G T SYIERG

T

BOAPES R AR

Who am I?

NIRRT, TOREEEARR, Rk TR

/|\j\§§ﬁ . http://tingsu.github.io

WF5E 5 7]

= B WA Tk ZE

» B 5 RGN REMZ2RE

HE/TEEER

= ECNU (B.S. & PhD)-» UCD (Visiting PhD) -» NTU (Postdoc)
-» ETH (Postdoc) -» ECNU (Professor)

B %730

= HIRLPEB1103, tsu@sei.ecnu.edu.cn

http://tingsu.github.io/

What is Program Analysis?

What you probably know

* Manual testing or semi-automated testing:
— JUnit, Selenium, etc.
 Manual “analysis” of programs:

— Code inspection, debugging, etc.

Focus of this course:
Automated program analysis

Why Do We Need it?

* All software has bugs
e Bugs are hard to find
* Bugs cause serious harm

CODE 2 0.5-25/KLoC in

COMPLETE
. delivered software

Why Do We Need it?

* All software has bugs

* Bugs are hard to find
* Bugs cause serious harm

[- @ v
Llnux 1.5 years to find
—

d bug [Palix2011]

Why Do We Need it?

* All software has bugs
* Bugs are hard to find

* Bugs cause serious harm

|
_caution

4
LA 4

RADIOACTIVE

Ariane 5 Northeast blakout Therac-25

The Ariane Rocket Disaster (1996)

Post Mortem

* Caused due to numeric overflow error
— Attempt to fit 64-bit format data in 16-bit space

* Cost
— S370M'’s for loss of mission
— Multi-year setback to the Ariane program

e Read more at https://www.bugsnag.com/blog/bug-day-
ariane-5-disaster

https://www.bugsnag.com/blog/bug-day-ariane-5-disaster
https://www.bugsnag.com/blog/bug-day-ariane-5-disaster

Security Vulnerabilities

Dl @ 11:58em

* Exploits of errors in programs

| SO G Ao~

Do you want to install this
application?

* Widespread problem
— Moonlight Maze (1998)

— Code Red (2001)
— Titan Rain (2003)

— Stuxnet Worm (I H

* Getting worse ...

KN

2011 Mobile Threat Report
(Lookout™ Mobile Security)

0.5-1 million Android users
affected by malware in first
half of 2011

3 out of 10 Android owners [=—
likely to face web-based
threat each year

Attackers using increasingly
sophisticated ways to steal
data and money

What is Program Analysis?

* Discover useful facts about programs

* Broadly classified into three kinds:
— Static (compile-time)
— Dynamic (execution-time)
— Hybrid (combining dynamic and static)

Static vs. Dynamic Analysis

* Static * Dynamic
— Infer facts by inspecting — Infer facts by monitoring
source or binary code program executions
— Typically: — Typically:
* Consider all inputs * Consider current input
* Overapproximate * Underapproximate
possible behavior possible behavior
E.qg., compilers, E.g., automated testing

lint-like tools tools, profilers

Example

//JavaScript
var r =Math.random() ;//value in [0,1)
var out = "yes";

if(r <0.5)
out ="no";
if (r ==1)

out = "maybe";
console.log(out) ;

What are the possible outputs?

Example

//JavaScript
var r =Math.random() ;//value in [0,1)
var out = "yes";

if(r <0.5)
out ="no";
if (r ==1)

out = "maybe";//infeasible path
console.log(out) ;

Overapproximation: "yes”, "no”, "maybe”

- Consider all paths (that are feasible based on
limited knowledge)

Example

//JavaScript
var r =Math.random() ;//value in [0,1)
var out = "yes";

if(r <0.5)
out ="no";
if (r ==1)

out = "maybe";//infeasible path
console.log(out) ;

Underapproximation: "yes”

- Execute the program once

Example

//JavaScript
var r =Math.random() ;//value in [0,1)
var out = "yes";

if(r <0.5)
out ="no";
if (r ==1)

out = "maybe";//infeasible path
console.log(out) ;

Sound and complete: "yes”, ’no”

- For this example: Can explore both feasible paths

Another Example

//JavaScript
var r =Math.random() ;//value in [0,1)

var out = r *2;
console.log(out) ;

What are the possible outputs?

11 -

Another Example

//JavaScript
var r =Math.random() ;//value in [0,1)

var out = r *2;
console.log(out) ;

Overapproximation: Any value
- Consider all paths (that are feasible based on
limited knowledge about random ())

Another Example

//JavaScript
var r =Math.random() ;//value in [0,1)

var out = r *2;
console.log(out) ;

Underapproximation:
Some number in [0,2), e.g., 1.234

- Execute the program once

Another Example

//JavaScript
var r =Math.random() ;//value in [0,1)

var out = r *2;
console.log(out) ;

Sound and complete?
- Exploring all possible outputs:

Practically impossible
- This is the case for most real-world programs

Terminology

Over-approximation v.s. Under-approximation
False positives v.s. False negatives
Soundness v.s. Completeness

Precision v.s. Recall

Under- & Over-approximation

T‘03co~w £ , lv\rw v Belhavior ?(}\

Fodie
}odk\n

(C.S_‘ lolv\:3\n
waruiuj)

) Y w OV\‘L . o
AU fo”l(ogL belaviors (W[""+ ¢ v o ol U\)\ Fodsc MSNR«Q

U.throv,‘,for‘-mmf\\\o\/\ (ts ‘4{3-\'-&\6 . ola)\aaw'\'g OV\&“}){S‘\ (q,,x‘ W'\gsv(o\ \o\;\JS\
Ovcra\"‘)von'\vhkkev\ (wmosk S*"\‘('\'c, oMM«\SQS\

Soundness & Completeness

[Sound & Complete

/
Sound (Truth Complete
Overapproaximate Falsh Underapproaximate
negative
False
positive

e Truth: all possible behaviors
o FRHRE TS S A kS TRl

— Soundness -> #%ffisoundness, 412 F false negatives

— Completeness -> ZTfficompleteness, k147 false positives
o R REEY TRE SN AT A) BEOREAT SR

— Sound (KiEfRl) -> iRk

— Complete (iXiTfl) -> Tikfk

Precision & Recall

relevant elements

false negatives true negatives
©o 4 o O o
How many retrieved How many relevant
o items are relevant? items are retrieved?
true positives false positives .
Precision = —— Recall =

retrieved elements

Example: Program Invariants

An invariant at the end
of the program is
(z == c) for some
constant c. Whatis c?

int p(int x) { return x * x; }

void main() {

int z;

if (getc() ==1Qa’)
z=p(6) +6;

else
z=p(-7)=7;

Example: Program Invariants

An invariant at the end
of the program is
(z == c) for some
constant c. Whatis c?

Disaster averted!

\

int p(int x) { return x * x; }

void main() {

int z;
if (getc() ==1Qa’)
z=p(6) +6;
else
z=p(-7)-7,
if (z!=42)
disaster();

Discovering Invariants By Dynamic Analysis

int p(int x) { return x * x; }

void main() {

(z==42) might be an

int z;
Invariant if (getc() ==a’)
z=p(6) +6;
: .. else
(z == 30) is definitely 2=p(-7)-7;
not an invariant £ (2 1= 42) z=42

disaster();

Discovering Invariants By Static Analysis

is definitely
(z == 42) might-be an

Invariant

(z == 30) is definitely
not an invariant

int p(int x) { return x * x; }

void main() {
int z;
if (getc() ==1Qa’)
z=p(6) +6;
else
z=p(-7)-7,

if (z!=42)
disaster();

QUIZ: Dynamic vs. Static Analysis

Match each box with its corresponding feature.

Dynamic Static
Cost
Effectiveness
A. Unsound B. Proportionalto C. Proportionalto D. Incomplete
(may miss errors) program’s execution program’s size (may report

time spurious errors)

QUIZ: Dynamic vs. Static Analysis

Match each box with its corresponding feature.

Dynamic Static
Cost B. Proportional to C. Proportional to
05 program’s execution time program’s size
, A. Unsound D. Incomplete (may
Effectiveness . :
(may miss errors) report spurious errors)

Undecidability of Program Properties

e Can program analysis be sound and complete?
—Not if we want it to terminate!

e Questions like “is a program point reachable
on some input?” are undecidable

* Designing a program analysis is an art
—Tradeoffs dictated by consumer

Why Take This Course?

Learn methods to improve software quality
— reliability, security, performance, etc.

Become a better software developer/tester

Build specialized tools for software analysis,
testing and verification

Finding Jobs & Do research

Why Take This Course?

Learn methods to improve software quality
— reliability, security, performance, etc.

Become a better software developer/tester

Build specialized tools for software analysis,
testing and verification

Finding Jobs & Do research

£y, BREEE ek B, 7. W5 KR P E
RuFele o EEET TR E S AR FTR......

Who Needs Program Analysis?

Three primary consumers of program analysis:

 Compilers
e Software Quality Tools

* Integrated Development Environments (IDEs)

Compilers

* Bridge between high-level languages and architectures

* Use program analysis to generate efficient code

int p(int x) { return x * x; }

void main(int arg) {

int z;
if (arg != 0)

z = p(6) + 6;
else

z = p(-7) - 7,

)

print (z);

z=42

}

int p(int x) { return x * x; }
void main() {

print (42);
}

 Runs faster
* More energy-efficient
e Smallerin size

Software Quality Tools

* Primary focus of this course

* Tools for testing, debugging, and verification

* Use program analysis for: int p(int x) { return x * x; }
— Finding programming errors void main() {
— Proving program invariants int z;
. if (getc() ==a’)
— Generating test cases z=p(6) +6;
.. else
Localizing causes of errors = 0(-7) 7
— z=42
if (z1=42)

disaster();

Example: Software Quality Tools

e Static Program Analysis

Suspicious error patterns Memory leak detection
Lint, SpotBugs, Coverity Facebook Infer
Checking APl usage rules Verifying invariants
Microsoft SLAM ESC/Java

The Coverity Platform - From a Developer's Perspective:
https://www.youtube.com/watch?v=_Vt4niZfNeA

https://www.youtube.com/watch?v=_Vt4niZfNeA
https://www.youtube.com/watch?v=_Vt4niZfNeA

Example: Software Quality Tools

* Dynamic Program Analysis

Array bound checking Datarace detection
Purify Eraser
Memory leak detection Finding likely invariants

Valgrind Daikon

Integrated Development Environments

 Examples: Eclipse and VS Code

* Use program analysis to help programmers:

— Understand programs
— Refactor programs

e Restructuring a program without changing its behavior

* Useful in dealing with large, complex programs

Course Information

- IREBTR
L SEREAT. MM E AR RS
2. THRABR AT AT R

¢ 1%*5«: s
1. IR R - TH$9-1051F (F4-14:50-16:25)
2. BEEHE N : KEE
3. EiRHh g - H P 226
4. ZR: HEN*20%., FENR=EFRIN*30%., IRFEINH (B : FHsERFZE
1eX. TEIFHF) *50%

l

1RFE M : https://tingsu.github.io/files/courses/pa2023.html (TODO)
B#: Z51{Y

https://tingsu.github.io/files/courses/pa2023.html

23-REDSRN...

A—HE3T48, AR,

' Yel&

Course Topics (Tentative)

Data-flow Analysis

Pointer Analysis

Formal verification (model checking)
Random Testing & Fuzzing

Symbolic Execution

Metamorphic & Property-based Testing
Security Analysis

Delta debugging

Course History

* Pre 2022 - &AM 55k LA ($54)
e 2022- BT 5IuE RIS

cE0

F—FRRERIEEFNZN, HEEHW, RTLEE, BEINELX IR LT

Supplementary Materials

Mayur Naik (University of Pennsylvania)

Michael Pradel (University of Stuttgart)

F KT (B, BRI BRIk
JERORE: (BB RZID FIRETF A ifiE CARRD
EPARER (BRALETZITD BRI ot R AR

Static Program Analysis, Anders Mgller and Michael I.
Schwartzbach https://cs.au.dk/~amoeller/spa/

https://cs.au.dk/~amoeller/spa/

What Have We Learned?

What is program analysis?
Dynamic vs. static analysis: pros and cons

Terminologies in program analysis

Undecidability => program analysis cannot ensure
termination + soundness + completeness

Why we need to learn program analysis?

Additional Links

* What is soundness (in static analysis)?
- http://www.pl-enthusiast.net/2017/10/23/what-is-soundness-in-static-

analysis/

 What is static program analysis?
— https://matt.might.net/articles/intro-static-analysis/

 Precision and Recall

— https://en.wikipedia.org/wiki/Precision and recall

http://www.pl-enthusiast.net/2017/10/23/what-is-soundness-in-static-analysis/
http://www.pl-enthusiast.net/2017/10/23/what-is-soundness-in-static-analysis/
https://matt.might.net/articles/intro-static-analysis/
https://en.wikipedia.org/wiki/Precision_and_recall

