
Ting Su

East China Normal University

LECTURE 1: Introduction

The slides are adapted from Ivan Marsic’s lectures from Rutgers University.

Self-Introduction

苏亭，软件科学与技术系，教授

个人主页:
http://tingsu.github.io (英文)

https://faculty.ecnu.edu.cn/_s43/st2/main.psp (中文)

研究方向:

软件分析与验证、软件测试、软件安全、可信人工智能、系统软件

实验室
软件与系统可靠性研究小组 (理科楼B416)

联系方式
理科楼B1103，tsu@sei.ecnu.edu.cn

2

ECNU

3

ECNU -> UCD

4

ECNU -> UCD

5

ECNU -> UCD

6

ECNU -> UCD -> NTU

7

ECNU -> UCD -> NTU

8

ECNU -> UCD -> NTU

9

ECNU -> UCD -> NTU -> ETH

10

ECNU -> UCD -> NTU -> ETH

11

ECNU -> UCD -> NTU -> ETH -> ECNU

12

Self-Introduction

苏亭，软件科学与技术系，教授

个人主页:
http://tingsu.github.io (英文)

https://faculty.ecnu.edu.cn/_s43/st2/main.psp (中文)

研究方向:

软件分析与验证、软件测试、软件安全、可信人工智能、系统软件

实验室
软件与系统可靠性研究小组 (理科楼B416)

联系方式
理科楼B1103，tsu@sei.ecnu.edu.cn

13

Course Information

课程目标
1.掌握和熟悉软件工程的理论、概念、方法、和工具

2.具备分析、设计、开发和管理软件项目的能力

课程形式:
1.理论课：每周一下午第5-6节课

2.实践课：双周二下午第5-6节课

3.考核形式：出勤：5%；项目、作业：45%；期末考试：50%

参考教材 (see more on the course website)
– 《Software Engineering textbook》, by I. Marsic. （电子书）

– 《Software Engineering-A Practitioner’s Approach (Eighth Edition)》, Roger S.

Pressman著, 郑人杰等译．北京: 机械工业出版社, 2015年．

– 软件测试(原书第二版), Patton,R.著, 张小松等译, 北京: 机械工业出版社, 2006.4.

14

Course Information

课程网站:
https://tingsu.github.io/files/courses/se.html

 助教
– 唐文兵 (20级博士)

– 熊一衡 (20级硕士)

15

What is Software Engineering?

The IEEE definition:
– Software Engineering: (1) The application of a systematic,

disciplined, quantifiable approach to the development,
operation, and maintenance of software; that is, the
application of engineering to software. (2) The study of
approaches as in (1).

16

History of Software Engineering

Its origin: 1945 to 1965

The software crisis: 1965 to 1985

“No Silver Bullet”: 1985 to 1989

Prominence of the Internet: 1990 to 1999

Lightweight methodologies: 2000 to 2015

17
https://en.wikipedia.org/wiki/History_of_software_engineering

History of Software Engineering

18

History of Software Engineering

19

What is Software?

20

What is Software?

 Software is: (1) instructions (computer programs) that when

executed provide desired features, function, and performance;

(2) data structures that enable the programs to adequately

manipulate information and (3) documentation that describes

the operation and use of the programs.

21

Introduction: Software is Complex

Complex  complicated

Complex = composed of many simple parts

related to one another

Complicated = not well understood, or explained

Complexity Example:
Scheduling Fence Construction Tasks

Setting posts

[3 time units]

Cutting wood

[2 time units]

Painting

[5 time units for uncut wood;

4 time units otherwise]

Nailing

[2 time units for unpainted;

3 time units otherwise]

Setting posts  Nailing, Painting

Cutting  Nailing

…shortest possible completion time = ?

23[ “simple” problem, but hard to solve without a pen and paper]

More Complexity

Suppose today is Tuesday, November 29

What day will be on January 3?

[To answer, we need to bring the day names and the day numbers

into coordination, and for that we may need again a pen and paper]

The Frog in Boiling Water

 Small problems tolerate
complacency—lack of immediate
penalty leads to inaction

 Negative feedback accumulates
subtly and by the time it becomes
painful, the problem is too big to
address

 Frog in gradually heated water
analogy:
– The problem with little things is that

none of them is big enough to scare
you into action, but they keep
creeping up and by the time you get
alarmed the problem is too difficult to
handle

– Consequently, “design smells”
accumulate, “technical debt” grows,
and the result is “software rot”

25

https://en.wikipedia.org/wiki/Design_smell

https://en.wikipedia.org/wiki/Technical_debt

https://en.wikipedia.org/wiki/Software_rot

The Role of Software Engg. (1)

Customer

Programmer

A bridge from customer needs to programming implementation

First law of software engineering
Software engineer is willing to learn the problem domain
(problem cannot be solved without understanding it first) 26

The Role of Software Engg. (2)

27

Customer:
Requires a computer system to achieve some business goals

by user interaction or interaction w ith the problem domain

in a specif ied manner

(includes hardware)

Software-to-be
User

Software Engineer’s task:
To understand how the system-to-be needs to interact w ith

the user or the problem domain so that customer’s requirement is met

and design the software-to-be

Programmer’s task:
To implement the software-to-be

designed by the software engineer

Problem Domain

May be the

same person

System-to-be

Example: ATM Machine

Bank’s

remote

datacenter

Bank

customer

ATM machine

1
2

34
5

67
8

90

1
2

34
5

67
8

90

1
2

34
5

67
8

90
Communication link

Understanding the money-machine problem:

28

Problem-solving Strategy

Divide-and-conquer:

 Identify logical parts of the system that each solves a

part of the problem

Easiest done with the help of a domain expert who

already knows the steps in the process (“how it is

currently done”)

Result:

A Model of the Problem Domain

(or “domain model”)

29

How ATM Machine Might Work

Window clerk

Bookkeeper

Safe keeper

Datacenter

liaison

Dispenser

Safe

Cash

Transaction

record

Phone

Speakerphone

Bank’s

remote

datacenter

Domain Model

How may I
help you?

Customer 30

Cartoon Strip: How ATM Machine Works

B

Verify

this

account

B

Verify

this

account

C Verify

account

XYZ

XYZ valid.

Balance:

$100

C Verify

account

XYZ

XYZ valid.

Balance:

$100

D

Account

valid.

Balance:

$100

D

Account

valid.

Balance:

$100

G Record

$60 less

G Record

$60 less

A Enter

your PIN

Typing in

PIN number

…

A Enter

your PIN

Typing in

PIN number

…

E How may

I help

you?

Withdraw

$60

E How may

I help

you?

Withdraw

$60

F Release

$60

Dispense

$60

F Release

$60

Dispense

$60

H

Please take

your cash

Dispensing!
H

Please take

your cash

Dispensing!

31

Software Engineering Blueprints

 Specifying software problems and solutions is like

cartoon strip writing

Unfortunately, most of us are not artists, so we will

use something less exciting:

UML symbols

However …

32

Second Law of Software Engineering

Software should be written for people first

– (Computers run software, but hardware quickly

becomes outdated)

– Useful + good software lives long

– To nurture software, people must be able to understand

it

33

Software Development Methods

Method = work strategy
 The Feynman Problem-Solving Algorithm:

(i) Write down the problem (ii) think very hard, and

(iii) write down the answer.

Waterfall
 Unidirectional, finish this step before moving to the next

 Iterative + Incremental
 Develop increment of functionality, repeat in a feedback loop

Agile
 Continuous user feedback essential; feedback loops on several levels

of granularity

34

Waterfall Method

Deployment &

Maintenance

Requirements

Design

Implementation

Testing
Waterfall

method

35

Each activity confined to its “phase”.

Unidirectional, no way back;

finish this phase before moving to the next

How ATM Machine Might Work

Window clerk

Bookkeeper

Safe keeper

Datacenter

liaison

Dispenser

Safe

Cash

Transaction

record

Phone

Speakerphone

Bank’s

remote

datacenter

Domain Model

How may I
help you?

Customer 36

Understanding the Problem Domain

System to be developed

Actors

– Agents external to the system that interact with it

Concepts/ Objects

– Agents working inside the system to make it function

Use Cases

– Scenarios for using the system

37

ATM: Gallery of Players

Actors (Easy to identify because they are visible!)

Bank’s remote

datacenter

System

(ATM machine)
Bank customer

1
2

34
5

6
7

8
90

1
2

34
5

6
7

8
90

Bank’s remote

datacenter

System

(ATM machine)
Bank customer

38

Gallery of Workers + Tools

Concepts (Hard to identify because they are invisible/imaginary!)

Window clerk Bookkeeper Safe keeperDatacenter

liaison
Dispenser

Safe CashTransaction

record
TelephoneSpeakerphone

39

Use Case: Withdraw Cash

B Verify

account

XYZ

XYZ valid.

Balance:

$100

B Verify

account

XYZ

XYZ valid.

Balance:

$100

1
2

34
5

67
8

90

1
2

34
5

67
8

90

C How may

I help

you?

Withdraw

$60

1
2

34
5

67
8

90

1
2

34
5

67
8

90

C How may

I help

you?

Withdraw

$60

1
2

34
5

67
8

90

1
2

34
5

67
8

90

A Enter

your PIN

Typing in

PIN number

…

1
2

34
5

67
8

90

1
2

34
5

67
8

90

A Enter

your PIN

Typing in

PIN number

…

D

1
2

34
5

67
8

90

1
2

34
5

67
8

90

Please take

your cash

Collecting

cash …

D

1
2

34
5

67
8

90

1
2

34
5

67
8

90

Please take

your cash

Collecting

cash …

E XYZ

withdrew

$60

Acknowledged

E XYZ

withdrew

$60

Acknowledged

40

UML – Language of Symbols

«interface»

BaseInterface

+ operation()

Actor

ClassName

attribute_1 : int

attribute_2 : boolean

attribute_3 : String

+ operation_1() : void

+ operation_2() : String

+ operation_3(arg1 : int)

Software Class

Three common

compartments:

1. Classifier name

2. Attributes

3. Operations

Comment

Class1Implement

+ operation()

Class2Implement

+ operation()

Software Interface Implementation

Interaction Diagram

doSomething()

instance1 : Class1 instance5 : Class2 instance8 : Class3

doSomethingElse()

doSomethingYetElse()

Inheritance

relationship:

BaseInterface

is implemented

by two classes

Stereotype

«» provides

additional info/

annotation/

explanation

41

UML = Unified Modeling Language

Online information:

http://www.uml.org

How Much Diagramming?

 Use informal, ad-hoc, hand-drawn, scruffy diagrams during
early stages and within the development team
– Hand-drawing forces economizing and leads to low emotional

investment
• Economizing focuses on the essential, most important considerations

– Prioritize substance over the form

• Not being invested facilitates critique and suggested modifications

– Always take snapshot to preserve records for future

 Use standardized, neat, computer-generated diagrams when
consensus reached and designs have “stabilized”
– Standards like UML facilitate communication with broad range of

stakeholders

– But, invest effort to make neat and polished diagrams only when
there is an agreement about the design, so this effort is worth doing

• Invest in the form, only when the substance is worth such an investment

42

Waterfall Method

Deployment &

Maintenance

Requirements

Design

Implementation

Testing
Waterfall

method

43

Each activity confined to its “phase”.

Unidirectional, no way back;

finish this phase before moving to the next

How ATM Machine Might Work

Window clerk

Bookkeeper

Safe keeper

Datacenter

liaison

Dispenser

Safe

Cash

Transaction

record

Phone

Speakerphone

Bank’s

remote

datacenter

Domain Model

How may I
help you?

Customer 44

Window clerk

Bookkeeper

Dispenser

Transaction

record

Speakerphone

How may I
help you?

Customer

Draftsman

Solution

modification

Solution

modification

How ATM Machine Works (2)
Domain Model (2)

Alternative

solution

How ATM Machine Works (3)
Domain Model (3)

Remote

bank

Window clerk

Bookkeeper

Dispenser

Transaction

record

Speakerphone

How may I
help you?

Customer

Courier

Solution

modification

Solution

modification
Alternative

solution

Which solution is the best or even feasible?

Rube Goldberg Design

47

Garage door opener

Actual Design

48

Rail with a belt or chain

Operator (includes motor and radio control mechanism)

Garage door

Safety reversing sensor

Pressing of a button on the remote control transmitter (1)
authenticates the device & activates the motor in the operator (2).

The motor pulls the chain (or belt) along the rail (3) and winds

the torsion spring (4).

The torsion spring winds the cable on the pulleys (or drums) (5)

on both sides of the door.

The cables lift the door, pushing the different sections of the door

into the horizontal tracks (6)
At the same time, the trolley (or traveler) (7) moves along the rail (3)

and controls how far the door opens (or closes),
as well as the force the garage door exerts by way of the curved door arm (8)   

Remote control transmitter
2

1

3

4 5

5

6

6

7

8

Feasibility & Quality of Designs

Judging feasibility or quality of a design requires

great deal of domain knowledge

(and commonsense knowledge!)

49

Waterfall Method

Deployment &

Maintenance

Requirements

Design

Implementation

Testing
Waterfall

method

50

Each activity confined to its “phase”.

Unidirectional, no way back;

finish this phase before moving to the next

Software Measurement

What to measure?

– Project (developer’s work),

for budgeting and scheduling

– Product,

for quality assessment

51

Formal hedge pruning

52

Work Estimation Strategy

1. Make initial guess for a little part of the work

2. Do a little work to find out how fast you can go

3. Make correction on your initial estimate

4. Repeat until no corrections are needed

or work is completed

53

Sizing the Problem (1)

Size() = 10

Size() = 7

Size() = 4

Size() = 3

Size() = 4

Size() = 2

Size() = 4

Size() = 7

Step 2:

Estimate relative

sizes of all parts

Step 1: Divide the problem into small & similar parts
















Sizing the Problem (2)

Step 3: Estimate the size of the total work

Total size =  points-for-section i (i = 1..N)

Step 4: Estimate speed of work (velocity)

Step 5: Estimate the work duration

Travel duration =
Path size

Travel velocity

Sizing the Problem (3)

Assumptions:
– Relative size estimates are accurate

• That’s why parts should be small & similar-size!

Advantages:
– Velocity estimate may need to be adjusted (based on

observed progress)

– However, the total duration can be recomputed quickly
• Provided that the relative size estimates of parts are accurate

—accuracy easier achieved if the parts are small and similar-size

Unfortunately:

Unlike hedges, software is mostly invisible and
does not exist when project is started
 The initial estimate hugely depends on experience and imagination

Exponential Cost of Estimation

Estimation cost

E
s
ti
m

a
ti
o
n
 a

c
c
u
ra

c
y

100%

 Improving accuracy of estimation beyond a certain point requires huge

cost and effort (known as the law of diminishing returns)

 In the beginning of the curve, a modest effort investment yields huge

gains in accuracy
57

Estimation Error Over Time

Time

Estimation

error

CompletionStart

Waterfall method cone of uncertainty starts high and gradually

converges to zero as the project approaches completion.

Requirements Design Implementation

Waterfall Method

Estimation Error Over Time

Agile method cone of uncertainty starts high and in leaps

converges to zero as the project approaches completion.

Time

Estimation

error

Project

Completion

Start

Requirements

Design

Implementation

Leaps in estimation accuracy

gained through feedback
after completing parts of work

Requirements

Design

Implementation
Requirements

Design

Implementation

1st iteration completion

2nd iteration completion

Agile Method

Agile Project Effort Estimation

60

Good Shape

(Low branches get sun)

Poor Shape

(Low branches

shaded from sun)
Heading back not

recommended as

it alters the natural

shape of the shrub

Remove dead wood

Remove water spouts

and suckers

Snow accumulates

on broad flat tops

Straight lines require

more frequent trimming

Peaked and rounded tops

hinder snow accumulation

Rounded forms, which

follow nature’s tendency,

require less trimming

Measuring Quality of Work

61

Concept Maps

Proposition Concept Relation Concept

1. I have friend

2. friend engages in coding

3. coding constructs a program

4. program is new

SENTENCE: “My friend is coding a new program”

translated into propositions

Search the Web for Concept Maps

I

friend

have

coding

engages in

program

constructs a

new

is

62

Useful tool for problem domain description

Case Study: Home Access Control

Objective: Design an electronic system for:

– Home access control

• Locks and lighting operation

– Intrusion detection and warning

System

Lock Photosensor Switch

Light bulb

Alarm bell

1

2

3

4

5

X

Y

1

2

3

4

5

X

Y

63

Case Study – More Details

System

Lock Photosensor Switch

Light bulb

Alarm bell

1

2

3

4

5

X

Y

1

2

3

4

5

X

Y

64

Know Your Problem

1

9

7

8

6

2

3

54

7 Thumb-turn

1 Lock case

2 Latch bolt

3 Dead bolt

9 Left hand lever

8 Lock cylinder

6 Protective plate

5 Strike box

4 Strike plate

Mortise Lock Parts

1

2

3

4

5

X

Y

1

2

3

4

5

X

Y

65

Concept Map for Home Access

Control

tenant

key

can be prevented by enforcing
lock opened

wishes

causes

enters

valid key invalid key

can be

dictionary attack

may signal

upper bound on failed attempts

burglar launches

66

States and Transition Rules

locked unlocked

IF validKey THEN unlock

IF pushLockButton THEN lock

IF timeAfterUnlock ≥ max{ autoLockInterval, holdOpenInterval } THEN lock

IF validKey AND holdOpenInterval THEN unlock

67… what seemed a simple problem, now is becoming complex

