
软件分析与验证前沿

苏亭
软件科学与技术系

Random (Fuzz) Testing

Random (Fuzz) Testing

• Feed random inputs to a program

• Observe whether it behaves “correctly”
– Execution satisfies given specification
–Or just doesn’t crash
• A simple specification

• Special case of mutation analysis

The Infinite Monkey Theorem

“A monkey hitting keys
at random on a
typewriter keyboard
will produce any given
text, such as the
complete works of
Shakespeare, with
probability approaching
1 as time increases.”

Random Testing: Case Studies

• UNIX utilities: Univ. of Wisconsin’s Fuzz study
o An Empirical Study of the Reliability of UNIX Utilities

http://www.paradyn.org/papers/fuzz.pdf
o Fuzz Revisited: A Re-examination of the Reliability of UNIX Utilities and

Services http://www.paradyn.org/papers/fuzz-revisited.pdf

• C/C++ Programs: Greybox fuzzing in AFL
o https://afl-1.readthedocs.io/en/latest/index.html

• Mobile apps: Google’s Monkey tool for Android
o https://developer.android.com/studio/test/other-testing-tools/monkey

http://www.paradyn.org/papers/fuzz.pdf
http://www.paradyn.org/papers/fuzz-revisited.pdf
https://afl-1.readthedocs.io/en/latest/index.html
https://developer.android.com/studio/test/other-testing-tools/monkey

Random Testing: Case Studies

• UNIX utilities: Univ. of Wisconsin’s Fuzz study
o An Empirical Study of the Reliability of UNIX Utilities

http://www.paradyn.org/papers/fuzz.pdf
o Fuzz Revisited: A Re-examination of the Reliability of UNIX Utilities and

Services http://www.paradyn.org/papers/fuzz-revisited.pdf

• C/C++ Programs: Greybox fuzzing in AFL
o https://afl-1.readthedocs.io/en/latest/index.html

• Mobile apps: Google’s Monkey tool for Android
o https://developer.android.com/studio/test/other-testing-tools/monkey

http://www.paradyn.org/papers/fuzz.pdf
http://www.paradyn.org/papers/fuzz-revisited.pdf
https://afl-1.readthedocs.io/en/latest/index.html
https://developer.android.com/studio/test/other-testing-tools/monkey

The First Fuzzing Study

• Conducted by Barton Miller @ Univ of Wisconsin

• 1990: Command-line fuzzer, testing reliability of
UNIX programs
– Bombards utilities with random data

• 1995: Expanded to GUI-based programs (X Windows),
network protocols, and system library APIs

• Later: Command-line and GUI-based Windows
and OS X apps

https://pages.cs.wisc.edu/~bart/fuzz/fuzz.html

https://pages.cs.wisc.edu/~bart/fuzz/fuzz.html

Fuzzing UNIX Utilities: Aftermath

• 1990: Caused 25-33% of UNIX utility programs
to crash (dump state) or hang (loop indefinitely)

• 1995: Systems got better... but not by much!

“Even worse is that many of the same bugs
that we reported in 1990 are still present in
the code releases of 1995.”

Fuzzing UNIX Utilities: Aftermath

• 1990: Caused 25-33% of UNIX utility programs
to crash (dump state) or hang (loop indefinitely)

• 1995: Systems got better... but not by much!

• 2020: After more than thirty years, it appears
that there is still a place for basic fuzz testing.

A Silver Lining: Security Bugs

• gets() function in C has no parameter limiting
input length
⇒ programmer must make assumptions
about structure of input

• Causes reliability issues and security breaches
– Second most common cause of errors in 1995 study

• Solution: Use fgets(), which includes an argument
limiting the maximum length of input data

Barton P. Miller, Mengxiao Zhang, Elisa R. Heymann: The Relevance of Classic Fuzz Testing: Have We Solved This
One? IEEE Trans. Software Eng. 48(6): 2028-2039 (2022), https://arxiv.org/pdf/2008.06537

https://arxiv.org/pdf/2008.06537

First Generation of Fuzzers

Second Generation of Fuzzers

Third Generation of Fuzzers

What Types of Fuzzers?

• Mutation-based
– introduce small changes to existing inputs that may still keep

the input valid yet exercise new behavior

• Grammar-based
– provide a specification of the legal inputs to a program for

very systematic and efficient test generation, in particular for
complex input formats

• Search-based
– adopt search algorithms to reach some targets more quickly

What Kinds of Bugs can Fuzzing Find?

• Memory errors
– Spatial (e.g., out-of-bound access) and temporal (e.g., use-after-free)

• Other undefined behaviors
– Integer overflow, divide-by-zero, null deference, uninitialized read, …

• Assertion violations
• Infinite loops (using timeout)
• Concurrency bugs

– Data race, deadlock, …

Random Testing: Pros and Cons

Pros:
• Easy to implement
• Provably good coverage given enough tests
• Can work with programs in any format
• Appealing for finding security vulnerabilities

Cons:
• Inefficient test suite
• Might find bugs that are unimportant
• Poor coverage

Coverage of Random Testing

• The lexer is very heavily tested by random inputs

• But testing of later stages is much less efficient

Fuzz Lexer Parser Backend

100% 0.1% 0.0001%

Random Testing: Case Studies

• UNIX utilities: Univ. of Wisconsin’s Fuzz study
o An Empirical Study of the Reliability of UNIX Utilities

http://www.paradyn.org/papers/fuzz.pdf
o Fuzz Revisited: A Re-examination of the Reliability of UNIX Utilities and

Services http://www.paradyn.org/papers/fuzz-revisited.pdf

• C/C++ Programs: Greybox fuzzing in AFL
o https://afl-1.readthedocs.io/en/latest/index.html

• Mobile apps: Google’s Monkey tool for Android
o https://developer.android.com/studio/test/other-testing-tools/monkey

http://www.paradyn.org/papers/fuzz.pdf
http://www.paradyn.org/papers/fuzz-revisited.pdf
https://afl-1.readthedocs.io/en/latest/index.html
https://developer.android.com/studio/test/other-testing-tools/monkey

Greybox Fuzzing in AFL

• Guide input generation toward a goal
o Guidance based on lightweight program analysis

• Three main steps
o Randomly generate inputs

o Get feedback from test executions: What code
is covered?

o Mutate inputs that have covered new code

American Fuzzy Lop

American Fuzzy Lop

• Simple yet effective fuzzing tool
o Targets C/C++ programs

o Inputs are, e.g., files read by the program

• Widely used in industry
o In particular, to find security-related bugs

o E.g., in OpenSSL, PHP, Firefox

Workflow of AFL
(Third Generation of Fuzzers)

https://afl-1.readthedocs.io/en/latest/about_afl.html#more-about-afl
https://afl-1.readthedocs.io/en/latest/index.html

https://afl-1.readthedocs.io/en/latest/about_afl.html
https://afl-1.readthedocs.io/en/latest/index.html

Measuring Coverage

• Different coverage metrics
o Line/statement/branch/path coverage

• Here: Branch (edge) coverage
o Branches between basic blocks

§ Rationale: Reaching a code location not enough to trigger a bug,
but state also matters

oCompromise between
§ Effort spent on measuring coverage

§ Guidance it provides to the fuzzer

Efficient Implementation

l Instrumentation added at branching
points:

cur_location =/ *COMPILE_TIME_RANDOM*/;
shared_mem[cur_location ̂ prev_location]++;
prev_location = cur_location >> 1;

Efficient Implementation

l Instrumentation added at branching
points:

cur_location =/ *COMPILE_TIME_RANDOM*/;
shared_mem[cur_location ̂ prev_location]++;
prev_location = cur_location >> 1;

Advantage:
Works well with separate
compilation

Efficient Implementation

l Instrumentation added at branching
points:

cur_location =/ *COMPILE_TIME_RANDOM*/;
shared_mem[cur_location ̂ prev_location]++;
prev_location = cur_location >> 1;

Globally reachable memory
location that stores how often
each edge was covered

Efficient Implementation

l Instrumentation added at branching
points:

cur_location =/ *COMPILE_TIME_RANDOM*/;
shared_mem[cur_location ̂ prev_location]++;
prev_location = cur_location >> 1;

a 64 kB SHM region

(1) Large enough to ensure that collisions are sporadic with almost all of the
intended targets (2k~10k discoverable branch points).

(2) Small enough to allow the map to be analyzed in microseconds on the
receiving end, and to effortlessly fit within L2 cache.

Efficient Implementation

l Instrumentation added at branching
points:

cur_location =/ *COMPILE_TIME_RANDOM*/;
shared_mem[cur_location ̂ prev_location]++;
prev_location = cur_location >> 1;

Combine previous and current
block into a fixed-size hash

Efficient Implementation

l Instrumentation added at branching
points:

cur_location =/ *COMPILE_TIME_RANDOM*/;
shared_mem[cur_location ̂ prev_location]++;
prev_location = cur_location >> 1;

Shift to distinguish between “A” followed by
“B” from “B” followed by “A”

Detecting New Behaviors

• Inputs that trigger a new edge in the
CFG: Considered as new behavior

• Alternative: Consider new paths
p More expensive to track

p Path explosion problem

new

not new

Edge Hit Counts

□ Refinement of the previous definition of
“new behaviors”

□ For each edge, count how often it is taken
Q Approximate counts based on buckets of

increasing size

• 1, 2, 3, 4-7, 8-15, 16-31, 32-127, 128+.

Q Rationale: Focus on relevant differences in the hit counts

Evolving the Input Queue

□ Maintain queue of inputs
Q Initially: Seed inputs provided by user

Q Once used, keep input if it covers new edges

Q Add new inputs by mutating existing input

□ In practice: Queue sizes of 1k to 10k

Mutation Operators

□ Goal: Create new inputs from existing
inputs

□ Random transformations of bytes in
an existing input
Q Bit flips with varying lengths and stepovers

Q Addition and subtraction of small integers

Q Insertion of known interesting integers

• E.g., 0, 1, INT MAX

Q Splicing of different inputs

More Tricks for Fast Fuzzing
□ Time and memory limits

Q Discard input when execution is too expensive

□ Pruning the queue
Q Periodically select subset of inputs that still cover

every edge seen so far

□ Prioritize how many mutants to generate
from an input in the queue
Q E.g., focus on unusual paths or try to reach

specific locations

□ The fork server

Revisit: Workflow of AFL
(Third Generation of Fuzzers)

https://afl-1.readthedocs.io/en/latest/about_afl.html#more-about-afl
https://afl-1.readthedocs.io/en/latest/index.html

https://afl-1.readthedocs.io/en/latest/about_afl.html
https://afl-1.readthedocs.io/en/latest/index.html

Real-World Impact

□ Open-source tool maintained mostly by
Google
Q Initially created by single developer
Q Various improvements proposed in academia and

industry

□ Fuzzers regularly check various
security-criticial components
Q Many thousands of compute hours

Q Hundreds of detected vulnerabilities

Random Testing: Case Studies

• UNIX utilities: Univ. of Wisconsin’s Fuzz study
o An Empirical Study of the Reliability of UNIX Utilities

http://www.paradyn.org/papers/fuzz.pdf
o Fuzz Revisited: A Re-examination of the Reliability of UNIX Utilities and

Services http://www.paradyn.org/papers/fuzz-revisited.pdf

• C/C++ Programs: Greybox fuzzing in AFL
o https://afl-1.readthedocs.io/en/latest/index.html

• Mobile apps: Google’s Monkey tool for Android
o https://developer.android.com/studio/test/other-testing-tools/monkey

http://www.paradyn.org/papers/fuzz.pdf
http://www.paradyn.org/papers/fuzz-revisited.pdf
https://afl-1.readthedocs.io/en/latest/index.html
https://developer.android.com/studio/test/other-testing-tools/monkey

Fuzz Testing for Mobile Apps

class MainActivity extends Activity implements
OnClickListener {

void onCreate(Bundle bundle) {
Button buttons = new Button[] { play, stop, ... };
for (Button b : buttons) b.setOnClickListener(this);

}

void onClick(View target) {
switch (target) {
case play:

startService(new Intent(ACTION_PLAY));
break;

case stop:
startService(new Intent(ACTION_STOP));
break;

...

}
}

Generating Single-Input Events

class MainActivity extends Activity implements
OnClickListener {

void onCreate(Bundle bundle) {
Button buttons = new Button[] { play, stop, ... };
for (Button b : buttons) b.setOnClickListener(this);

}

void onClick(View target) {
switch (target) {
case play:

startService(new Intent(ACTION_PLAY));
break;

case stop:
startService(new Intent(ACTION_STOP));
break;

...

}
} TOUCH(x, y) where x, y are randomly generated:

x in [0..480], y in [0..800]

TOUCH(136,351)

TOUCH(136,493)

Black-Box vs. White-Box Testing

TOUCH(x1, y1) TOUCH(x2, y2) TOUCH(x3, y3)

Generating Gestures

DOWN(x1,y1) MOVE(x2,y2) UP(x2,y2)

(x1,y1) (x2,y2)

Grammar of Monkey Events

test_case := event *
event := action (x , y) | ...

action := DOWN | MOVE | UP
x := 0 | 1 | ... | x_limit
y := 0 | 1 | ... | y_limit

Effectiveness of Monkey

• Monkey is still one of the most effective GUI
testing tool for Android.

• Industrial companies adapts and runs Monkey
for daily testing.
o FastBot (ByteDance)、Sapienz (Facebook)

• Thousands of crashing bugs were found

QUIZ: Monkey Events

Give the specification of a TOUCH
event at pixel (89,215).

Give the specification of a MOTION
event from pixel (89,215) to pixel
(89,103) to pixel (371,103).

Give the correct specification of TOUCH and MOTION events in
Monkey’s grammar using UP, MOVE, and DOWN statements.

QUIZ: Monkey Events

Give the specification of a TOUCH
event at pixel (89,215).

TOUCH events are a pair of DOWN
and UP events at a single place on
the screen.

Give the specification of a MOTION
event from pixel (89,215) to pixel
(89,103) to pixel (371,103).

MOTION events consist of a DOWN
event somewhere on the screen, a
sequence of MOVE events, and an
UP event.

Give the correct specification of TOUCH and MOTION events in
Monkey’s grammar using UP, MOVE, and DOWN statements.

DOWN(89,215) UP(89,215)
DOWN(89,215) MOVE(89,103)
MOVE(37,103) UP(37,103)

What Have We Learned?

Random testing:

• Is effective for testing security, classic programs,
mobile apps, etc

• Should complement not replace systematic,
formal testing

• Must generate test inputs from a reasonable
distribution to be effective

• May be less effective for systems with multiple
layers (e.g. compilers)

Extended Reading

• UNIX utilities: Univ. of Wisconsin’s Fuzz study
o An Empirical Study of the Reliability of UNIX Utilities

http://www.paradyn.org/papers/fuzz.pdf
o Fuzz Revisited: A Re-examination of the Reliability of UNIX Utilities and

Services http://www.paradyn.org/papers/fuzz-revisited.pdf

• Mobile apps: Google’s Monkey tool for Android
o https://developer.android.com/studio/test/other-testing-tools/monkey

• C/C++ Programs: Greybox fuzzing in AFL
o https://afl-1.readthedocs.io/en/latest/index.html

http://www.paradyn.org/papers/fuzz.pdf
http://www.paradyn.org/papers/fuzz-revisited.pdf
https://developer.android.com/studio/test/other-testing-tools/monkey
https://afl-1.readthedocs.io/en/latest/index.html

