» =AM T 25
T SIS UERNG

T

BARA SRR R



Pointer Analysis



Introducing Pointers

Example without pointers

X = 1;
y = X;
assert(y == 1)

Same example with pointers

X = new Circle();
X.radius = 1;
y = X.radius;

assert(y == 1)



Introducing Pointers

Example without pointers

X = 1;
y = X;
assert(y == 1)

Same example with pointers

X = new Circle();
X.radius = 1;
y = X.radius;

assert(y == 1)



Pointer Aliasing

e Sijtuation in which same address referred to in different ways

Circle x = new Circle();

X = new Circle(); Circle z = ?

X.radius = 1; _ X.radius = 1;
[x.radius == 1]—» . [x.radius == 1]—» .

y = X.radius; Z.radius = 2;

[X.radius ==?]—»

ly==1]—2> y = X.radius;

assert(y == 1)
assert(y == 1)



(May- or Must-) Alias Analysis

 Aliasing occurs when two variables refer to the same
memory location. Aliasing occurs in languages with
reference parameters, pointers, or arrays.

* Let 0 and b be references to memory locations. At a
program point p:
o may-alias(a, b) such that there exists at least one

execution path to p, where a and b refer to the same
memory location.

o must-alias(a, b) such that on all execution paths to p, a
and b refer to the same memory location.



May-Alias Analysis

Circle x = new Circle();

~\\\ﬁ‘[ 1= 7] Circle z = new Circle();
Xl=z] —»

X.radius = 1;
[x.radius==1, x I=z]—>» = ?
_ z.radius = 2;
[Xx.radius == 1]—» .
y = X.radius;
ly=1—">
assert(y == 1)

May-Alias Analysis == Pointer Analysis



Must-Alias Analysis

Circle x = new Circle();

\\\\*‘[x::z] Circle z = Xx;
_ X.radius = 1;
[Xx.radius ==1, x == z]—»

Z.radius = 2;
[X.radius == 2] —»

<
I
X
)
Q
Q.
H.
-
n
o o

e May-Alias and Must-Alias are dual problems
e Must-Alias more advanced, less useful in practice
e Focus of this Lesson: May-Alias Analysis



Why Is Pointer Analysis Hard?

class Node { next next
int data;
Node next, prev; h
}
prev prev
Node h = null;
for (...) {
Node v = new Node();
if (h !'= null) {
v.next = h;
h.prev = v;
}
h=v; And many more ...



Approximation to the Rescue

e Pointer analysis problem is undecidable

=> \WWe must sacrifice some combination of:
Soundness, Completeness, Termination

e \We are going to sacrifice completeness

=> False positives but no false negatives



What False Positives Mean

?
\WS T
\\]\P\‘(’N’ Circle x = new Circle();
X No . Yes
Circle z = new Circle();
xi=2] _x>r‘ad1us = <1— x==zorxi=2]
[X.radius ==1, x |=z]—» di 42’— [X.radius ==1,x ==z or x |=7]
z.radius =
[x.radius == 1]—» <«— [x.radius == 1 or x.radius == 2]

y = X. radlus,
== —> ::1 )
y==1 assert(y == 1) Ly 0

False Positive!
Pointer analysis answers questions of form: MayAlias(x, z)?

No =>xand z are not aliased in any run

Yes => Can’t tell if x and z are aliased in some run



Approximation to the Rescue

e Many sound approximate algorithms for pointer
analysis

e \Varying levels of precision

e Differ in two key aspects:
— How to abstract the heap (i.e. dynamically allocated

data)
— How to abstract control-flow



Example Java Program

class Elevator {
Object[] floors;

Object[] events; void doit(int M, int N) {
} Elevator v = new Elevator();

v.floors
v.events

new Object[M];
new Object[N];

for (int i =0; i < M; i++) {
Floor f = new Floor();
v.floors[i] = f;

}

for (int i = @; i < N; i++) {
Event e = new Event();
v.events[i] = e;




A Run of the Program

void doit(int M, int N) {
Elevator v = new Elevator(); doit(3, 2) v

¢
cees =

v.floors
v.events

new Object[M];
new Object[N];

for (int 1 =0; 1 < M; i++) {
Floor f = new Floor();
v.floors[i] = f;

0

}

for (int 1 = 0; i < N; i++) {
Event e = new Event();
v.events[i] = e;




Abstracting the Heap

?@ rér =

0

void doit(int M, int N) {
Elevator v = new Elevator();

v.floors
v.events

new Object[M];
new Object[N];

for (int 1 = 0; 1 < M; i++) {
Floor f = new Floor();
v.floors[i] = f;

}

for (int i = 0; 1 < N; i++) {
Event e = new Event();
v.events[i] = e;




Result of Heap Abstraction: Points-to Graph

v

variable

O allocation site




Abstracting Control-Flow

void doit(int M, int N) {
Elevator v = new Elevator();

v.floors
v.events

new Object[M];
new Object[N];

for (int 1 =0; 1 < M; i++) {

}

Floor f = new Floor();
v.floors[i] = f;

for (int 1 = 0; 1 < N; i++) {

Event e = new Event();
v.events[i] = e;

[*]

v
floors ! events

[*]




Flow Insensitivity

void doit(int M, int N) { void doit(int M, int N) {
Elevator v = new Elevator(); v = new Elevator
v.floors = new Object[M]; v.floors = new Object][]

v.events

new Object[N]; v.events = new Object][]

for (int 1 =0; 1 < M; i++) { :>

Floor f = new Floor(); f = new Floor

v.floors[i] = f; v.floors[*] = f
}
for (int 1 = 0; 1 < N; i++) {
Event e = new Event(); e = new Event
v.events[i] = e; v.events[*] = e




Chaotic Iteration Algorithm

graph = empty
repeat:
for (each statement s in set)
apply rule corresponding to s on graph
until graph stops changing



Kinds of Statements

(statement) s =v=new.. | v=v2 | v2=vf |
v.f=v2 | v2=v[*] | v[*]=V2

(pointer-type variable) v

(pointer-type field) f



Is This Grammar Enough?

v=new.. | v=v2 | v2=vf |
v.f=v2 | v2=v[*] | v[*]=Vv2

v.events = new Object[] }:::i>> tm2v2n2§w—O:%ECt[]

tmp = v.events
* —_
v.events[*] = e }:::i>> mp[*] = e



Example Program in Normal Form

void doit(int M, int N) { void doit(int M, int N) {
v = new Elevator v = new Elevator
tmpl = new Object[]
v.floors = new Object][] v.floors = tmpl
v.events = new Object][] tmp2 = new Object[]
:> v.events = tmp2
f = new Floor f = new Floor
v.floors[*] = f tmp3 = v.floors
tmp3[*] = f
e = new Event e = new Event
v.events[*] = e tmp4 = v.events
tmpd[*] = e
} }




QUIZ: Normal Form of Programs

v=new.. | v=v2 | v2=wvf |
v.f=v2 | v2=v[*] | v[*]=Vv2

Convert each of these two expressions to normal form:

vli.f = v2.f

vi.f.g = v2.h

=)
=)




QUIZ: Normal Form of Programs

v=new.. | v=v2 | v2=wvf |
v.f=v2 | v2=v[*] | v[*]=Vv2

Convert each of these two expressions to normal form:

tmp = v2.f
vi.f = v2.f :> vi.f = tmp

tmpl = v1.f
vi.f.g = v2.h E::::;> tmp2 = v2.h

tmpl.g = tmp2




Rule for Object Allocation Sites

Before: v—(C A O

V = hew B

After: v




Rule for Object Allocation Sites: Example

void doit(int M, int N) {
v = new Elevator

tmpl = new Object][]
v.floors = tmpl

tmp2 = new Object][]

v.events = tmp2

f = new Floor
tmp3 = v.floors

3] = ¢ Croor > event D

e = new Event
tmp4 = v.events
tmp4a[*] = e f €




Rule for Object Copy

Before:

vl

vl

V2

V2

After:

vl

V2




Rule for Field Writes

Before: [vif»C a O
vi. f = v2
or
vi[*] = v2

After: Vi a O




Rule for Field Writes: Example

void doit(int M, int N) {

v = new Elevator

tmpl

new Object[]

tmp2 = new Object][]

f = new Floor
tmp3 = v.floors
tmp3[*] = f

e = new Event
tmp4d = v.events
tmpd[*] = e

\Y
floors ! events

tmp1

tmp2




Rule for Field Reads

f or[*]

Before: vi—»C_ » D v2l»C 8 O

vl = v2.f
or
vl = v2[*]
A D
f or[*]
After: |vi vl 8 O




Rule for Field Reads: Example

void doit(int M, int N) {

Vv = new Elevator

tmpl

new Object[]

tmp2 = new Object|[]

f = new Floor
tmp3 = v.floors
tmp3[*] = f

e = new Event
tmp4d = v.events
tmp4[*] = e

tmp1

tmp3

f

v
floors ! events

tmp2

tmp4

e




Continuing the Pointer Analysis: Example

\"
void doit(int M, int N) {
v = new Elevator *
tmpl = new Object][] f|oovents
tmp2
tmp3 [*] [*] tmp4
f = new Floor
tmp3 = v.floors @ @
e = new Event f e
tmp4d = v.events
}




QUIZ: Pointer Analysis Example

class Mode 1 Choose the points-to graph for
Node next, prev; the shown program.
}
Node h = null; = =
for (”') { h Node \Y h Node \Y
Node v = new Node();
if (h !'= null) { prev prev
v.next = h;
\ h.prev = v; next next
PN
h = Vv, h Node \Y; h Node \Y;

prev prev



QUIZ: Pointer Analysis Example

class Node {
int data;

Node next, prev;
} next

Node h = null;

if (h !'= null) {
v.next = h;
h.prev = v;

for (...) { h ('lIHI:lHII’
Node v = new Node();

) prev
h

=V;




Classifying Pointer Analysis Algorithms

e s it flow-sensitive?
e |s it context-sensitive?
e \What heap abstraction scheme is used?

e How are aggregate data types modeled?



Flow Sensitivity

e How to model control-flow within a procedure
e Two kinds: flow-insensitive vs. flow-sensitive

e Flow-insensitive == weak updates
— Suffices for may-alias analysis

e Flow-sensitive == strong updates
— Required for must-alias analysis



Context Sensitivity

How to model control-flow across procedures

Two kinds: context-insensitive vs. context-sensitive

Context-insensitive: analyze each procedure once

Context-sensitive: analyze each procedure possibly
multiple times, once per abstract calling context



Heap Abstraction

Scheme to partition unbounded set of concrete
objects into finitely many (oval
nodes in points-to graph)

Ensures that pointer analysis terminates

Many sound schemes, varying in precision & efficiency
— Too few abstract objects => efficient but imprecise
— Too many abstract objects => expensive but precise



Scheme #1: Allocation-Site Based

One abstract object per allocation site

Allocation site identified by: v
e new keyword in Java/C++
e malloc() callin C

events

floors

Finitely many allocation sites in a
program

=> finitely many abstract objects




Scheme #2: Type Based

* Allocation-site based scheme can be costly
- Large programs

- Clients needing quick turnaround time Il
- Overly fine granularity of sites oo
* One abstract object per type @

* Finitely many types in a program @

=> finitely many abstract objects




Scheme #3: Heap-Insensitive

Single abstract object representing entire heap

Popular for languages with primarily

stack-directed pointers (e.g. C)

floors,

e
Unsuitable for languages with only

heap-directed pointers (e.g. Java)




Tradeoffs in Heap Abstraction Schemes

More Precise

<
o ]
A
Croor (][]
]
Allocation-site Type based Heap-
based insensitive

: )

More Efficient




QUIZ: May-Alias Analysis

Do the expression pairs may-alias under these two
pointer analyses?

Allocation- Tvoe J
May-Alias? Site YP
Based
Based
e, f No
v.floors, v.events
v.floors[0], v.events[0O]
v.events[0], v.events[2] Yes
f e




QUIZ: May-Alias Analysis

Do the expression pairs may-alias under these two
pointer analyses?

Allocation- Tvoe U
May-Alias? Site YP
Based

Based

e, f No
v.floors, v.events No
v.floors[0], v.events[0O] No
v.events[0], v.events[2] Yes

f e




QUIZ: May-Alias Analysis

Do the expression pairs may-alias under these two

pointer analyses?

Allocation-

: . Type
May-Alias? Site YP
Based
Based
e, f No
v.floors, v.events No
v.floors[0], v.events[0Q] No
v.events[0], v.events[2] Yes




QUIZ: May-Alias Analysis

Do the expression pairs may-alias under these two

pointer analyses?

Allocation-

. . Type

May-Alias? Site YP
Based

Based

e, f No No
v.floors, v.events No Yes
v.floors[0], v.events[0Q] No Yes
v.events[0], v.events[2] Yes Yes




Modeling Aggregate Data Types: Arrays

e Common choice: single field [*] to represent all
array elements

— Cannot distinguish different elements of same array

e More sophisticated representations that make such
distinctions are employed by array dependence
analyses

— Used to parallelize sequential loops by parallelizing
compilers



Modeling Aggregate Data Types: Records

Three choices:

1. Field-insensitive: merge all fields of each
record object

2. Field-based: merge each field of all
record objects

3. Field-sensitive: keep each field of each o | £
(abstract) record object separate




QUIZ: Pointer Analysis Classification

Classify the pointer analysis algorithm we learned

in this lesson.
Flow-sensitive? A.Yes B. No
Context-sensitive? A.Yes B. No
Distinguishes fields of object? A. Yes B. No
Distinguishes elements of array? A. Yes B. No
What kind of heap abstraction? A. Allocation- B. Type

site based based



QUIZ: Pointer Analysis Classification

Classify the pointer analysis algorithm we learned

in this lesson.
Flow-sensitive? B A. Yes B. No
Context-sensitive? B A. Yes B. No
Distinguishes fields of object? A A. Yes B. No
Distinguishes elements of array? B A.Yes B. No
What kind of heap abstraction? A A. Allocation- B. Type

site based based



What Have We Learned?

What is pointer analysis?
May-alias analysis vs. must-alias analysis
Points-to graphs

Working of a pointer analysis algorithm

Classifying pointer analyses:



