
软件分析与验证前沿

苏亭
软件科学与技术系

Pointer Analysis

[x == 1]

Introducing Pointers

x = 1;
y = x;
assert(y == 1)

x = new Circle();
x.radius = 1;
y = x.radius;
assert(y == 1)

Example without pointers

[y == 1]

Same example with pointers

[x == 1]

Introducing Pointers

x = 1;
y = x;
assert(y == 1)

x = new Circle();
x.radius = 1;
y = x.radius;
assert(y == 1)

Example without pointers

[y == 1]

Same example with pointers

[y == 1]

[x.radius == 1]

Pointer Aliasing

• Situation in which same address referred to in different ways

Circle x = new Circle();
Circle z = ?
x.radius = 1;
z.radius = 2;
y = x.radius;
assert(y == 1)

x = new Circle();
x.radius = 1;
y = x.radius;
assert(y == 1)

[x.radius == 1]

[x.radius == ?]
[x.radius == 1]

[y == 1]

(May- or Must-) Alias Analysis

• Aliasing occurs when two variables refer to the same
memory location. Aliasing occurs in languages with
reference parameters, pointers, or arrays.

• Let a and b be references to memory locations. At a
program point p:

o may-alias(a, b) such that there exists at least one
execution path to p, where a and b refer to the same
memory location.

omust-alias(a, b) such that on all execution paths to p, a
and b refer to the same memory location.

May-Alias Analysis

Circle x = new Circle();
Circle z = new Circle();
x.radius = 1;
z.radius = 2;
y = x.radius;
assert(y == 1)

May-Alias Analysis == Pointer Analysis

[x.radius == 1, x != z]

[x.radius == 1]
[y == 1]

[x != z]x MAY-ALIAS z?

Circle x = new Circle();
Circle z = x;
x.radius = 1;
z.radius = 2;
y = x.radius;
assert(y == 1)

Must-Alias Analysis

• May-Alias and Must-Alias are dual problems
• Must-Alias more advanced, less useful in practice
• Focus of this Lesson: May-Alias Analysis

[x.radius == 2]
[y == 2]

[x.radius == 1, x == z]
[x == z]

y == 2

x MUST-ALIAS z?

h.data
h.next.prev.data
h.next.next.prev.prev.data
h.next.prev.next.prev.data

And many more ...

Why Is Pointer Analysis Hard?

class Node {
int data;
Node next, prev;

}

Node h = null;
for (...) {

Node v = new Node();
if (h != null) {

v.next = h;
h.prev = v;

}
h = v;

}

n1 n2

next

n3

prev

next

prev

h

Approximation to the Rescue

•Pointer analysis problem is undecidable

=> We must sacrifice some combination of:
Soundness, Completeness, Termination

•We are going to sacrifice completeness

=> False positives but no false negatives

What False Positives Mean

Circle x = new Circle();
Circle z = new Circle();
x.radius = 1;
z.radius = 2;
y = x.radius;
assert(y == 1)

x MAY-ALIAS z?

Pointer analysis answers questions of form: MayAlias(x, z)?
No => x and z are not aliased in any run
Yes => Can’t tell if x and z are aliased in some run

[x.radius == 1, x == z or x != z]

No Yes
[x == z or x != z]

[x.radius == 1 or x.radius == 2]

[y == 1 or y == 2]
False Positive!

[x.radius == 1, x != z]

[x.radius == 1]
[y == 1]

[x != z]

Approximation to the Rescue

•Many sound approximate algorithms for pointer
analysis

•Varying levels of precision

•Differ in two key aspects:
– How to abstract the heap (i.e. dynamically allocated

data)
– How to abstract control-flow

Example Java Program

void doit(int M, int N) {
Elevator v = new Elevator();

v.floors = new Object[M];
v.events = new Object[N];

for (int i = 0; i < M; i++) {
Floor f = new Floor();
v.floors[i] = f;

}

for (int i = 0; i < N; i++) {
Event e = new Event();
v.events[i] = e;

}
}

class Elevator {
Object[] floors;
Object[] events;

}

A Run of the Program

void doit(int M, int N) {
Elevator v = new Elevator();

v.floors = new Object[M];
v.events = new Object[N];

for (int i = 0; i < M; i++) {
Floor f = new Floor();
v.floors[i] = f;

}

for (int i = 0; i < N; i++) {
Event e = new Event();
v.events[i] = e;

}
}

doit(3, 2) v

Abstracting the Heap

void doit(int M, int N) {
Elevator v = new Elevator();

v.floors = new Object[M];
v.events = new Object[N];

for (int i = 0; i < M; i++) {
Floor f = new Floor();
v.floors[i] = f;

}

for (int i = 0; i < N; i++) {
Event e = new Event();
v.events[i] = e;

}
}

v

Result of Heap Abstraction: Points-to Graph

Elevator

v

Object[] Object[]

Floor Event

f e

floors

[*] [*]

events

v

variable

allocation site

Abstracting Control-Flow

void doit(int M, int N) {
Elevator v = new Elevator();

v.floors = new Object[M];
v.events = new Object[N];

for (int i = 0; i < M; i++) {
Floor f = new Floor();
v.floors[i] = f;

}

for (int i = 0; i < N; i++) {
Event e = new Event();
v.events[i] = e;

}
}

Elevator

v

Object[] Object[]

Floor Event

f e

floors

[*] [*]

events

Flow Insensitivity

void doit(int M, int N) {
Elevator v = new Elevator();

v.floors = new Object[M];
v.events = new Object[N];

for (int i = 0; i < M; i++) {
Floor f = new Floor();
v.floors[i] = f;

}

for (int i = 0; i < N; i++) {
Event e = new Event();
v.events[i] = e;

}
}

void doit(int M, int N) {
v = new Elevator

v.floors = new Object[]
v.events = new Object[]

f = new Floor
v.floors[*] = f

e = new Event
v.events[*] = e

}

Chaotic Iteration Algorithm

graph = empty
repeat:

for (each statement s in set)
apply rule corresponding to s on graph

until graph stops changing

Kinds of Statements

(statement) s ::= v = new … | v = v2 | v2 = v.f |
v.f = v2 | v2 = v[*] | v[*] = v2

(pointer-type variable) v

(pointer-type field) f

Is This Grammar Enough?

v.events = new Object[] tmp = new Object[]
v.events = tmp

v.events[*] = e tmp = v.events
tmp[*] = e

v = new … | v = v2 | v2 = v.f |
v.f = v2 | v2 = v[*] | v[*] = v2

Example Program in Normal Form

void doit(int M, int N) {
v = new Elevator

v.floors = new Object[]
v.events = new Object[]

f = new Floor
v.floors[*] = f

e = new Event
v.events[*] = e

}

void doit(int M, int N) {
v = new Elevator

tmp1 = new Object[]
v.floors = tmp1
tmp2 = new Object[]
v.events = tmp2

f = new Floor
tmp3 = v.floors
tmp3[*] = f

e = new Event
tmp4 = v.events
tmp4[*] = e

}

QUIZ: Normal Form of Programs

v1.f.g = v2.h

v1.f = v2.f

v = new … | v = v2 | v2 = v.f |
v.f = v2 | v2 = v[*] | v[*] = v2

Convert each of these two expressions to normal form:

QUIZ: Normal Form of Programs

v1.f.g = v2.h

v1.f = v2.f

tmp1 = v1.f
tmp2 = v2.h
tmp1.g = tmp2

tmp = v2.f
v1.f = tmp

v = new … | v = v2 | v2 = v.f |
v.f = v2 | v2 = v[*] | v[*] = v2

Convert each of these two expressions to normal form:

Rule for Object Allocation Sites

v = new B

After:

vBefore:

v

A

A

B

Rule for Object Allocation Sites: Example

void doit(int M, int N) {
v = new Elevator

tmp1 = new Object[]
v.floors = tmp1
tmp2 = new Object[]
v.events = tmp2

f = new Floor
tmp3 = v.floors
tmp3[*] = f

e = new Event
tmp4 = v.events
tmp4[*] = e

}

Elevator

v

Object[] Object[]

Floor Event

f e

tmp1 tmp2

Rule for Object Copy

v1 = v2

Av1 v2

v1 v2 BAfter:

Before:

A

B

B

Rule for Field Writes

f or [*]

After:

Before:

v1 . f = v2

v1[*] = v2

v1 A v2 B A C

v1 v2 B A

C

or

f or [*]

f or [*]

A

B

Rule for Field Writes: Example

void doit(int M, int N) {
v = new Elevator

tmp1 = new Object[]
v.floors = tmp1
tmp2 = new Object[]
v.events = tmp2

f = new Floor
tmp3 = v.floors
tmp3[*] = f

e = new Event
tmp4 = v.events
tmp4[*] = e

}

Elevator

v

Object[] Object[]

Floor Event

f e

floors events

tmp1 tmp2

Rule for Field Reads

A v2 B B C

v2 B B CAfter:

Before:

C

A

v1 = v2.f

v1 = v2[*]
or

f or [*]

f or [*]
v1

v1

Rule for Field Reads: Example

Elevator

v

Object[] Object[]

Floor Event

f e

floors events
tmp1 tmp2

tmp3 tmp4

void doit(int M, int N) {
v = new Elevator

tmp1 = new Object[]
v.floors = tmp1
tmp2 = new Object[]
v.events = tmp2

f = new Floor
tmp3 = v.floors
tmp3[*] = f

e = new Event
tmp4 = v.events
tmp4[*] = e

}

Continuing the Pointer Analysis: Example

Elevator

v

Object[] Object[]

Floor Event

f e

floors events
tmp1 tmp2

tmp3 tmp4[*] [*]

void doit(int M, int N) {
v = new Elevator

tmp1 = new Object[]
v.floors = tmp1
tmp2 = new Object[]
v.events = tmp2

f = new Floor
tmp3 = v.floors
tmp3[*] = f

e = new Event
tmp4 = v.events
tmp4[*] = e

}

class Node {
int data;
Node next, prev;

}

Node h = null;
for (...) {

Node v = new Node();
if (h != null) {

v.next = h;
h.prev = v;

}
h = v;

}

QUIZ: Pointer Analysis Example

Choose the points-to graph for
the shown program.

Nodeh

next

prev

vNodeh

next

prev

v

Nodeh

next

prev

v Nodeh

next

prev

v

QUIZ: Pointer Analysis Example

Nodeh

next

prev

v

class Node {
int data;
Node next, prev;

}

Node h = null;
for (...) {

Node v = new Node();
if (h != null) {

v.next = h;
h.prev = v;

}
h = v;

}

Classifying Pointer Analysis Algorithms

•Is it flow-sensitive?

•Is it context-sensitive?

•What heap abstraction scheme is used?

•How are aggregate data types modeled?

Flow Sensitivity

• How to model control-flow within a procedure

• Two kinds: flow-insensitive vs. flow-sensitive

• Flow-insensitive == weak updates
– Suffices for may-alias analysis

• Flow-sensitive == strong updates
– Required for must-alias analysis

Context Sensitivity

• How to model control-flow across procedures

• Two kinds: context-insensitive vs. context-sensitive

• Context-insensitive: analyze each procedure once

• Context-sensitive: analyze each procedure possibly
multiple times, once per abstract calling context

Heap Abstraction

• Scheme to partition unbounded set of concrete
objects into finitely many abstract objects (oval
nodes in points-to graph)

• Ensures that pointer analysis terminates

• Many sound schemes, varying in precision & efficiency
– Too few abstract objects => efficient but imprecise
– Too many abstract objects => expensive but precise

Scheme #1: Allocation-Site Based

One abstract object per allocation site

Allocation site identified by:
• new keyword in Java/C++
• malloc() call in C

Finitely many allocation sites in a
program
=> finitely many abstract objects

Elevator

v

Object[] Object[]

Floor Event

f e

floors events

[*] [*]

Scheme #2: Type Based

• Allocation-site based scheme can be costly
- Large programs
- Clients needing quick turnaround time
- Overly fine granularity of sites

• One abstract object per type

• Finitely many types in a program
=> finitely many abstract objects

Elevator

v

Object[]

Floor Event

f e

[*] [*]

floors events

Scheme #3: Heap-Insensitive

Single abstract object representing entire heap

Popular for languages with primarily
stack-directed pointers (e.g. C)

Unsuitable for languages with only
heap-directed pointers (e.g. Java)

v

floors,
events,
[*]

f e

[*]

Tradeoffs in Heap Abstraction Schemes

More Efficient

More Precise

Allocation-site
based

Type based Heap-
insensitive

v

floors,
events,
[*]

f e

Elevator

v

Object[] Object[]

Floor Event

f e

floors events

[*]

Elevator

v

Object[]

Floor Event

f e

[*] [*]

floors events

QUIZ: May-Alias Analysis

Elevator

v

Object[] Object[]

Floor Event

f e

floors events

[*] [*]

Do the expression pairs may-alias under these two
pointer analyses?

May-Alias?
Allocation-

Site
Based

Type
Based

e, f No

v.floors, v.events

v.floors[0], v.events[0]

v.events[0], v.events[2] Yes

QUIZ: May-Alias Analysis

Elevator

v

Object[] Object[]

Floor Event

f e

floors events

[*] [*]

Do the expression pairs may-alias under these two
pointer analyses?

May-Alias?
Allocation-

Site
Based

Type
Based

e, f No

v.floors, v.events No

v.floors[0], v.events[0] No

v.events[0], v.events[2] Yes

QUIZ: May-Alias Analysis

May-Alias?
Allocation-

Site
Based

Type
Based

e, f No

v.floors, v.events No

v.floors[0], v.events[0] No

v.events[0], v.events[2] Yes

Elevator

v

Object[]

Floor Event

f e

[*] [*]

floors events

Do the expression pairs may-alias under these two
pointer analyses?

QUIZ: May-Alias Analysis

May-Alias?
Allocation-

Site
Based

Type
Based

e, f No No

v.floors, v.events No Yes

v.floors[0], v.events[0] No Yes

v.events[0], v.events[2] Yes Yes

Elevator

v

Object[]

Floor Event

f e

[*] [*]

floors events

Do the expression pairs may-alias under these two
pointer analyses?

Modeling Aggregate Data Types: Arrays

• Common choice: single field [*] to represent all
array elements
– Cannot distinguish different elements of same array

• More sophisticated representations that make such
distinctions are employed by array dependence
analyses
– Used to parallelize sequential loops by parallelizing

compilers

Modeling Aggregate Data Types: Records

Three choices:

1. Field-insensitive: merge all fields of each
record object

2. Field-based: merge each field of all
record objects

3. Field-sensitive: keep each field of each
(abstract) record object separate

f1 f2

a1

a2

f1 f2

a1

a2

f1 f2

a1

a2

QUIZ: Pointer Analysis Classification

Classify the pointer analysis algorithm we learned
in this lesson.

Flow-sensitive?

Context-sensitive?

Distinguishes fields of object?

Distinguishes elements of array?

What kind of heap abstraction?

A. Yes B. No

A. Yes B. No

A. Yes B. No

A. Yes B. No

A. Allocation- B. Type
site based based

QUIZ: Pointer Analysis Classification

Flow-sensitive? B

Context-sensitive? B

Distinguishes fields of object? A

Distinguishes elements of array? B

What kind of heap abstraction? A

A. Yes B. No

A. Yes B. No

A. Allocation- B. Type
site based based

A. Yes B. No

A. Yes B. No

Classify the pointer analysis algorithm we learned
in this lesson.

What Have We Learned?

• What is pointer analysis?

• May-alias analysis vs. must-alias analysis

• Points-to graphs

• Working of a pointer analysis algorithm

• Classifying pointer analyses: flow sensitivity, context
sensitivity, heap abstraction, aggregate modeling

