}
Z

=X -V

17 -

1

Quiz

var m= X - y;
i1f (random()) {
while(m > 0)
x=y +1;
}
}else(
n=x-y;

}

{

Is x - y an available
expression when entering
this statement?

17 -

Quiz

var m= X - y;
if (random()) {

while (m > 0) { No, because
modifying x
} Killsx - y
}else(
n=x-y;
} Is x - y an available

expression when entering

this statement?

17 -

Defining a Data Flow Analysis

Any data flow analysis:
Defined by six properties
- Domain (facts)

- Direction

- Transfer function

- Meet operator

- Boundary condition

- Initial values

18

Domain

- Analysis associates some information
with every program point

o Information” means elements of a set
- Domain of the analysis: All possible
elements the set may have

o E.g., for available expressions analysis:

Domain is set of non-trivial expressions

19

Direction

- Analysis propagates information
along the control flow graph

o« Forward analysis: Normal flow of control
o« Backward analysis:Invert all edges

. Reasons about executions in reverse

- E.g., available expression analysis:

Forward

20

Transfer Function

. Defines how a statement affects
the propagated information

- DPFeyit(s)= some function of DFcpiry ()

- E.g., for available expression analysis:

21

Meet Operator

- What if two statements si, s, flow to a
statement s?

o« Forward analysis: Execution branches merge

o« Backward analysis: Branching point

. Meet operator defines how to combine
the incoming information

Q UnIOn DFentry (S) =DFexit(S1) UDFexit(SZ)

Q |nteI’S€CtIOn DFentry (S) =DFexit(S1) nDFexiz‘(SZ)

22 -

1

Meet Operator

- What if two statements si, s, flow to a
statement s?

o« Forward analysis: Execution branches merge

o« Backward analysis: Branching point

. Meet operator defines how to combine
the incoming information

Q UnIOn DFentry (S) =DFexit(S1) UDFexit(SZ)

r Q |nterSGCtIOn DFentry (S) =DFexit(S1) nDFexit(SZ)
E.g., available expressions analysis

22 -

Boundary Condition

. What information to start with at the
first CFG node?

o Forward analysis: First node is entry node

o« Backward analysis: First node is exit node
. Common choices

o Empty set

o Entire domain

23 -

1

Boundary Condition

. What information to start with at the
first CFG node?

o Forward analysis: First node is entry node

o« Backward analysis: First node is exit node
. Common choices

o Empty set

o Entire domain

E.g., available expressions analysis

23 -

Initial Values

. What is the information to start with
at intermediate nodes?

. Common choices
o Empty set

o Entire domain

24 -

1

Initial Values

. What is the information to start with
at intermediate nodes?

. Common choices
o Empty set

o Entire domain

E.g., available expressions analysis

24 -

Defining a Data Flow Analysis

Any data flow analysis:
Defined by six properties
- Domain

- Direction
- Transfer function

- Meet operator
- Boundary condition

- Initial values

25 -

1

Defining a Data Flow Analysis

Any data flow analysis:
Defined by six properties

- Domain - Non-trivial expressions

- Direction - Forward
. Transfer function o AEexit(s) =

(AEeniry \ kill(s)) Ugen(s)
- Meet operator - Intersection ()
- Boundary condition o AEcu:ry (entryNode) =2

. |nitial values N,

Example: Available expressions 2°-2

Classifying Data Flow Analyses

Forward or backward, or sometimes both

*Whether facts may or must be true

» In a may analysis, we care about the facts that may be true at p.
That is, they are true for some path up to or from p, depending
on the direction of the analysis.

» In a must analysis, we care about the facts that must be true at p.
That is, they are true for every path up to or from p.

Outline

- First example: Available expressions
- Basic principles

- More examples «——

- Solving data flow problems

. Inter-procedural analysis

. Sensitivities

27

Data Flow Analyses

- Seen previously

o Available expressions
- Next

o« Reaching definitions

a Very busy expressions

o Live variables

28

