
软件分析与验证前沿

苏亭
软件科学与技术系



Delta Debugging

Simplifying and isolating failure-inducing input (TSE’02, by Andreas Zeller, citation: 1371)



Simplification

Once we have reproduced a program failure, we 
must find out what’s relevant:

• Does failure really depend on 10,000 lines
of code?

• Does failure really require this exact schedule
of events?

• Does failure really need this sequence of 
function calls?



Why Simplify?

• Ease of communication: a simplified test case
is easier to communicate

• Easier debugging: smaller test cases result in 
smaller states and shorter executions

• Identify duplicates: simplified test cases subsume 
several duplicates



Real-World Scenario

In July 1999, Bugzilla listed more than 370 open bug 
reports for Mozilla’s web browser
• These were not even simplified
• Mozilla engineers were overwhelmed with the work
• They created the Mozilla BugAThon: a call for 

volunteers to simplify bug reports

When you’ve cut away as much HTML, CSS, and 
JavaScript as you can, and cutting away any more 
causes the bug to disappear, you’re done.

— Mozilla BugAThon call



How do we go from this … 

<td align=left valign=top>
<SELECT NAME="op sys" MULTIPLE SIZE=7>
<OPTION VALUE="All">All<OPTION VALUE="Windows 3.1">Windows 3.1<OPTION VALUE="Windows 95">Windows 95<OPTION VALUE="Windows 98">Windows 98<OPTION 
VALUE="Windows ME">Windows ME<OPTION VALUE="Windows 2000">Windows 2000<OPTION VALUE="Windows NT">Windows NT<OPTION VALUE="Mac System 7">Mac 
System 7<OPTION VALUE="Mac System 7.5">Mac System 7.5<OPTION VALUE="Mac System 7.6.1">Mac System 7.6.1<OPTION VALUE="Mac System 8.0">Mac System 
8.0<OPTION VALUE="Mac System 8.5">Mac System 8.5<OPTION VALUE="Mac System 8.6">Mac System 8.6<OPTION VALUE="Mac System 9.x">Mac System 
9.x<OPTION VALUE="MacOS X">MacOS X<OPTION VALUE="Linux">Linux<OPTION VALUE="BSDI">BSDI<OPTION VALUE="FreeBSD">FreeBSD<OPTION 
VALUE="NetBSD">NetBSD<OPTION VALUE="OpenBSD">OpenBSD<OPTION VALUE="AIX">AIX<OPTION VALUE="BeOS">BeOS<OPTION VALUE="HP-UX">HP-UX<OPTION 
VALUE="IRIX">IRIX<OPTION VALUE="Neutrino">Neutrino<OPTION VALUE="OpenVMS">OpenVMS<OPTION VALUE="OS/2">OS/2<OPTION VALUE="OSF/1">OSF/1<OPTION 
VALUE="Solaris">Solaris<OPTION VALUE="SunOS">SunOS<OPTION VALUE="other">other</SELECT>
</td>
<td align=left valign=top>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<OPTION VALUE="--">--<OPTION VALUE="P1">P1<OPTION VALUE="P2">P2<OPTION VALUE="P3">P3<OPTION VALUE="P4">P4<OPTION VALUE="P5">P5</SELECT>
</td>
<td align=left valign=top>
<SELECT NAME="bug severity" MULTIPLE SIZE=7>
<OPTION VALUE="blocker">blocker<OPTION VALUE="critical">critical<OPTION VALUE="major">major<OPTION VALUE="normal">normal<OPTION 
VALUE="minor">minor<OPTION VALUE="trivial">trivial<OPTION VALUE="enhancement">enhancement</SELECT>
</tr>
</table>

File Print Segmentation Fault



… to this?

<SELECT>

File Print Segmentation Fault



Your Solution

• How do you solve these problems?

• Binary Search
–Cut the test-case in half
–Iterate

• Brilliant idea: why not automate this?



Binary Search

• Proceed by binary search. Throw away half the 
input and see if the output is still wrong.

• If not, go back to the previous state and discard 
the other half of the input.

Original input



Binary Search

• Proceed by binary search. Throw away half the 
input and see if the output is still wrong.

• If not, go back to the previous state and discard 
the other half of the input.



Binary Search

• Proceed by binary search. Throw away half the 
input and see if the output is still wrong.

• If not, go back to the previous state and discard 
the other half of the input.



Binary Search

• Proceed by binary search. Throw away half the 
input and see if the output is still wrong.

• If not, go back to the previous state and discard 
the other half of the input.



Binary Search

• Proceed by binary search. Throw away half the 
input and see if the output is still wrong.

• If not, go back to the previous state and discard 
the other half of the input.



Binary Search

• Proceed by binary search. Throw away half the 
input and see if the output is still wrong.

• If not, go back to the previous state and discard 
the other half of the input.



Binary Search

• Proceed by binary search. Throw away half the 
input and see if the output is still wrong.

• If not, go back to the previous state and discard 
the other half of the input.



Binary Search

• Proceed by binary search. Throw away half the 
input and see if the output is still wrong.

• If not, go back to the previous state and discard 
the other half of the input.



Binary Search

• Proceed by binary search. Throw away half the 
input and see if the output is still wrong.

• If not, go back to the previous state and discard 
the other half of the input.

Simplified input



Complex Input

<td align=left valign=top>
<SELECT NAME="op sys" MULTIPLE SIZE=7>
<OPTION VALUE="All">All<OPTION VALUE="Windows 3.1">Windows 3.1<OPTION VALUE="Windows 95">Windows 95<OPTION VALUE="Windows 98">Windows 98<OPTION 
VALUE="Windows ME">Windows ME<OPTION VALUE="Windows 2000">Windows 2000<OPTION VALUE="Windows NT">Windows NT<OPTION VALUE="Mac System 7">Mac System 
7<OPTION VALUE="Mac System 7.5">Mac System 7.5<OPTION VALUE="Mac System 7.6.1">Mac System 7.6.1<OPTION VALUE="Mac System 8.0">Mac System 8.0<OPTION 
VALUE="Mac System 8.5">Mac System 8.5<OPTION VALUE="Mac System 8.6">Mac System 8.6<OPTION VALUE="Mac System 9.x">Mac System 9.x<OPTION VALUE="MacOS 
X">MacOS X<OPTION VALUE="Linux">Linux<OPTION VALUE="BSDI">BSDI<OPTION VALUE="FreeBSD">FreeBSD<OPTION VALUE="NetBSD">NetBSD<OPTION 
VALUE="OpenBSD">OpenBSD<OPTION VALUE="AIX">AIX<OPTION VALUE="BeOS">BeOS<OPTION VALUE="HP-UX">HP-UX<OPTION VALUE="IRIX">IRIX<OPTION 
VALUE="Neutrino">Neutrino<OPTION VALUE="OpenVMS">OpenVMS<OPTION VALUE="OS/2">OS/2<OPTION VALUE="OSF/1">OSF/1<OPTION VALUE="Solaris">Solaris<OPTION 
VALUE="SunOS">SunOS<OPTION VALUE="other">other</SELECT>
</td>
<td align=left valign=top>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<OPTION VALUE="--">--<OPTION VALUE="P1">P1<OPTION VALUE="P2">P2<OPTION VALUE="P3">P3<OPTION VALUE="P4">P4<OPTION VALUE="P5">P5</SELECT>
</td>
<td align=left valign=top>
<SELECT NAME="bug severity" MULTIPLE SIZE=7>
<OPTION VALUE="blocker">blocker<OPTION VALUE="critical">critical<OPTION VALUE="major">major<OPTION VALUE="normal">normal<OPTION 
VALUE="minor">minor<OPTION VALUE="trivial">trivial<OPTION VALUE="enhancement">enhancement</SELECT>
</tr>
</table>

File Print Segmentation Fault



Simplified Input

<SELECT NAME="priority" MULTIPLE SIZE=7>

Simplified from 896 lines to one single line
in only 57 tests!



Binary Search

<SELECT NAME="priority" MULTIPLE SIZE=7>

<SELECT NAME="priority" MULTIPLE SIZE=7>



Binary Search

<SELECT NAME="priority" MULTIPLE SIZE=7>



Binary Search

<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>



Binary Search

<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>

What do we do if both halves pass?



Two Conflicting Solutions

• Few and large changes:

• More and smaller changes:

Δ1

Δ2

Δ2

Δ1

Δ1 Δ2 Δ3 Δ4 Δ5 Δ6 Δ7 Δ8

Δ1 Δ2 Δ3 Δ4 Δ5 Δ6 Δ7 Δ8

… (many more)



QUIZ: Impact of Input Granularity

Input granularity: Finer Coarser

Chance of finding a
failing input subset

Progress of the
search 

A. Slower       B.  Higher       C.  Faster       D. Lower



QUIZ: Impact of Input Granularity

Input granularity: Finer Coarser

Chance of finding a
failing input subset B. Higher D. Lower

Progress of the
search A. Slower C. Faster

A. Slower       B.  Higher       C.  Faster       D. Lower



General Delta-Debugging Algorithm

• Few and large changes: start first with these two

• More and smaller changes: apply if both above 
pass

Δ1

Δ2

Δ2

Δ1

Δ1 Δ2 Δ3 Δ4 Δ5 Δ6 Δ7 Δ8

Δ1 Δ2 Δ3 Δ4 Δ5 Δ6 Δ7 Δ8

… (many more)



Example: Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>



Example: Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>



Example: Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>



Example: Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>



Example: Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>



Continuing Delta Debugging



Inputs and Failures

• Let R be the set of possible inputs

• rP ∈ R corresponds to an input that passes

• rF ∈ R corresponds to an input that fails



Example: Delta Debugging

<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>
<SELECT NAME="priority" MULTIPLE SIZE=7>



Changes

• Let R denote the set of all possible inputs

• We can go from one input r1 to another input r2
by a series of changes

• A change 𝛅 is a mapping R ⟶ R which takes one 
input and changes it to another input



Changes

Example: 𝛅’ = insert ME="priori at input position 10

r1 = <SELECT NAty" MULTIPLE SIZE=7>

𝛅’(r1) = <SELECT NAME="priority" MULTIPLE SIZE=7>



Decomposing Changes

• A change 𝛅 can be decomposed to a number of 
elementary changes 𝛅1, 𝛅2, …, 𝛅n where
𝛅 = 𝛅1 o 𝛅2 o … o 𝛅n and (𝛅i o 𝛅j)(r) = 𝛅j(𝛅i(r))

• For example, deleting a part of the input file can be 
decomposed to deleting characters one by one from 
the file

• In other words: by composing the deletion of single 
characters, we can get a change that deletes part of 
the input file



Decomposing Changes

Example: 𝛅’ = insert ME="priori at input position 10

can be decomposed as 𝛅’ = 𝛅1 o 𝛅2 o … o 𝛅10

where 𝛅1 = insert M at position 10

𝛅2 = insert E at position 11

. . .



Summary

• We have an input without failure: rP

• We have an input with failure: rF

• We have a set of changes cF = { 𝛅1, 𝛅2, …, 𝛅n , …}
such that:

rF = (𝛅1 o 𝛅2 o … o 𝛅n)(rP)

• Each subset c of cF is a test case



Testing Test Cases

• Given a test case c, we would like to know if
the input generated by applying changes in c
to rP causes the same failure as rF

• We define the function
test: Powerset(cF) ⟶ {P, F, ?} such that,
given c = {𝛅1, 𝛅2, …, 𝛅n} ⊆ cF

test(c) = F iff (𝛅1 o 𝛅2 o … o 𝛅n)(rP) is a failing input



Minimizing Test Cases

• Goal: find the smallest test case c such that test(c) = F

• A failing test case c ⊆ cF is called the global minimum 
of cF if:

for all c’ ⊆ cF , |c’| < |c|⇒ test(c’) ≠ F

• The global minimum is the smallest set of changes 
which will make the program fail

• Finding the global minimum may require performing 
an exponential number of tests



Search for 1-minimal Input

• Different problem formulation:

Find a set of changes that cause the failure, 
but removing any single change causes the 
failure to go away

• This is 1-minimality



Minimizing Test Cases

• A failing test case c ⊆ cF is called a local minimum of
cF if:

for all c’ ⊂ c , test(c’) ≠ F 

• A failing test case c ⊆ cF is n-minimal if:

for all c’ ⊂ c , |c| - |c’| ≤ n ⇒ test(c’) ≠ F

• A failing test case is 1-minimal if:

for all 𝛅i ∈ c , test(c - {𝛅i }) ≠ F



QUIZ: Minimizing Test Cases

A program takes a string of a’s and b’s as input. It
crashes on inputs with an odd (奇数) number of b’s 
AND an even (偶数) number of a’s. Write a crashing
test case (or NONE if none exists) that is a sub-
sequence (子序列) of input babab and is:

● Smallest:

● Local minimum
but not 
smallest:

● 1-minimal,
of size 3:

● 2-minimal,
of size 3:



QUIZ: Minimizing Test Cases

A program takes a string of a’s and b’s as input. It
crashes on inputs with an odd (奇数) number of b’s 
AND an even (偶数) number of a’s. Write a crashing
test case (or NONE if none exists) that is a sub-
sequence (子序列) of input babab and is:

b

NONE

● Smallest:

● Local minimum
but not 
smallest:

aab, aba, baa, bbb

NONE

● 1-minimal,
of size 3:

● 2-minimal,
of size 3:



Naive Algorithm

• To find a 1-minimal subset of c :

if for all 𝛅i ∈ c, test(c - {𝛅i}) ≠ F, then c is 1-minimal

else recurse on c - {𝛅} for some 𝛅 ∈ c, test(c - {𝛅}) = F



Running-Time Analysis

• In the worst case,
– We remove one element from the set per iteration

– After trying every other element

• Work is potentially N + (N-1) + (N-2) + …

• This is O(N2)



Work Smarter, Not Harder

•We can often do better

•It is silly to start removing one element at a time
– Try dividing the change set in two initially

– Increase the number of subsets if we can’t make 
progress

– If we get lucky, search will converge quickly



Minimization Algorithm

• The delta debugging algorithm finds a 1-minimal test case

• It partitions the set cF to Δ1, Δ2, …, Δn

– Δ1, Δ2, …, Δn are pairwise disjoint, and cF = Δ1⋃ Δ2⋃ … ⋃ Δn

• Define the complement of Δi as ∇i = cF - Δi

• Start with n = 2

• Tests each test case defined by each partition and its 
complement

• Reduces the test case if a smaller failure inducing set is 
found, otherwise it refines the partition (i.e. n = n * 2)



Steps of the Minimization Algorithm

1. Start with n = 2 and Δ as test set

2. Test each Δ1, Δ2, …, Δn and each ∇1, ∇2, …, ∇n

3. There are three possible outcomes:
a. Some Δi causes failure:

Go to step 1. with Δ = Δi and n = 2

b. Some ∇i causes failure:
Go to step 1. with Δ = ∇i and n = n - 1

c. No test causes failure:
If granularity can be refined: Go to step 1. with Δ = Δ and n = n * 2

Otherwise: Done, found the 1-minimal subset



Delta Debugging中▽发现错误时，n-1的原因是保持粒度不变。如图，令n＝8，则△长度
为1，▽长度为7，转为在▽中查找时令n＝n-1可保持查找的长度和△一样（均为1）



Asymptotic Analysis

• Worst case is still quadratic

• Subdivide until each set is of size 1
– reduced to the naive algorithm

• Good news:
– For single failure, converges in log N

– Binary search again



QUIZ: Minimization Algorithm

Iteration n Δ Δ1, Δ2, …, Δn,
∇1, ∇2, …, ∇n

1 2424

2

3

4

A program crashes when its input contains 42. Fill in
the data in each iteration of the minimization algorithm 

assuming character granularity.



QUIZ: Minimization Algorithm

A program crashes when its input contains 42. Fill in
the data in each iteration of the minimization algorithm 

assuming character granularity.

Iteration n Δ Δ1, Δ2, …, Δn,
∇1, ∇2, …, ∇n

1 2 2424 24

2 4 2424 2, 4, 242, 224, 424, 244

3 3 242 2, 4, 24, 42, 22

4 2 42 4, 2



Case Study: GNU C Compiler

• This program (bug.c) crashes GCC 2.95.2 
when optimization is enabled

• Goal: minimize this program to file a bug 
report

• For GCC, a passing run is the empty 
input

• For simplicity, model each change as 
insertion of a single character

– test rP = running GCC on an empty input

– test rF = running GCC on bug.c

– change 𝛅i = insert ith character of bug.c

#define SIZE 20
double mult(double z[], int n) {

int i, j;
i = 0;
for (j = 0; j < n; j++) {

i = i + j + 1;
z[i] = z[i] * (z[0] + 1.0);

}
return z[n];

}
void copy(double to[], double from[], int count) {

int n = (count + 7) / 8;
switch (count % 8) do {

case 0: *to++ = *from++;
case 7: *to++ = *from++;
case 6: *to++ = *from++;
case 5: *to++ = *from++;
case 4: *to++ = *from++;
case 3: *to++ = *from++;
case 2: *to++ = *from++;
case 1: *to++ = *from++;

} while (--n > 0);
return mult(to, 2);

}
int main(int argc, char *argv[]) {

double x[SIZE], y[SIZE];
double *px = x;
while (px < x + SIZE)

*px++ = (px – x) * (SIZE + 1.0);
return copy(y, x, SIZE)

}



Case Study: GNU C Compiler

The test procedure:

• create the appropriate
subset of bug.c

• feed it to GCC

• return Failed if GCC
crashes, Passed 

otherwise

377

188

77

755



Case Study: GNU C Compiler

double mult(double z[], int n) {
int i, j;
i = 0;
for (j = 0; j < n; j++) {

i = i + j + 1;
z[i] = z[i] * (z[0] + 

1.0);
}
return z[n];

}

t(double z[],int n){int i,j;for(;;){i=i+j+1;z[i]=z[i]*(z[0]+0);}return z[n];}

377

188

77

755



Case Study: GNU C Compiler

t(double z[],int n){int i,j;for(;;){i=i+j+1;z[i]=z[i]*(z[0]+0);}return z[n];}

• This test case is 1-minimal
– No single character can be removed while still causing 

the crash
– Even every superfluous whitespace has been removed

– The function name has shrunk from mult to a single t
– Has infinite loop, but GCC still isn’t supposed to crash

• So where could the bug be?
– We already know it is related to optimization
– Crash disappears if we remove -O option to turn off 

optimization

double mult(double z[], int n) {
int i, j;
i = 0;
for (j = 0; j < n; j++) {

i = i + j + 1;
z[i] = z[i] * (z[0] + 

1.0);
}
return z[n];

}



Case Study: GNU C Compiler

• The GCC documentation lists 31 options to control optimization:

• Applying all of these options causes the crash to disappear
– Some option(s) prevent the crash

–ffloat-store –fno-default-inline –fno-defer-pop
–fforce-mem –fforce-addr –fomit-frame-pointer
–fno-inline  –finline-functions  –fkeep-inline-functions
–fkeep-static-consts –fno-function-cse –ffast-math
–fstrength-reduce –fthread-jumps  –fcse-follow-jumps
–fcse-skip-blocks  –frerun-cse-after-loop  –frerun-loop-opt
–fgcse –fexpensive-optimizations  –fschedule-insns
–fschedule-insns2  –ffunction-sections  –fdata-sections
–fcaller-saves  –funroll-loops  –funroll-all-loops
–fmove-all-movables –freduce-all-givs –fno-peephole
–fstrict-aliasing



Case Study: GNU C Compiler

• Use test cases minimization to find the crash-preventing 
option(s)
– test rP = run GCC with all options
– test rF = run GCC with no option
– change 𝛅i = remove i^th option

• After 7 tests, option -ffast-math is found to prevent the crash
– Not good candidate for workaround as it may alter program’s 

semantics
– Thus, remove -ffast-math from the list of options and repeat
– After 7 tests, option -fforce-addr is also found to prevent the crash
– Further tests show that no other option prevents the crash



Case Study: GNU C Compiler

This is what we can send to the GCC maintainers:
– The minimal test case
– “The crash only occurs with optimization”
– “-ffast-math and -fforce-addr prevent the crash”



Case Study: Minimizing Fuzz Input

• Random Testing (a.k.a. Fuzzing): feed program with 
randomly generated input and check if it crashes

• Typically generates large inputs that cause program 
failure

• Use delta debugging to minimize such inputs
• Successfully applied to subset of UNIX utility 

programs from Bart Miller’s original fuzzing 
experiment
– Example: reduced 10^6 character input crashing CRTPLOT

to single character in only 24 tests!



Another Application

• Yesterday, my program worked. Today, it does not. Why?
– The new release 4.17 of GDB changed 178,000 lines
– No longer integrated properly with DDD (a graphical 

front-end)
– How do we isolate the change that caused the failure?

Yesterday n changes Today

...

Yesterday, my program worked. Today, it does not. Why? Andreas Zeller.
https://dl.acm.org/doi/pdf/10.1145/318774.318946



QUIZ: Delta Debugging

Check the statements that are true about delta debugging:

Is fully automatic.

Finds the smallest failing subset of a failing input in polynomial time.

Finds 1-minimal instead of local minimum test case due to performance.

May find a different sized subset of a failing input depending upon the
order in which it tests different input partitions.

Is also effective at reducing non-deterministically failing inputs.



QUIZ: Delta Debugging

Check the statements that are true about delta debugging:

Is fully automatic.

Finds the smallest failing subset of a failing input in polynomial time.

Finds 1-minimal instead of local minimum test case due to performance.

May find a different sized subset of a failing input depending upon the 
order in which it tests different input partitions.

Is also effective at reducing non-deterministically failing inputs.



What Have We Learned?

• Delta Debugging is a technique, not a tool

• Bad news:
– Probably must be re-implemented for each significant 

system to exploit knowledge changes

• Good news:
– Relatively simple algorithm, big payoff

– It is worth re-implementing


