Software

Engineering

LECTURE 1: Introduction

Ting Su
East China Normal University

The slides are adapted from Ivan Marsic’s lectures from Rutgers University.

Self-Introduction

:I TANFED
http://tingsu.github.io (3 37)
https://faculty.ecnu.edu.cn/_s43/st2/main.psp (R 3X)

KA M

Bt 5ERIE. BENR. REgRe. JEALER. REHMH
Ak

KBRS EEHTR/IME (EBFEB416)

QERRAR

I EB1103, tsu@sei.ecnu.edu.cn

ECNU

UCD

->

>
<
O
LLJ

-
O
>
>
<
O
LLJ

ECNU . UCD

I"',\

T WS

i3

ECNU . UCD - NTU

ECNU . UCD - NTU

ECNU . UCD - NTU

ECNU . UCD . NTU .~ ETH

—

-

" in‘m‘::t:'_ _

10

ECNU . UCD . NTU .~ ETH

A

L
.

> ECNU

ETH

->

ECNU . UCD - NTU

12

Self-Introduction

:I TANFED
http://tingsu.github.io (3 37)
https://faculty.ecnu.edu.cn/_s43/st2/main.psp (R 3X)

KA M

Bt 5ERIE. BENR. REgRe. JEALER. REHMH
Ak

KBRS EEHTR/IME (EBFEB416)

QERRAR

I EB1103, tsu@sei.ecnu.edu.cn

13

Course Information

0 RFE B 5

1 SRR TEOES. B, 5%, IR

2. RESHT. BT, FRMEBRERE LD
QIRFER R

1BIGR: SA—THES-6TR

2. RHR: ME=TFH5-6TR

3FERKEK: HE: 5% WHE. {E: 45%; #AREE: 50%

AZSZE# (see more on the course website)

— {Software Engineering textbook) , by I. Marsic. (EBF35)

— {Software Engineering-A Practitioner's Approach (Eighth Edition)) , Roger S.
Pressman®, ABARFF. LR YL T\ HhR*t, 20154,

— BN ([R5 k), Patton,R.Z, 5K/NMAZEE, JLTR: LT\ L AR*L, 2006.4.

14

Course Information

QD RFE Mg

https.//tingsu.github.io/files/courses/se.html

d BhiZk

- EXE (204E 1)
— RE—f# (204kAn)

15

What is Software Engineering?

(1 The |EEE definition:

— Software Engineering: (1) The application of a systematic,
disciplined, quantifiable approach to the development,
operation, and maintenance of software, that is, the
application of engineering to software. (2) The study of
approaches as in (7).

16

History of Software Engineering

Its origin: 1945 to 1965

dThe software crisis: 1965 to 1985

d“No Silver Bullet”: 1985 to 1989
dProminence of the Internet: 1990 to 1999
dLightweight methodologies: 2000 to 2015

https://en.wikipedia.org/wiki/History of software_engineering

17

History of Software Engineering

(o) T

18

History of Software Engineering

Margaret Heafield Hamilton is
an American computer scientist,
systems engineer, and business
owner. She was director of the
Software Engineering Division of
the MIT Instrumentation
Laboratory, which developed on-
board flight software for NASA's
Apollo program. She later

ONFERENGE [*osemaoamsmi

NG MAY 27 - JUNE 3 2018
GOTHENBURG, SWEDEN

-
- ttl‘l:' "
T
.
a8

, -
rillian e | [N

‘ LR

s

What is Software?

20

What is Software?

d Software is: (1) instructions (computer programs) that when

executed provide desired features, function, and performance;

(2) data structures that enable the programs to adequately

manipulate information and (3) documentation that describes
the operation and use of the programs.

/

21

Introduction: Software is Complex

dComplex # complicated

dComplex = composed of many simple parts

related to one another

d Complicated = not well understood, or explained

Complexity Example:
Scheduling Fence Construction Tasks

. . Nailing Painting
[S?’e;t::g 52;;5] [Czuttitr':g l\jvrﬁ?sd] [2 time units for unpainted, [5 time units for uncut wood;
3 time units otherwise] 4 time units otherwise]

Setting posts < Nailing, Painting
Cutting < Nailing

...Shortest possible completion time = ?

[= “simple” problem, but hard to solve without a pen and paper] 23

More Complexity

Suppose today is Tuesday, November 29

What day will be on January 3?

[To answer, we need to bring the day names and the day numbers
into coordination, and for that we may need again a pen and paper]

d

d

The Frog in Boiling Water

Small problems tolerate
complacency—lack of immediate
penalty leads to inaction

Negative feedback accumulates
subtl and by the time it becomes
painful, the problem s too big to
address

Frog in gradually heated water
analogy:

— The problem with little things is that
none of them is big enough to scare
you into action, but they keep
creeping up and by the time you get
alarmed the problem is too difficult to
handle

— Consequently, “design smells”
accumulate, “technical debt” grows,
and the result is “software rot”

AND SO FRANCIS, BY A GRADUAL PROCESS
OF INCREMENTAL TAXATION, I DECLARE THAT
THE GENERAL POPULACE WILL BE UNAWARE

(_OF THE STRANGLE-HOLD OUR GOVERNMENT
WILL EVENTUALLY HAVE OVER THEM!/

HUH? IS IT ME OR
IS IT GETTIN HOT
IN HERE, MAURICE?

https://en.wikipedia.org/wiki/Design_smell
https://en.wikipedia.org/wiki/Technical _debt
https://en.wikipedia.org/wiki/Software_rot

25

The Role of Software Engg. (1)

A bridge from customer needs to programming implementation

\
\
D\
/
C

_\Q\
n AN LI
k il /I\ A
Customer ~—
= Programmer
=
Ry

First law of software engineering

Software engineer is willing to learn the problem domain
(problem cannot be solved without understanding it first)

26

The Role of Software Engg. (2)

Customer:

Q Requires a computer systemto achieve some business goals

by user interaction or interaction w ith the problem domain
in a specified manner

System-to-be

(includes hardware)

Problem Domain

O —

User

—
Software-to-be ¢

H_/
v + v

re Engineer’ K:
To understand how the system-to-be needs to interact w ith

~ the user or the problem domain so that customer’s requirement is met
and design the software-to-be

May be the Programmer’s task:
same person 3 To implement the software-to-be
designed by the software engineer
-

27

Example: ATM Machine

Understanding the money-machine problem:

Communication link aoon
(H|H|H{N|
(BN |H]|H|

Bank’s
remote
datacenter

ATM machine

Bank
customer

28

Problem-solving Strategy

Divide-ana
dIdentity

-conquer:
ogical parts of the system that each solves a

part of the problem

JEasiest 0

one with the help of a domain expert who

already knows the steps in the process (“how it is
currently done”)

JResult:
A Model

of the Problem Domain

(or “"domain model”)

29

How ATM Machine Might Work

Transaction
How may I recc
help you?

Speakerp ‘,/‘

Q Datacenter .
; 2 e =
oy =7 | :
ﬂ) v 000

Dispenser
Bank’s
remote
Customer datacenter 30

Bookkeeper

N

cartoon strip; HOW ATM Machine Works

verity §| (D) ~
=
‘4

oo
XYZ valid. oooo Account
Balance: oooo valid.
oooo Balance:
$100

I help A .
? -
you ﬁ%’/

(0

<D % \
Please take
your cash

31

Software Engineering Blueprints

» Specifying software problems and solutions is like
cartoon strip writing

» Unfortunately, most of us are not artists, so we will

use something less exciting:
UML symbols

> However ...

32

Second Law of Software Engineering

 Software should be written for people first

— (Computers run software, but hardware quickly

becomes outdated)
— Useful + good software lives long

— To nurture software, people must be able to understand

It

33

Software Development Methods

» Method = work strategy

= The Feynman Problem-Solving Algorithm:
(i) Write down the problem (ii) think very hard, and
(ii1) write down the answer.

> Waterfall

= Unidirectional, finish this step before moving to the next

> |terative + Incremental
= Develop increment of functionality, repeat in a feedback loop

> Agile

= Continuous user feedback essential; feedback loops on several levels
of granularity

34

Watertfall Method

Requirements

_ Design
-
&’i@ﬁ%.ﬁ Implementation
635’.3
Sesss Testin
Waterfall sogete]] e - g
0O~
method HER
} b:.\.g,. Deployment &
S]'II Maintenance
TR
Y
.'é’*a&

Each activity confined to its “phase”.
Unidirectional, no way back;
finish this phase before moving to the next

35

How ATM Machine Might Work

Transaction
How may I recc
help you?

Speakerp ‘,/‘

Q Datacenter .
; 2 e =
oy =7 | :
ﬂ) v 000

Dispenser
Bank’s
remote
Customer datacenter 36

Bookkeeper

N

Understanding the Problem Domain

dSystem to be developed
JActors

— Agents external to the system that interact with it

d Concepts/ Objects

— Agents working inside the system to make it function

JUse Cases

— Scenarios for using the system

37

ATM: Gallery of Players

Bank: customer; System Bank's remote
(ATIVIFmacnine) datacenter

ACtOrsS (Easy toidentify because they are visible!)

38

Gallery of Workers + Tools

Window clerk ~ Datacenter Bookkeeper Safe keeper Dispenser
liaison
: =z, @] <
Speakerphone Telephone Transaction Safe Cash
record

Con Cepts (Hard to identify because they are invisible/imaginary!) 39

Use Case: Withdraw Cash

Verify
account

Typing in XYZ valid.
PIN number Balance:
$100

Please take XYZ
your cash withdrew

Collecting
cash ...

= UML = Unified Modeling Language

Actor

UML - Language of Symbols

Three common

compartments:

1. Classifier name

2. Attributes

3. Operations
Comment

Interaction Diagram

O ClassName

attribute_1 : int
attribute_2 : boolean
attribute_3 : String

H* H

+ operation_1() : void
+ operation_2() : String

+ operation_3(argl : int)

Software Class

«interface» o
Baselnterface

+ operation()

Classlimplement

Class2Implement

+ operation()

+ operation()

Software Interface Implementation

instancel : Classl

instance5 : Class2

instance8 : Class3

doSomething()

doSomethingElse()

1

J

doSomethithetElse()

|

Stereotype
Ko pI’OVideS
additional info/
annotation/
explanation

= Inheritance

relationship:
Baselnterface

is implemented
by two classes

Online information:
http://www.uml.org

41

How Much Diagramming?

1 Use informal, ad-hoc, hand-drawn, scruffy diagrams during
early stages and within the development team

— Hand-drawing forces economizing and leads to low emotional
Investment

« Economizing focuses on the essential, most important considerations
— Prioritize substance over the form

» Not being invested facilitates critique and suggested modifications
— Always take snapshot to preserve records for future

1 Use standardized, neat, computer-generated diagrams when
consensus reached and designs have “stabilized”

— Standards like UML facilitate communication with broad range of
stakeholders

— But, invest effort to make neat and polished diagrams only when
there is an agreement about the design, so this effort is worth doing
* Invest in the form, only when the substance is worth such an investment

42

Watertfall Method

Requirements

_ Design
-
&’i@ﬁ%.ﬁ Implementation
635’.3
Sesss Testin
Waterfall sogete]] e - g
0O~
method HER
} b:.\.g,. Deployment &
S]'II Maintenance
TR
Y
.'é’*a&

Each activity confined to its “phase”.
Unidirectional, no way back;
finish this phase before moving to the next

43

How ATM Machine Might Work

Transaction
How may I recc
help you?

Speakerp ‘,/‘

Q Datacenter -
; 2 e =
(= \ N/ ‘) ik
ﬂ) v 000

Dispenser
Bank’s
remote
Customer datacenter 44

Bookkeeper

N

How ATM Machine Works (2)

Domain Model (2)

Alternative Solution

modification

solution

Transaction
How may I record
help you?
% Bookkeeper

U U - dOWderk — < Draftsman
éj(ﬁ@

Dispenser

Speakerphone

Customer

How ATM Machine Works (3)

Domain Model (3)

Alternati\’/e\\
solution (

Solution
modification

i 2
yﬁ%
Courier
«ﬁ o
Remote
. . .) bank
Which solution Is the best or even feasible?

Rube Goldberg Design

Garage door opener

pnouswa Burre Taxes A brink or
STRANGE GIN AND BVOLVES AN INVENTION
FOR OPENING THE GARAGE DOOR WITH-
OUT GETTING OUT OF THE CAR.,
Drive Auto Bumpe(A) AGANST MALL
POSHING IT DOWN AND EXPLODING -
FRIGHTENING RABBIT(D) WwHO RUNEG TO- K
ARD HIs BuRaow(E) PULLING Tnme
WHICH DISCHARGES P THE
BULLET PENETRATES CANS:)C;‘ROM
THE WATER DRIPS INTO AQUARIUM (] As
THE TIDE RISES IN THE AQUARIUM 1T
ELEVATES THE FLOATING ClOoRK—-UD=
RIGHT WHICH PUSHES UP END OF
SEE-Saw) Causing FLeEA (L) TO LOSE
ITS PALANCE AND FALL ON GEDUNK,
HOUND'S TaiL (M) WHO wWAXES UP ANOD

CHASES HIS TAIL 0 AND ROUND
CAUBING PLATFORM™M TO SPIN AND
TORN ON F IO ATER RUNS

THROVGH HOSE (P) STARTING REVOLVING
LAWN SPRINKLER(Q)ON wWHICH ROPE
@Sw ITSELF OPENING GARAGE

OF COURSE, IF YOu WisH, YOou CAN
DRIVE RIGHT THROUGH THE DOCOR.
AND THEN THERE WONT BE ANY
OBSTRUCTION LEFT TO BOTHERR
YOU 1IN THE FOTuRE .

-

¢ '
N
A —— - 4 P ————AY . § .. “—-\‘(
————. v Tt v SO ot o o e i s Lt S b

47

Actual Design

AN

H

JVVVB:E‘]_Safety reversing sensor

iC

Operator (includes motor and radio control mechanism)

Rail with a belt or chain

Pressing of a button on the remote control transmitter (1)
authenticates the device & activates the motor in the operator (2).
The motor pulls the chain (or belt) along the rail (3) and winds
the torsion spring (4).

The torsion spring winds the cable on the pulleys (or drums) (5)
on both sides of the door.

The cables lift the door, pushing the different sections of the door
into the horizontal tracks (6)

| At the same time, the trolley (or traveler) (7) moves along the rail (3)

and controls how far the door opens (or closes),
as well as the force the garage door exerts by way of the curved door arm (8) ee e

48

Feasibility & Quality of Designs

dJudging feasibility or quality of a design requires
great deal of domain knowledge
(and commonsense knowledge!)

49

Watertfall Method

Requirements

_ Design
-
&’i@ﬁ%.ﬁ Implementation
635’.3
Sesss Testin
Waterfall sogete]] e - g
0O~
method HER
} b:.\.g,. Deployment &
S]'II Maintenance
TR
Y
.'é’*a&

Each activity confined to its “phase”.
Unidirectional, no way back;
finish this phase before moving to the next

50

Software Measurement

dWhat to measure?

— Project (developer’s work),

for budgeting and scheduling

— Product,

for quality assessment

o1

Formal hedge pruning

Joneses' property

S aT=I N I
| Garage

v

Garage =

Court ~—

Drive
L
w
] 3 E

Terrace

Garden

Main Street

Side Street

Work Estimation Strategy

Make initial guess for a little part of the work
. Do a little work to find out how fast you can go
. Make correction on your initial estimate

. Repeat until no corrections are needed
or work is completed

53

Sizing the Problem (1)

Step 1: Divide the problem into small & similar parts
T

Step 2.
Estimate relative
sizes of all parts

/

Size(@) =4
® Size(@)=7
Garden Size(@) =10
Size(@) =3
Size(®) =4
Size(®)=2
Size(@) =4
Size(®)=7

Sizing the Problem (2)

Step 3: Estimate the size of the total work

Total size = 2. points-for-sectioni (1 =1..N)

Step 4: Estimate speed of work (velocity)

Step 5: Estimate the work duration

_ Path size
Travel duration =

Travel velocity

Sizing the Problem (3)

J Assumptions:

— Relative size estimates are accurate
» That’s why parts should be small & similar-size!

 Advantages:

— Velocity estimate may need to be adjusted (based on
observed progress)

— However, the total duration can be recomputed quickly

- Provided that the relative size estimates of parts are accurate
—accuracy easier achieved if the parts are small and similar-size

Unfortunately:

A Unlike hedges, software is mostly invisible and
does not exist when project is started
=>» The initial estimate hugely depends on experience and imagination

Exponential Cost of Estimation

Estimation accuracy — 5

Estimation cost ——>

O Improving accuracy of estimation beyond a certain point requires huge
cost and effort (known as the law of diminishing returns)

O In the beginning of the curve, a modest effort investment yields huge

gains in accuracy
57

Estimation Error Over Time

4 Estimation Waterfall Method

error

Requirements Design Imple

Start Completion Time

Waterfall method cone of uncertainty starts high and gradually
converges to zero as the project approaches completion.

Estimation Error Over Time

. Estimation Ag le Method

error

Leaps in estimation accuracy
_.» gained through feedback
.~ 7 aftercompleting parts of work

/'/ ./

. —
Y —

Requirements
Design N
Implementation ! Requirements ",

" Design \ Requirements

Start I'/,,’ Implementation ; Design _ Proj ect Time
/ Implementation .
Completion

2nd jteration completion] e e e

1stiteration completion|;

Agile method cone of uncertainty starts high and in leaps
converges to zero as the project approaches completion.

Agile Project Effort Estimation

(= féﬁ\ti\

r—_:——

2) Prune Section 7
3) Prune Section 6
4) Prune Section 5
@ 9) Prune Section 4

6) Prune Section 1
r’p /) Prune Section 2

]
F

8) Prune Section 3

Work items

® - o
1) Prune Section &8 3.5 days (7pts)

L

!

n
Work backlog L

-

2 days (4pts)
1 day (2pts)
2 days (dpts)
1.5 days (3p)
2 days (4pts)
3.5 days (7p)
5days (10p)

f(Estimated work duration)

‘m\\\
\ { Items pulled by the team into an iteration)

)
|
)
e

\i\\ j 21 days
\\ f > 1st iteration >>2nd 'rterati::m> .0 ->n-th iteration)
5 days 7 4

(L;’st priorntized by the custcrmerj

C Estimated completion date 7 Tme

60

Measuring Quality of Work

&' \ N
A)
6; /0 7
‘_.‘q YA % v‘"‘ -
770 (4 AL XD i
e & 0\ A ST
<), (‘ } if
e '
A2t N
3 3
NN
Good Shape Poor Shape \
Low branch t Low branch /A
(Low branches get sun) (Low branches Heading back not

shaded from sun)

Rounded forms, which

Snow accumulates Straight lines require Peaked and rounded tops ,
C . . follow nature’s tendency,
on broad flat tops more frequent trimming hinder snow accumulation . o
require less trimming

Remove dead wood
recommended as . \

it alters the natural ‘ Remove water spouts
shape of the shrub and suckers

61

Concept Maps

Useful tool for problem domain description

SENTENCE: “My friend is coding a new program”

translated int@ propositions

Proposition | Concept | Relation Concept /
: have
1. I have friend I'4
' i i friend
2 friend |engagesin | coding nd |
3. codin constructs a | program engages In
9 prog n_,
4 program | is hew coding
—
constructs a
e
program
— .
is
Z}'i‘ Search the Web for Concept Maps new
02

Case Study: Home Access Control

dObjective: Design an electronic system for:

— Home access control
 Locks and lighting operation

— Intrusion detection and warning

%
L

Alarm bell

Y

Light bulb

g 7 []

Loc Photosensor Switch

63

Case Study — More Details

{
Alarm bell
Light bulb
Central
y & ‘ Computer
Lock Photosensor Switch
Backyard doors:
External &
Internal lock b]

| Front doors:

External &
Intemal lock
64

Know Your Problem

~ Mortise Lock Parts

@ Lock case
(1) - @N 5 (2) Latch bolt
@A\ S ~] % Dead bolt
© e 112] Strike plate
© (@4@ ””””” ® [(5) Strike box
»‘ @] @ Protective plate
,,,,,,, @ m] (7) Thumb-turn
@ W """ @ T 9 | Lock cylinder
o 0
- *’

@ Left hand lever

Concept Map for Home Access
Control

tenant

/

wishes

\
enters

key

can bhe

lock opened

“_causes%

valid key

burglar

—launches—»

invalid key

N\

may signal

upper bound on failed attempts

/

can be prevented by enforcing

dictionary attack /

66

States and Transition Rules

IF validKey AND holdOpeninterval THEN unlock

IF validKkey THEN unlock

[locked] [unlocked]

F pushLockButton THEN loc

IF timeAfterUnlock = max{ autoLocklInterval, holdOpeninterval } THEN lock

... what seemed a simple problem, now is becoming complex

