
软件分析与验证前沿

苏亭

软件科学与技术系

Software Specifications
(and Testing)

SEGMENT

Software Development Scenario

Software Development Today

Developer Tester

Manager

A Typical Scenario

Developer Tester

Manager
I’m done!

It doesn’t
compile!

OK, calm down. We’ll
slip the schedule. Try

again.

A Typical Scenario

Developer Tester

Manager
I’m done!

It does the
wrong thing
in half the

tests.

Let’s have a
meeting to agree

on the spec.

No, half of
your tests

are wrong!

A Typical Scenario

Developer Tester

Manager
I’m done! It still fails

some tests we
agreed on.

Try again but
please hurry

up!

A Typical Scenario

Developer Tester

Manager
I’m done!

I’m done, too!

Oops, the world has
changed. Here’s the

new spec.

SEGMENT

The Role of Specifications

Key Observations

• Specifications must be explicit

• Independent development and testing

• Resources are finite

• Specifications evolve over time

The Need for Specifications

• Testing checks whether program implementation
agrees with program specification

• Without a specification, there is nothing to test!

• Testing is a form of consistency checking between
implementation and specification
– Recurring theme for software quality checking approaches

– What if both implementation and specification are wrong?

Developer != Tester

• Developer writes implementation, tester writes
specification

• Unlikely that both will independently make the
same mistake

• Specifications useful even if written by developer itself
– Much simpler than implementation

– => specification unlikely to have same mistake as
implementation

Other Observations

• Resources are finite

=> Limit how many tests are written

• Specifications evolve over time

=> Tests must be updated over time

• An Idea: Automated Testing

=> No need for testers!?

Outline

• Landscape of Testing

• Specifications

– Pre- and Post- Conditions and Invariants

• Measuring Test Suite Quality

– Coverage Metrics

– Mutation Analysis

• Classification of Testing Techniques

Landscape of Testing

M
an

u
al

Black-Box White-Box

A
u

to
m

at
ed

Landscape of Testing

M
an

u
al

Black-Box White-Box

A
u

to
m

at
ed

Ex: Manually
testing an app

Ex: Manually testing an app
by inspecting uncovered code

Ex: Use Monkey
to test an app

Landscape of Testing

M
an

u
al

Black-Box White-Box

Needs
Program
Analysis

A
u

to
m

at
ed

Automated vs. Manual Testing

• Automated Testing:

– Find bugs more quickly

– No need to write tests

– If software changes, no need to maintain tests

• Manual Testing:

– Efficient test suite

– Potentially better coverage

Black-Box vs. White-Box Testing

• Black-Box Testing:

– Can work with code that cannot be modified

– Does not need to analyze or study code

– Code can be in any format (managed, binary,
obfuscated)

• White-Box Testing:

– Efficient test suite

– Potentially better coverage

An Example: Mobile App Security

HttpPost localHttpPost = new HttpPost(...);
(new DefaultHttpClient()).execute(localHttpPost);

http://[...]search.gongfu-android.com:8511/[...]

http://[...]search.gongfu-android.com:8511/%5b...%5dsearch/

Software Fault, Error and Failures

21

public static int numZero (int [] arr)

{ // Effects: If arr is null throw NullPointerException

// else return the number of occurrences of 0 in arr

int count = 0;

for (int i = 1; i < arr.length; i++)

{

if (arr [i] == 0)

{

count++;

}

}

return count;

}

Fault: Should start

searching at 0, not 1

Test 1

[2, 7, 0]

Expected: 1

Actual: 1

Test 2

[0, 2, 7]

Expected: 1

Actual: 0

Error: i is 1, not 0, on

the first iteration

Failure: none

Error: i is 1, not 0

Error propagates to the variable count

Failure: count is 0 at the return statement

22

Four conditions necessary for a failure to be observed

1. Reachability : The location or locations in the
program that contain the fault must be reached

2. Infection : The state of the program must be
incorrect

3. Propagation : The infected state must cause some
output or final state of the program to be incorrect

4. Reveal : The tester must observe part of the incorrect
portion of the program state

Software Fault and Failure Model

Software Fault and Failure Model

• Reachability

• Infection

• Propagation

• Revealability

Test

Fault

Incorrect

Program

State
Test Oracles

(specifications)

Final Program State

Observed Final
Program State

Reaches

Infects

Propagates Reveals

Incorrect
Final State

23

Observed Final
Program State

The Automated Testing Problem

• Automated testing is hard to do

• Probably impossible for entire systems

• Certainly impossible without specifications

LESSON

Kinds of Specifications

SEGMENT

Safety and Liveness

Classification of Specifications

Safety Properties

Program will never reach a
bad state

Examples: assertions, types,
type-state properties

Liveness Properties

Program will eventually reach a
good state

Examples: program termination,
starvation freedom

https://en.wikipedia.org/wiki/Safety_and_liveness_properties

Common Forms of Safety Properties

• Types
o int x, java.net.Socket s, ...

• Type-state Properties
o Program must not read data from

java.net.socket until socket is connected

• Assertions
o Implicit, .e.g, p!=null before

each dereference of p

o Explicit, e.g., assert(y ==42)

• Pre- and Post- Conditions
o double sqrt(double x) {…}

• Loop and Class InvariantsPrecondition: x>0
Postcondition: the return value ‘ret’ satisfies

ret*ret == x

Types

Adding the specification to the implementation allows to check the
implementation against the specification

Specification:
x is an integer int x;

x = read();
printf(“%d”, x + 1);

Implementation:
x is an integer because of
being added to an integer

Types

Explicit type specification is missing in dynamically-typed or untyped
programming languages

function getPass(clearTextPass) {
if (clearTextPass) return ‘PASS’ ;
return ‘****’;

}
let pass = getpass(‘false’) ; // “PASS”

function getPass(c1earTextPass : boolean) : string {
if (clearTextPass) return 'PASS’ ;
return ‘****’;

}
let pass = getpass(‘false’) ; // error

JavaScript:
Dynamically-typed

TypeScript:
Statically-typed

The Checker Framework

• The Checker Framework enhances Java's type system
Goal: statically eliminate entire classes of runtime errors via annotations

• Example: Nullness Checker

public class Example {
void sample() {

@NonNull Object ref = null;
}

}

Error:

incompatible types
found: @Nullable <nulltype>
required: @NonNull Object

Type-State Properties

• Type-state refines types with (finite) state information
e.g. File in OPEN state, Socket in CONNECTED state, etc.

• Enables to specify which operations are valid in each state,
and how operations affect the state

e.g. fread() may only be called on File in OPEN state,
and fclose() changes File state from OPEN to CLOSED

• Also called temporal safety properties

Example Property 1: Locking

• Calls to lock and unlock must alternate

• Attempting to re-acquire an acquired
lock or release a released lock causes
an error

• Models behavior of pthread_mutex_lock()
and in pthreads_mutex_ublock() in pthreads

Example Property 2: File Management

• A file must be opened before reading

• A file may be read an arbitrary number
of times before it is closed

• A file must not be closed twice

SEGMENT

Pre- and Post- Conditions

Pre- and Post-Conditions

• A pre-condition is a predicate

– Assumed to hold before a function executes

• A post-condition is a predicate

– Expected to hold after a function executes,
whenever the pre-condition also holds

Example

class Stack<T> {
T[] array;
int size;

Pre: s.size() > 0
T pop() { return array[--size]; }
Post: s’.size() == s.size() - 1

int size() { return size; }
}

More on Pre- and Post-Conditions

• Most useful if they are executable

– Written in the programming language itself

– A special case of assertions

• Need not be precise

– May become more complex than the code!

– But useful even if they do not cover every situation

Using Pre- and Post-Conditions

Does test
input satisfy

pre-
condition?

Run test with
input

Does test
result satisfy

post-
condition?

Yes
Test passes

Test fails

Go to next
test

No

Yes

No

Doesn’t help write tests, but helps run them

QUIZ: Pre-Conditions

Write the weakest possible pre-condition that prevents any
in-built exceptions from being thrown in the following Java
function.

Pre:

int foo(int[] A, int[] B) {
int r = 0;
for (int i = 0; i < A.length; i++) {

r += A[i] * B[i];
}
return r;

}

QUIZ: Pre-Conditions

Write the weakest possible pre-condition that prevents any
in-built exceptions from being thrown in the following Java
function.

Pre:

int foo(int[] A, int[] B) {
int r = 0;
for (int i = 0; i < A.length; i++) {

r += A[i] * B[i];
}
return r;

}

A != null && B != null && A.length <= B.length

QUIZ: Post-Conditions

Consider a sorting function in Java which takes a non-null
integer array A and returns an integer array B. Check all
items that specify the strongest possible post-condition.

B is non-null

B has the same length as A

The elements of B do not contain any duplicates

The elements of B are a permutation of the elements of A

The elements of B are in sorted order

The elements of A are in sorted order

The elements of A do not contain any duplicates

QUIZ: Post-Conditions

Consider a sorting function in Java which takes a non-null
integer array A and returns an integer array B. Check all
items that specify the strongest possible post-condition.

B is non-null

B has the same length as A

The elements of B do not contain any duplicates

The elements of B are a permutation of the elements of A

The elements of B are in sorted order

The elements of A are in sorted order

The elements of A do not contain any duplicates

✔

✔

✔

✔

Executable Post-Condition

• B is non-null

• B has the same length as A

• The elements of B are in
sorted order

• The elements of B are
a permutation of the
elements of A

B != null;

for (int i = 0; i < B.length-1; i++)
B[i] <= B[i+1];

B.length == A.length;

// count number of occurrences of
// each number in each array and
// then compare these counts

Example: Data Manipulation Functionalities

L0
L1 L2 L3 L4

A “Rename” Function for app data “Folder”

What are the Pre- and Post-conditions?

L0
L1 L2 L3 L4

A “Rename” Function for app data “Folder”

What are the Pre- and Post-conditions?

𝐏 : a menu icon of folder () exists on the current UI page

𝕀 : (steps of “rename a folder”): ① open the menu icon of any folder () ,

② select “Rename” (), ③ input any text (e.g.,), ④ click “SAVE” ()

𝐐: the folder name () should be updated to the inputted text (e.g.,)

L0
L1 L2 L3 L4

②

③ ④

①

广告：Call For Contributions!

https://github.com/ecnusse/Kea

https://github.com/ecnusse/Kea

SEGMENT

Invariants

Invariants

• Loop invariants
A property of a loop that holds before (and after) each iteration
Captures the essence of the loop's correctness, and by extension
of algorithms that employ loops

• Class invariants
A property that holds for all objects of a class
Established upon the construction of the object and constantly
maintained between calls to public methods

Invariants in Code

procedure divide(n : int, d : int)
returns(q : int, r : int)

requires n >= 0 && d > 0;
ensures q * d <=n && 0 <= r && r<= n;
{

q := 0;
r := 0;
while (r >= d)
invariant n == q * d + r;
{

q := q + 1;
R := r - d;

}
}

Example: Loop Invariant

m = 0; k = 0;
while (m != N)
@invariant: a[0..k-1] is all RED &&

a[k..m-1] is all BLUE
{

if (a[m] is RED) {
swap(a, k, m);
k = k + 1;

} else {
// a[m] is BLUE

}
m = m + 1;

}

Example: Class Invariant

class invariant: all
methods must preserve

denom ! =0

to preserve the class
invariant, must check

d ! = 0

class Rational {
//@ invariant denom != 0;
int num, denom;

//@ requires d != 0;
Rational (int n, int d){ num = n, denom = d; }

double getDouble() { return ((double) num) / denom;)

public static void main(String[] a) {
int n = readlnt(), d = readlnt();
if (d == 0) return;
Rational r = new Rational(n, d);
print (r. getDouble());
}

}

divide-by-zero bug
is averted

READING

Hardening C/C++ Code with Clang Sanitizers

LESSON

Measuring Test Suite Quality

How Good Is Your Test Suite?

• How do we know that our test suite is good?

– Too few tests: may miss bugs

– Too many tests: costly to run, bloat and
redundancy, harder to maintain

How Good Is Your Test Suite?

• How do we know that our test suite is good?

– Too few tests: may miss bugs

– Too many tests: costly to run, bloat and
redundancy, harder to maintain

• Two approaches:

– Code coverage metrics

– Mutation analysis (or mutation testing)

Code Coverage

• Metric to quantify extent to which a program’s code
is tested by a given test suite

• Given as percentage of some aspect of the program
executed in the tests

• 100% coverage rare in practice: e.g., inaccessible code

– Often required for safety-critical applications

Types of Code Coverage

• Function coverage: which functions were called?

• Statement coverage: which statements were executed?

• Branch coverage: which branches were taken?

• Many others: line coverage, condition coverage,
basic block coverage, data-flow coverage, prime path
coverage, …

QUIZ: Code Coverage Metrics

Test Suite:
foo(1, 0)

int foo(int x, int y) {
int z = 0;
if (x <= y) {

z = x;
} else {

z = y;
}
return z;

}

Statement Coverage: %

Branch Coverage: %

Give arguments for another
call to foo(x,y) to add to the
test suite to increase both
coverages to 100%.

x = y =

QUIZ: Code Coverage Metrics

Test Suite:
foo(1, 0)

int foo(int x, int y) {
int z = 0;
if (x <= y) {

z = x;
} else {

z = y;
}
return z;

}

Statement Coverage: 80 %

Branch Coverage: 50 %

Give arguments for another
call to foo(x,y) to add to the
test suite to increase both
coverages to 100%.

x = 1 y = 1

Mutation Analysis (Mutation Testing)

• Founded on “competent programmer assumption”:

The program is close to right to begin with

• Key idea: Test variations (mutants) of the program

– Replace x > 0 by x < 0

– Replace w by w + 1, w - 1

• If test suite is good, should report failed tests in the
mutants

• Find set of test cases to distinguish original program
from its mutants

Mutation Analysis

Mutation Analysis

Mutation Analysis

Mutation Analysis

Mutation Analysis

Mutation Analysis

o Given Program P and its Mutant P’, if ∃ Test t ∈ T, s.t. P(t) ≠

P’(t), P’ is killed or detected.

o Mutant detection rate =
#killed mutants

#Mutants

Mutation Analysis

Assumption: Mutant detection rate is a useful proxy for software testing.

(https://homes.cs.washington.edu/~rjust/publ/mutants_real_faults_fse_2014.pdf)

https://homes.cs.washington.edu/~rjust/publ/mutants_real_faults_fse_2014.pdf

QUIZ: Mutation Analysis - Part 1

Check the boxes
indicating a
passed test.

Test 1
assert:

foo(0,1)==0

Test 2
assert:

foo(0,0)==0

Mutant 1
x <= y → x > y

Mutant 2
x <= y → x != y

int foo(int x, int y) {
int z = 0;
if (x <= y) {

z = x;
} else {

z = y;
}
return z;

}

Is the test suite adequate with
respect to both mutants?

Yes No

QUIZ: Mutation Analysis - Part 1

Check the boxes
indicating a
passed test.

Test 1
assert:

foo(0,1)==0

Test 2
assert:

foo(0,0)==0

Mutant 1
x <= y → x > y

Mutant 2
x <= y → x != y

int foo(int x, int y) {
int z = 0;
if (x <= y) {

z = x;
} else {

z = y;
}
return z;

}

Yes No

✔

✔ ✔

✔
Is the test suite adequate with

respect to both mutants?

QUIZ: Mutation Analysis - Part 2

Check the boxes
indicating a
passed test.

Test 1
assert:

foo(0,1)==0

Test 2
assert:

foo(0,0)==0

Mutant 1
x <= y → x > y

Mutant 2
x <= y → x != y

int foo(int x, int y) {
int z = 0;
if (x <= y) {

z = x;
} else {

z = y;
}
return z;

}

Give a test case which Mutant 2 fails
but the original code passes.

✔

✔ ✔

assert:
foo(,) ==

QUIZ: Mutation Analysis - Part 2

Check the boxes
indicating a
passed test.

Test 1
assert:

foo(0,1)==0

Test 2
assert:

foo(0,0)==0

Mutant 1
x <= y → x > y

Mutant 2
x <= y → x != y

int foo(int x, int y) {
int z = 0;
if (x <= y) {

z = x;
} else {

z = y;
}
return z;

}

Give a test case which Mutant 2 fails
but the original code passes.

✔

✔ ✔

assert:
foo(,) == 1 0 0

A Problem

• What if a mutant is equivalent to the original?

• Then no test will kill it

• In practice, this is a real problem

– Not easily solved

– Try to prove program equivalence automatically

– Often requires manual intervention

Reality

• Many proposals for improving software quality

• But the world tests

–> 50% of the cost of software development

• Conclusion: Testing is important

Classification of Testing Techniques

* First proposed, Became popular.

KLEE
(符号执行)

EvoSuite
(基于搜索
的测试)

AFL
(模糊测试)

Search-based
Testing

(基于搜索的测试)

Symbolic
Execution

(符号执行)

Combinatorial
Testing
(组合测试)

1957 19761975 20132009

Sapienz
(基于搜索的

测试)

…

…

20101990 ~2000 20172005

Dynamic
Symbolic
Execution

(动态符号执行)

Fuzz Testing
(模糊测试)

Model-based
Testing

(基于模型的测试)

Classification of Testing Techniques

Metamorphic
Testing
(蜕变测试)

KLEE
(符号执行)

EvoSuite
(基于搜索
的测试)

AFL
(模糊测试)

Search-based
Testing

(基于搜索的测试)

Symbolic
Execution

(符号执行)

Combinatorial
Testing
(组合测试)

1957 19761975 2013

Sapienz
(基于搜索的

测试)

…

…

* First proposed, Became popular.

QuickCheck
(基于性质的测试)

20101990 1998 ~2000

Property-based
Testing

(基于性质的测试)

1997 20172005

Dynamic
Symbolic
Execution

(动态符号执行)

Fuzz Testing
(模糊测试)

Model-based
Testing

(基于模型的测试)

2009

What Have We Learned?

• Landscape of Testing
– Automated vs. Manual
– Black-Box vs. White-Box

• Specifications: Pre- and Post- Conditions

• Measuring Test Suite Quality
– Coverage Metrics
– Mutation Analysis

• Classification of Testing Techniques

Paper Readings

• The Oracle Problem in Software Testing: A Survey.
IEEE Trans. Software Eng. 41(5): 507-525 (2015)

• Programs, tests, and oracles: the foundations of testing revisited. ICSE
2011: 391-400

• Are mutants a valid substitute for real faults in software testing?
SIGSOFT FSE 2014: 654-665

• Coverage is not strongly correlated with test suite effectiveness.
ICSE 2014: 435-445

• An orchestrated survey of methodologies for automated software test
case generation.
J. Syst. Softw. 86(8): 1978-2001 (2013)

