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Abstract

Protocol reverse engineering (PRE) aims to infer the specification
of network protocols when the source code is not available. Specif-
ically, field inference is one crucial step in PRE to infer the field
formats and semantics. To perform field inference, binary analysis
based PRE techniques are one major approach category. However,
such techniques face two key challenges — (1) the format inference
is fragile when the logics of processing input messages may vary
among different protocol implementations, and (2) the semantic
inference is limited by inadequate and inaccurate inference rules.

To tackle these challenges, we present BinPRE, a binary analy-
sis based PRE tool. BinPRE incorporates (1) an instruction-based
semantic similarity analysis strategy for format extraction; (2) a
novel library composed of atomic semantic detectors for improving
semantic inference adequacy; and (3) a cluster-and-refine paradigm
to further improve semantic inference accuracy. We have evaluated
BinPRE against five existing PRE tools, including Polyglot, Aut-
oFormat, Tupni, BinaryInferno and DynPRE. The evaluation
results on eight widely-used protocols show that BinPRE outper-
forms the prior PRE tools in both format and semantic inference.
BinPRE achieves the perfection of 0.73 on format extraction and the
F1-score of 0.74 (0.81) on semantic inference of types (functions),
respectively. The field inference results of BinPRE have helped
improve the effectiveness of protocol fuzzing by achieving 5∼29%
higher branch coverage, compared to those of the best prior PRE
tool. BinPRE has also helped discover one new zero-day vulnera-
bility, which otherwise cannot be found.
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1 INTRODUCTION

Protocol reverse engineering (PRE) aims to infer the specifica-
tions (e.g., field formats, semantics, and state machines) of network
protocols, assuming only the protocol messages and/or the pro-
gram binaries implementing the protocols are available [39, 54].
The inferred protocol specifications can be applied in many sce-
narios like protocol fuzzing (e.g., Peach [15] and Boofuzz [1]),
and network traffic analysis and auditing (e.g., Wireshark [22]).
Therefore, building effective PRE techniques is important.

Specifically, field inference is one important and necessary step
of PRE. It includes two major relevant tasks: (1) format extraction,
i.e., inferring the field boundaries of the input messages, and (2)
semantic inference, i.e., inferring the corresponding semantics of the
fields identified from (1). Moreover, field inference is the requisite
for inferring protocol state machines [35]. Thus, in this paper, we
focus on improving the effectiveness of field inference because of
the importance in its own right.

In the literature, there are two major approaches to achieving
field inference, i.e., network-traffic based (NetT-based) [31, 37, 43,
50, 66] and execution-trace based (ExeT-based) PRE techniques [27,
30, 36, 47]. The NetT-based PRE techniques take static network
traces as input and perform statistical analysis to mine the format
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characteristics exhibited in the traces. However, their inference
accuracy relies on the availability of high-quality network traces
that contain diverse protocol messages, which are usually difficult
to obtain in practice. The ExeT-based PRE techniques (also termed
as binary analysis based PRE techniques throughout this paper),
on the other hand, are resilient to the quality of input messages.
They can obtain rich runtime semantics by monitoring the executed
instructions of the protocol implementations. However, despite the
rich runtime semantics, these techniques in practice still face two
key challenges in achieving effective field inference.

The first challenge is that the analysis strategies of format ex-
traction in classic PRE techniques [30, 36, 47] are fragile to the
actual protocol implementations. Since these strategies are usu-
ally implemented based on some heuristic patterns of the executed
instructions, they may become fragile when the logics of process-
ing input messages vary among different protocols. As a result,
these analysis strategies would significantly suffer from the over-
segmentation errors (i.e., introducing spurious field boundaries) and
the under-segmentation errors (i.e., missing true field boundaries).
These errors degrade the accuracy of format extraction, which we
will illustrate in Section 2.2. Even worse, these errors would fur-
ther undermine the subsequent task of semantic inference. Because
semantic inference would fail on the inaccurate field segmentation.

The second challenge is that the semantic inference abilities
of the classic PRE techniques [30, 36, 47] are limited due to the
inadequate and inaccurate inference rules. For example, types and
functions are the two important field semantics, commonly used by
network traffic auditing tools like Wireshark [22] and protocol
fuzzing tools like Peach [15] and Boofuzz [1]. Take Boofuzz as an
example, it by default supports five and six major categories of types
and functions, respectively. However, the classic PRE techniques
cannot infer types and only infer four categories of functions with
low accuracy. For example, our investigation reveals that these
techniques can only infer the command field with the F1-score of
0.14, the delimiter field with the F1-score of 0.22, and the length
field with the F1-score of 0.56. The inaccurate results of semantic
inference may further affect the downstream applications of PRE.

In this paper, we introduce two key ideas to tackle the preceding
two challenges, respectively. To mitigate the first challenge, we
introduce an instruction-based semantic similarity analysis strategy
to enhance the classic format extraction. Our key insight is that the
bytes from the same field should have similar semantics. Specifically,
we use the sequences of instruction operators accessing these bytes as
the proxy of the semantics. In this way, the bytes accessed by similar
sequences of instruction operators are merged into the same field.
This strategy is simple yet effective in tackling segmentation errors.
Because it is resilient to the logic of processing input messages in
the different protocol implementations.

To mitigate the second challenge, we build a novel library com-
posed of atomic semantic detectors to improve the adequacy and
accuracy of semantic inference. More importantly, based on the
preceding inference results, we introduce a cluster-and-refine strat-
egy to further improve the accuracy of semantic inference. The
key idea is that the messages with similar formats can offer useful
contextual information (e.g., the data values of the same byte offsets)

to refine the inference results. Specifically, we cluster the messages
with similar formats based on the results of our format extraction.

We implemented a binary analysis based PRE tool named Bin-
PRE to support the application of our ideas. We evaluated it against
5 state-of-the-art PRE tools on 8 popular extant protocols. The ex-
periment results show that BinPRE outperforms prior PRE tools
in both format extraction and semantic inference. For format ex-
traction, BinPRE achieves the perfection score and the F1-score of
(0.73, 0.86) for format extraction, while the classic PRE tools Poly-
glot [30], AutoFormat [47], Tupni [36], BinaryInferno [31],
and DynPRE [50] achieve the perfection scores and F1-scores of
(0.60, 0.66), (0.59, 0.64), (0.49, 0.68), (0.13, 0.35), and (0.24, 0.54),
respectively. During format extraction, BinPRE reduces 63∼70%
segmentation errors w.r.t. these prior PRE tools on 8 protocols. For
semantic inference, BinPRE achieves the average precision and re-
call values of (0.72, 0.77) and (0.77, 0.91) for inferring field types and
functions, respectively. Moreover, the field inference results of Bin-
PRE have helped improve the effectiveness of protocol fuzzing by
achieving 5∼29% higher branch coverage, compared to those of the
best prior PRE tool, and discover one new zero-day vulnerability.

Finally, it is important to note that almost all the prior binary
analysis based PRE tools are not publicly available. We took signifi-
cant efforts to re-implement the field inference strategies of these
prior PRE tools (including Polyglot, AutoFormat and Tupni),
and carefully validated our implementations by replicating the ex-
periments of these tools. Thus, we believe one of our contributions
is to make these implementations readily and publicly available for
fair comparison and replication.

In this paper, we have made the following contributions:
• We introduce an instruction-based semantic similarity analy-
sis strategy to enhance the classic field segmentation and ef-
fectively mitigate the improper segmentation errors in format
extraction (Section 3.3).

• We build a novel library of atomic semantic detectors to improve
the adequacy of semantic inference (Section 3.4) and introduce a
cluster-and-refine paradigm to improve the accuracy of semantic
inference (Section 3.5).

• We implement a tool BinPRE to support the application of our
ideas. BinPRE outperforms the prior PRE tools in field inference
and demonstrates its usefulness in improving such downstream
tasks as protocol fuzzing (Section 4).

• We have made BinPRE and the re-implementations of prior PRE
tools publicly available at https://github.com/ecnusse/BinPRE.git
to facilitate replication of our experiments and benefit the com-
munity for studying binary analysis based PRE techniques.

2 Background and Challenges

In this section, we give the necessary background of protocol re-
verse engineering, especially field inference, and illustrate the chal-
lenges of classic PRE techniques for field inference.

2.1 Background and Definitions

The main goal of PRE is to infer the protocol fields and the finite
state machines of protocols. This paper focuses on field inference,
as it serves as the fundamental pillar of PRE. In protocol reverse
engineering, field inference includes two major tasks: (1) format

https://github.com/ecnusse/BinPRE.git


BinPRE: Enhancing Field Inference in Binary Analysis Based Protocol Reverse Engineering CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

05  64  10  c4  01  00  64  00  09  9b  c6  c5  03  29  02  17  01  02  a5  4c  00  c2  d1

Step	1
Format	Extraction

Output1
(Format)

Input

Output2
(Semantic)

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17][18] [19] [20]

1005   64

Start Bytes Length Control Destination Source Checksum Data Chunk

c4 01 00 64 00 09   9b c6   c5   03   29   02   17   01   02   a5   4c   00 c2 d1

[21] [22]

Step	2
Semantic	Inference

[0-1] [2] [3] [4-5] [6-7] [8-9][21-22] [10-20]

Figure 1: An example message of DNP3.0 protocol (the fields

with different semantics are annotated by different colors).

extraction, i.e., inferring the field boundaries, and (2) semantic in-
ference, i.e., inferring the corresponding semantics (e.g., type and
function) of the fields. For example, Figure 1 shows a raw binary
message in hexadecimal values from DNP3.0, a popular communica-
tion protocol used in industrial control systems. To achieve field
inference, we need to perform format extraction (Step 1 in Figure 1),
and semantic inference (Step 2 in Figure 1). Take the second byte
(i.e., 0x10) in this message as an example, an ideal field inference
should segment this byte into a field, and infer that this field’s type
is integer and its function is the length of the message. In the set-
ting of binary analysis, the tasks of format extraction and semantic
inference can be formulated as follows.
Format Extraction. Let 𝑀 be a raw message in bytes, i.e., 𝑀 =

[𝑏0, · · · , 𝑏𝑖 , · · · , 𝑏𝑚 ] (𝑏𝑖 denotes one data byte). Let 𝐼𝑁𝑆𝑇𝑀 be the
trace of the executed binary instructions when the program binary
processes 𝑀 , i.e., 𝐼𝑁𝑆𝑇𝑀 = [𝑖𝑛𝑠𝑡1, · · · , 𝑖𝑛𝑠𝑡 𝑗 , · · · , 𝑖𝑛𝑠𝑡𝑛 ] (𝑖𝑛𝑠𝑡 𝑗 de-
notes one executed binary instruction). By leveraging such classic
program analysis as taint analysis [42], binary analysis based PRE
techniques can track which bytes in𝑀 have been accessed by which
instructions in 𝐼𝑁𝑆𝑇𝑀 . Based on such information, such techniques
can extract field formats. For example, one common strategy used
by prior PRE techniques [30, 36, 47] is that, if the instruction 𝑖𝑛𝑠𝑡 𝑗
accesses the consecutive bytes [𝑏𝑘 , · · · , 𝑏𝑙 ] (0 ≤ 𝑘 ≤ 𝑙 ≤ 𝑚) in 𝑀 ,
the bytes [𝑏𝑘 , · · · , 𝑏𝑙 ] is inferred as a field 𝑓 . As a result, the field
boundaries are inferred between the 𝑏𝑘−1-th and 𝑏𝑘 -th bytes, and
the 𝑏𝑙 -th and 𝑏𝑙+1-th bytes in 𝑀 . This field 𝑓 is composed of the
consecutive bytes from 𝑘-th to 𝑙-th in the message𝑀 . Here, we can
represent 𝑓 as 𝑓𝑘,𝑙 = 𝑀 [𝑘, 𝑙]. Format extraction is such a process of
segmenting𝑀 into a number of fields.
Semantic Inference. Based on the results of format extraction,
semantic inference is the process of inferring the semantics of these
extracted fields. Specifically, type and function are the two impor-
tant field semantic attributes, which are commonly used by pro-
tocol fuzzing tools (e.g., Peach [15] and Boofuzz [1]). The prior
PRE techniques infer the field semantics based on different strate-
gies [30, 31, 36, 50]. For example, in Figure 1, assuming the field
𝑓2,2 is identified, one common strategy used by prior work [30]
will infer the function of this field to be Length based on some
behavioral features of 𝐼𝑁𝑆𝑇𝑀 .

2.2 Challenges of Format Extraction

Format extraction infers the field boundaries of input messages.
However, the strategies of format extraction in classic PRE tech-
niques [30, 36, 47] are fragile to different protocol implementations.
As a result, these strategies suffer from the over-segmentation errors

Listing 1: Automatak-DNP3 source code snippet.

1 bool ShiftableBuffer::Sync(){
2 //2 bytes in 𝑓0,1 are separately accessed -> Over-seg. errors in the three prior tools
3 while (this−>NumbytesRead()>1){//𝑓0,1
4 if (this−>ReadBuffer()[0]==0x05
5 && this−>ReadBuffer()[1]==0x64){...}}}
6
7 bool LinkFrame::ValidateBodyCRC(const uint8_t∗ pBody, size_t length){
8 length = this−>ReadBuffer()[2];//𝑓2,2
9 while (length > 0){
10 size_t max = LPDU_DATA_BLOCK_SIZE;
11 size_t num = (length <= max) ? length : max;
12 if (CRC::IsCorrectCRC(pBody, num)){//𝑓10,20 , 𝑓21,22
13 pBody += (num + 2);//Under-seg. errors in Polyglot
14 length −= num;}...}}
15
16 bool CRC::IsCorrectCRC(const uint8_t∗ input, size_t length){
17 ser4cpp::rseq_t buffer(input + length, 2);
18 uint16_t crcValue;
19 ser4cpp::UInt16::read_from(buffer, crcValue);//𝑓21,22 , 𝑓8,9
20 uint16_t CalcCrcValue = 0;
21 //11 bytes in 𝑓10,20 are separately accessed -> Over-seg. errors in three prior tools
22 //8 bytes in 𝑓0,7 are accessed in a loop -> Under-seg. errors in Tupni
23 for (uint32_t i = 0; i < length; ++i){//𝑓10,20, 𝑓0,7
24 uint8_t index = (CalcCrcValue ^ input[i]) & 0xFF;
25 CalcCrcValue = crcTable[index] ^ (CalcCrcValue >> 8);
26 }
27 CalcCrcValue = ~CalcCrcValue;
28 return CalcCrcValue == crcValue;}

(i.e., introducing spurious field boundaries) and under-segmentation
errors (i.e., missing true field boundaries). We use the code snippet
(Listing 1) from Automatak-DNP3 [13] as example, which is an imple-
mentation of the protocol DNP3.0. It processes the input message
shown in Figure 1.
Over-segmentation errors. The classic PRE techniques (e.g., Poly-
glot [30],AutoFormat [47], and Tupni [36]) assume that different
fields have independent data flow from each other —the bytes be-
longing to different fields are rarely used in the same instruction.
Thus, they adopt a common strategy for format extraction: the (con-
secutive) bytes accessed by one instruction are within the same field (cf.
Section 6 in [30], Section 3.2.1 in [47], Section 3.3 in [36]). However,
in real-world protocol implementations, the bytes belonging to one
field may still be accessed by different instructions, thus leading
to over-segmentation errors. For example, the two bytes of field
𝑓0,1 (i.e., 0x05 and 0x64) in the input message, denoting the starting
bytes, are accessed by two different instructions (corresponding to
lines 4 and 5 in Listing 1). As a result, the classic PRE techniques
(like Polyglot, AutoFormat, and Tupni) will over-segment field
𝑓0,1 into two fields 𝑓0,0 and 𝑓1,1. As another example, the eleven
bytes of field 𝑓10,20, denoting the data chunk of the input message,
are accessed by different instructions (corresponding to line 24 in
the loop of lines 23-26 in Listing 1). As a result, the classic PRE
techniques will over-segment 𝑓10,20 into eleven different fields.
Under-segmentation errors. The classic PRE techniques also
implement other heuristic strategies, which may lead to under-
segmentation errors. For example, Polyglot infers the boundaries of
variable-length fields based on the length fields. Polyglot correctly
infers field 𝑓2,2 as the length field, and identifies its pointer relation-
ship with 𝑓10,20 and 𝑓21,22 (corresponding to lines 12-14). Therefore,
these two fields are erroneously merged into one variable-length
field. As another example, the function IsCorrectCRC computes the
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Table 1: F1-scores achieved by the five state-of-the-art PRE tools in performing semantic inference.

Tool Type Function

Static Integer Group Bytes String Command Length Delim Checksum Aligned Filename

Polyglot - - - - - 0.14 0.56 0.22 - - -
AutoFormat - - - - - - - - - - -

Tupni - - - - - - 0.56 - 1.0 - -
BinaryInferno - - - 0 - - 0.50 - - - -

DynPRE - - - - - 0.08 - - - - -

* “-” denotes that the corresponding semantic (type or function) is not supported.
* F1-score = 2×precision×recall/(precision+recall)

CRC value of the contents in the fields 𝑓0,1, 𝑓2,2, 𝑓3,3, 𝑓4,5, 𝑓6,7 (corre-
sponding to lines 23-26) and checks against the checksum stored in
the field 𝑓8,9 (read by line 19). Since Tupni merges the consecutive
bytes processed by “mostly” the same instructions in a loop into
one field (cf. Section 3.4∼3.5 in [36]), the fields 𝑓0,1, 𝑓2,2, 𝑓3,3, 𝑓4,5,
𝑓6,7 are erroneously merged into one field.

Appendix D [41] gives the format extraction results of the three
classic PRE techniques (Polyglot, AutoFormat, Tupni) when
processing the input message in Figure 1.

Challenge-1: The classic binary analysis based PRE tech-
niques suffer from the errors of over-segmentation and under-
segmentation in performing format extraction. This challenge
may affect the subsequent task of semantic inference.

To mitigate the preceding challenge, we introduce an instruction-
based semantic similarity analysis strategy, which is resilient against
the actual protocol implementations (detailed in Section 3.3).

2.3 Challenges of Semantic Inference

Semantic Inference aims to infer the semantics of the fields in a
message. For example, type and function are the two important field
semantics, which indicate the data type and the meaning of data
of a field. However, the semantic inference abilities of the classic
PRE techniques are limited due to the inadequate and inaccurate
inference rules. It affects such the downstream tasks of PRE as
network traffic auditing and protocol fuzzing.

To illustrate the limitations, we assess how effective the classic
PRE techniques are in supporting protocol fuzzing, one prominent
downstream task of PRE, from the perspective of the adequacy
and accuracy of semantic inference. Specifically, we selected Boo-
fuzz [1], a popular generation-based protocol fuzzing tool, as the
reference, and investigated the semantic inference abilities of three
classic ExeT-based PRE tools (Polyglot, AutoFormat, and Tupni)
and two NetT-based PRE tools (BinaryInferno and DynPRE).

Boofuzz by default supports five and six major categories of
types and functions [2]. Table 1 summarizes the semantic inference
adequacy and accuracy of the prior PRE tools. We can see that
none of Polyglot, AutoFormat, and Tupni infers the five types,
while Polyglot only infers three functions and Tupni infers two
functions. The two NetT-based PRE tools BinaryInferno and Dyn-
PRE, on the other hand, only infer one function, respectively. In
Appendix A [41], we give more details of our investigation against
Boofuzz and another popular protocol fuzzing tool Peach [16].
Moreover, by replicating the semantic inference of the ExeT-based
PRE tools, we find that the ExeT-based PRE tools can only infer

the command field with an F1-score of 0.14, the delimiter field with
an F1-score of 0.22, and the length field with an F1-score of 0.56
(detailed in Section 4). This indicates that the semantic inference
accuracy of the prior PRE tools is far from satisfactory. It may affect
such downstream tasks as protocol fuzzing and network auditing.

Challenge-2: The semantic inference abilities of the classic bi-
nary analysis based PRE techniques are limited due to the inade-
quate and inaccurate inference rules. This challenge may affect
supporting the downstream tasks of PRE.

To mitigate the preceding challenge, we build a novel library
composed of atomic semantic detectors to improve inference ade-
quacy and introduce a cluster-and-refine paradigm to improve the
accuracy of semantic inference (detailed in Sections 3.4 and 3.5).

3 BinPRE DESIGN

To tackle the challenges in field inference, we introduce BinPRE, a
binary analysis based PRE tool that accurately and comprehensively
reverse engineers protocol formats and semantics.

3.1 Overview

As shown in Figure 2, BinPRE comprises four major modules: Exe-
cution Monitor, Format Extraction, Semantic Inference, and Semantic
Refinement. Given a protocol message as input, the Execution Mon-
itor module tracks its parsing process and records the execution
information of the server’s instrumented binary. The Format Extrac-
tion module then analyzes the recorded execution information and
extracts field format through instruction-based semantic similar-
ity analysis. Based on the inferred format and behavioral features
within execution information, the Semantic Inference module uti-
lizes a library of atomic semantic detectors to identify the semantics
of each field. Finally, to further improve semantic inference, the
Semantic Refinement module clusters protocol messages to capture
contextual features and refines the semantic inference results.

3.2 Execution Monitor

The Execution Monitor module incorporates taint analysis [30, 47,
51] to capture execution information, including data-flow and control-
flow when the server parses protocol messages. It taints protocol
message data at the byte level and captures their propagation traces
to understand how data is processed by the server program.

Specifically, the Execution Monitor records detailed execution
information for each tainted byte, including the taint propagation
path, changes in taint value (i.e., the values of tainted bytes), and
the instructions that manipulate the bytes. It instruments the binary
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Figure 2: BinPRE overview

executable of the server at three levels: function, basic block, and
instruction. The first two levels capture the control-flow propaga-
tion, and the latter tracks the data-flow propagation. It pays extra
attention to branch conditions and loop iterations, which reflect
the dependencies between fields. The outputs from all these levels,
referred to as behavioral features, are then passed to the Format
Extraction module and the Semantic Inference module.

3.3 Format Extraction

Given a protocol message and its taint analysis results, BinPRE uses
an instruction-based semantic similarity analysis strategy to extract
protocol fields and determines field boundaries. Our key insight is
that the bytes from the same field should have similar semantics.
Specifically, the semantics could be approximated by the sequences
of instruction operators accessing these bytes.

Algorithm 1 implements our key insight to achieve format extrac-
tion. The algorithm takes as input an input message𝑀 and the in-
struction set 𝐼𝑁𝑆𝑇𝑀 composed of instructions accessing the bytes in
𝑀 . Recall that 𝐼𝑁𝑆𝑇𝑀 is obtained from the Execution Monitor mod-
ule. The Format Extraction module first conducts intra-instruction
analysis (lines 3–8) to identify the adjacent bytes accessed by the
same instruction. It iterates over all the instructions in 𝐼𝑁𝑆𝑇𝑀 to
obtain the field candidates accessed by each instruction. Specifically,
for each instruction, BinPRE extracts the sequence of bytes from
execution information and treats them as a candidate field (lines
4–5). It maintains a set of the extracted field candidates 𝑆 and adds
each new identified field candidate to 𝑆 (line 6).

To further determine the field boundaries, the Format Extraction
module then performs inter-instruction analysis (lines 9–19). It iter-
ates over all the obtained field candidates to examine the semantic
similarity between adjacent candidate field candidates (line 11).
BinPRE uses the instruction operators as the proxy of semantics
of assembly instructions. Because the instruction operators reflect
the core functionalities of these instructions. In practice, BinPRE
extracts the operator sequences accessing each field candidate and
adopts the Needleman-Wunsch (NW) algorithm [46] (implemented
in the procedure SemanticSimilar) to calculate the sequence simi-
larly (lines 21-25). Note that Needleman-Wunsch (NW) algorithm
is a classic algorithm for sequence similarity matching scenarios.
When the two operator sequences are similar, their semantics are
assumed to be similar. If the two adjacent field candidates have
similar semantics, they will be merged (lines 12–13).

Specifically, given two adjacent field candidates 𝑓𝑖 and 𝑓𝑗 , their
semantic similarity score NW𝑜 is calculated as

Algorithm 1: Format extraction.
Input:𝑀 : an input message, INST𝑀 : instructions accessing the bytes in𝑀

Output: 𝐹 : the fields extracted from𝑀

1 Procedure FormatExtraction(𝑀 , INST𝑀):
2 𝑆 := {} ⊲𝑆 is the set of field candidates
3 for inst𝑖 in INST𝑀 do

4 𝑏𝑠_𝑖𝑛𝑠𝑡𝑖 := ExtractByteSeq(𝑖𝑛𝑠𝑡𝑖 )
5 𝑓 _𝑖𝑛𝑠𝑡𝑖 := BytesToField(𝑏𝑠_𝑖𝑛𝑠𝑡𝑖 )
6 𝑆 := 𝑆

⋃{ 𝑓 _𝑖𝑛𝑠𝑡𝑖 }
7 end

8 𝐿 := SortWithOffset(𝑆) ⊲𝐿 is a list of field candidates
9 𝑖 := 0

10 while 𝑖 < (𝑙𝑒𝑛 (𝐿) − 1) do
11 if SemanticSimilar (𝐿[𝑖 ], 𝐿[𝑖 + 1]) then
12 𝐿[𝑖 + 1] := MergeFields(𝐿[𝑖 ], 𝐿[𝑖 + 1])
13 𝐿[𝑖 ] := 𝑁𝑢𝑙𝑙

14 end

15 𝑖 := 𝑖 + 1
16 end

17 𝐹 := 𝑅𝑒𝑚𝑜𝑣𝑒𝑁𝑢𝑙𝑙 (𝐿)
18 return 𝐹 ⊲𝐹 is a list of extracted fields
19 End Procedure

20 Procedure SemanticSimilar(𝑓𝑖 , 𝑓𝑗 ):
21 𝐼 := {𝑖𝑛𝑠𝑡 ∈ INST𝑀 | ExtractInstSeq(𝑖𝑛𝑠𝑡 ) ∈ 𝑓𝑖 }
22 𝐽 := {𝑖𝑛𝑠𝑡 ∈ INST𝑀 | ExtractInstSeq(𝑖𝑛𝑠𝑡 ) ∈ 𝑓𝑗 }
23 𝑚,𝑛 := 𝑙𝑒𝑛 (𝐼 ), 𝑙𝑒𝑛 ( 𝐽 )
24 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 := 𝑁𝑊𝑜 (𝑚,𝑛)/𝑚𝑎𝑥 (𝑚,𝑛)
25 return 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 > 0.8
26 End Procedure

𝑁𝑊 𝑜 (𝑖, 𝑗 ) = max


𝑁𝑊 𝑜 (𝑖 − 1, 𝑗 − 1) +𝐶 (𝐼 [𝑖 ], 𝐽 [ 𝑗 ] ),
𝑁𝑊 𝑜 (𝑖 − 1, 𝑗 ) + GAP_SCORE,
𝑁𝑊 𝑜 (𝑖, 𝑗 − 1) + GAP_SCORE

𝐶 (𝑎,𝑏 ) =
{

MA_SCORE, 𝑖 𝑓 𝑂𝑃 (𝑎) = 𝑂𝑃 (𝑏 )
MISMA_SCORE, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where𝑂𝑃 (𝑎) indicates the operator of instruction 𝑎;𝐶 (𝑎, 𝑏) com-
pares whether the operators of the two instructions, i.e., a and b,
are the same; GAP_SCORE (the default value is set as -2) is for penal-
izing discontinuities between operator sequences; MA_SCORE (the
default value is set as 1) is for encouraging matches of the same
operators; and MISMA_SCORE (the default value is set as -1) is for pe-
nalizing mismatches of different operators. Following the standard
convention [55], the semantic similarity threshold is set as 0.8. This
threshold has been justified by our further evaluation on the effect
of different thresholds (detailed in Appendix C [41]). This threshold
value ensures a high degree of consistency in deciding the seman-
tic similarity. By using 𝑁𝑊 𝑜 , BinPRE merges semantically similar
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f0,0

f1,1

movzx, cmp

movzx, cmp
similar f0,1

Figure 3: The process of analyzing a field that is prone to the

over-segmentation error.

f10,10

f20,20

cmp, movzx, xor, mov, movzx

similar f10,20

cmp, movzx, xor, mov, movzx

... f11,11 to f19,19

f21,22 or, movzx, cmp

unsimilar

f21,22

Figure 4: The process of analyzing a field that is prone to the

under-segmentation error.

fields (lines 12–13). Finally, it removes all the null fields in 𝐿 and
outputs 𝐹 as the final format extraction results (lines 17–18).

To further illustrate the mechanism of Format Extractionmodule,
we provide two concrete examples:
Example-1. Take the first two bytes [𝑏0, 𝑏1] of the input message
in Figure 1 as an example. During the intra-instruction analysis,
BinPRE obtains the two field candidates 𝑓0,0 and 𝑓1,1 from these two
bytes. In Figure 3, the gray boxes show the sequences of instruction
operators accessing 𝑓0,0 and 𝑓1,1, respectively. Then, during the inter-
instruction analysis, since the sequences of instruction operators
accessing 𝑓0,0 and 𝑓1,1 are identical (i.e., [𝑚𝑜𝑣𝑧𝑥, 𝑐𝑚𝑝]), they have
the similar semantic (i.e., the similarity value is 1.0). As a result,
BinPRE merges them into one single field 𝑓0,1.
Example-2. Take the bytes [𝑏10, · · · , 𝑏22] of the input message
in Figure 1 as an example. As shown in Figure 4, all the bytes
[𝑏10, · · · , 𝑏20] are processed in the same loop with the identical
sequences of instruction operators [𝑐𝑚𝑝,𝑚𝑜𝑣𝑧𝑥, 𝑥𝑜𝑟,𝑚𝑜𝑣,𝑚𝑜𝑣𝑧𝑥],
while the bytes [𝑏21, 𝑏22] are accessed by a different sequence of
instruction operators [𝑜𝑟,𝑚𝑜𝑣𝑧𝑥, 𝑐𝑚𝑝]. As a result, BinPRE assume
the bytes [𝑏10, · · · , 𝑏20] and [𝑏21, 𝑏22] have different semantics and
thus separates these bytes into two separate fields: 𝑓10,20 and 𝑓21,22.

3.4 Semantic Inference

With behavioral features, the Semantic Inference module infers
semantic types and functions of each field. Guided by the execution
information from Execution Monitor, we construct a novel library
of atomic semantic detectors for inferring each field’s type and
function. The semantic detectors utilize two types of information:
(1) 𝐼 (𝑓 ): the set of instructions accessing field 𝑓 ; and (2) 𝑉 (𝑓 ): the
value of 𝑓 . Note that, all the fields in an input message should have
semantic types, and only some fields have semantic functions.

Overall, the Semantic Inference module supports five(six) seman-
tic types(functions), which are summarized in Table 2. These seman-
tics align with those supported by Boofuzz (detailed in Section 2.3).

Static type has a fixed value and location in the message, re-
gardless of the message content and context. Its primary purpose is
to validate the message and indicate the flags related to protocols,
sessions, or messages (e.g., Protocol Version ID). BinPRE regards a
field as Static only when 1) the field is compared to a fixed value and

the result yields true; and 2) no additional functional operations are
performed. Note that, functional operations are instructions other
than those whose operators are of the “mov” series.

Integer type represents a number recording metadata like data
size and length. Given its numeric nature, BinPRE regards a field
as an Integer when 1) it involves arithmetic or bit-wise operations;
or 2) it is compared with multiple consecutive values.

Group type comprises a list of static values that encompass all
the possible values for the current field. It is typically employed to
support multiple options, parsing the protocol message based on its
value. Hence, BinPRE regards a field as Group only when compared
with multiple different constants via conditional branches.

Bytes type denotes a sequence of binary bytes of arbitrary length.
It usually serves as data chunks for transmission. BinPRE regards a
field as Bytes only when all its bytes belonging to the same structure,
identified through identical operations within a loop.

String type is similar to the Bytes type except that it is delimited
by a specific delimiter. BinPRE regards a field as String type if the
multiple consecutive bytes within this field are compared to the
same constant (i.e., a delimiter). Therefore, BinPRE distinguishes
the String type from the Bytes type by the occurrences of specific
consecutive comparison.

Command function indicates the message types, the most criti-
cal field in the messages. It has different names (e.g., function code,
command field, and keyword) in different protocol specifications.
BinPRE regards a field as Command only when 1) the field is com-
pared to a fixed value and the result yields true; and 2) when the
result yields true, some function jump is immediately triggered.

Length function records the length of the whole or some part
of a message. BinPRE regards a field as Length when 1) it serves as
the termination condition of loop structure; or 2) it is retrieved by
library APIs (e.g., function recv which takes Length as input); or 3)
it involves pointer increment and counter decrement operations.

Delim function is inextricably linked to field slicing in protocol
implementations, indicating the end of a text protocol field. BinPRE
regards a field as Delim when 1) it serves as the termination condi-
tion of a loop; and 2) it delimits its adjacent fields. Note that, the
Delim function is often related to adjacent fields in text protocols,
while the Length function is often related to a subsequent block of
data or message in binary protocols.

Checksum function verifies the integrity of messages or data,
assisting message interaction and communication. BinPRE regards
a field as Checksum only when it is compared to the output of a
loop which iterates multiple consecutive bytes.

Filename function stores a file’s the path or name. As it is rarely
modified or used for control-flow decisions, BinPRE identifies it by
content rather than execution information, considering a field as
Filename when it conforms to a common file naming convention.

Aligned function represents the fields that are rarely retrieved
by the server, which are mainly for data alignment. When the
execution information is missing, such fields are difficult to be
identified. BinPRE regards a field as aligned only when it does not
involve any functional operations.
Example-3. Take 𝑓21,22 in Figure 1 as an example. The execution
information of 𝑓21,22 is shown in Figure 5. BinPRE regards its type
as Integer, as it involves bit-wise operations (lines 5–6 of Figure 5).
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Table 2: Different semantic types and functions supported by BinPRE’s library of atomic semantic detectors.

Semantic Attributes Rules of Atomic Semantic Detectors
Static Fixed value across messages Comparison OPs with a fixed value which yields true and without other functional operations
Integer Represent a number of variable length Arithmetic/bit-wise OPs or comparison OPs with multiple consecutive values
Group Comprise a list of available values Comparison OPs with multiple different constants
Bytes Denote a sequence of binary bytes of arbitrary length Field bytes’ shared OPs within a loop
String Denote a sequence of text characters Comparison OPs of consecutive field bytes with the same constant and field bytes’ shared OPs within a loop

Command Denote message type Comparison OPs with a fixed value which yields true and corresponding jumping OPs
Length Indicate the length of message or data Termination OPs of loops, or message parsing OPs, or pointer-increment /counter-decrement OPs
Delim Seperate two fields Termination OPs of loops and delimit OPs of adjacent fields

Checksum Verify the integrity of messages or data Comparison OPs with the output from iterations over multiple consecutive bytes
Filename Identify a file within the file system Common file naming convention
Aligned Align contents to a certain number of bytes Without functional OPs

Listing 2: 𝐼 (𝑓 )
1 mov qword ptr [rbp−0x40], rsi
2 mov rax, qword ptr [rbp−0x40]
3 movzx eax, byte ptr [rax]
4 movzx edx, byte ptr [rdx]
5 shl edx, 0x8
6 or eax, edx
7 'LOOP':
8 cmp qword ptr [rbp−0x20], rax
9 movzx eax, byte ptr [rax]
10 xor eax, ecx
11 mov byte ptr [rbp−0x7], al
12 movzx edx, byte ptr [rbp−0x7]
13 ...'repeat for bytes 11−20'
14 cmp qword ptr [rbp−0x20], rax
15 movzx edx, word ptr [rbp−0x22]
16 cmp ax, dx

Listing 3: 𝑉 (𝑓 ).
1 𝑓2,2 V(f):0xb
2 𝑓2,2 V(f):0xb
3 𝑓21,21 V(f):0xc2
4 𝑓22,22 V(f):0xd1
5 𝑓22,22 V(f):0xd1
6 𝑓21,22 V(f):0xc2,0xd100
7
8 𝑓2,2 V(f):0xb
9 𝑓10,10 V(f):0xc6
10 𝑓10,10 V(f):0xc6
11 𝑓10,10 V(f):0xc6
12 𝑓10,10 V(f):0xc6
13
14 𝑓2,2 V(f):0xb
15 𝑓21,22 V(f):0xd1c2
16 𝑓21,22 V(f):0xd1c2

Figure 5: Assembly instructions for lines 16-28 of Listing 1

Meanwhile, the value of 𝑓21,22 is compared with a value output
from a loop that analyzes consecutive bytes (lines 7–16). Therefore,
BinPRE regards its function as Checksum.
Discussion. To balance accuracy and generality, BinPRE supports
5 semantic types and 6 semantic functions that are common in
protocols and have distinctive features. In real-world applications,
there might be other field semantics. BinPRE could easily support
them by extending the library of atomic semantic detectors. Note
that that it is fundamentally impossible for the classic PRE tech-
niques [30, 36, 47] to achieve similar inference results w.r.t. BinPRE,
even if we extend these PRE techniques with our library of atomic
semantic detectors (detailed in Appendix B [41]).

3.5 Semantic Refinement

The Semantic Refinement module enhances the semantic inference
results with a cluster-and-refine paradigm, incorporating contextual
features of fields. Based on the format extraction results, it first
explores the command field position and cluster messages with the
most similar formats. Within each message cluster, it adopts an
entropy-based approach [59] to characterize field content variation
and refine the results of semantic types. Afterwards, it refines the
results of semantic functions, which utilizes the constraints between
the semantic functions and the semantic types.

3.5.1 Format-Based Clustering. With the formats from the For-
mat Extraction module, BinPRE identifies the command field and
clusters protocol messages. This is motivated by the observation
that messages with the same command field typically have similar
formats [66]. Utilizing the similarity of message formats, BinPRE
explores the optimal basis, i.e., command field position, to cluster

Algorithm 2:Message clustering.
Input: MESSAGES, FORMATS
Output: CLUSTERS: the optimal clustering for messages

𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑝𝑜𝑠 : the optimal command position for clustering
1 Procedure ExploreOptimal(MESSAGES, FORMATS):
2 𝑚𝑎𝑥𝑠𝑐𝑜𝑟𝑒 := 0
3 𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑝𝑜𝑠 := −1
4 for𝑚𝑖 in MESSAGES do
5 𝐹𝑖 := FORMATS[𝑚𝑖 ] ⊲ format result of𝑚𝑖

6 for 𝑏 𝑗 in 𝐹𝑖 do

7 𝑓𝑐𝑜𝑚𝑚 := ExtractField(𝑏 𝑗 , 𝑏 𝑗+1)
8 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 := Clustering(𝑓𝑐𝑜𝑚𝑚 , MESSAGES)
9 𝑐𝑢𝑟𝑟𝑠𝑐𝑜𝑟𝑒 := AlignScore(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 , FORMATS)

10 if 𝑐𝑢𝑟𝑟𝑠𝑐𝑜𝑟𝑒>𝑚𝑎𝑥𝑠𝑐𝑜𝑟𝑒 then

11 𝑚𝑎𝑥𝑠𝑐𝑜𝑟𝑒 := 𝑐𝑢𝑟𝑟𝑠𝑐𝑜𝑟𝑒

12 𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑝𝑜𝑠 := 𝑓𝑐𝑜𝑚𝑚

13 end

14 end

15 end

16 CLUSTERS := Clustering(𝑐𝑜𝑚𝑚𝑝𝑜𝑠 , MESSAGES)
17 return CLUSTERS, 𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑝𝑜𝑠

18 End Procedure

messages. These message clusters contain important contextual fea-
tures (e.g., field content variations within each cluster) that would
be used to further refine the semantics in entropy-based type re-
finement (cf. Section 3.5.2) and type-based function refinement (cf.
Section 3.5.3) steps. Note that, this identified command field is also
used for refining the earlier inference results.

As summarized in Algorithm 2, BinPRE iterates over all mes-
sage fields and identifies the best basis for format-based cluster-
ing. Given a set of messages MESSAGES := {𝑚1,𝑚2, . . .}, and the
corresponding set of formats FORMATS := {𝐹1, 𝐹2, . . .} obtained
through Format Extraction module. For each message𝑚𝑖 , BinPRE
iterates over the boundaries in its format results 𝐹𝑖 (lines 6–14). It
extracts a candidate command field 𝑓𝑐𝑜𝑚𝑚 from each pair of adja-
cent boundaries in 𝐹𝑖 and clusters messages with it (lines 7–8). It
then calculates the alignment score as the average 𝑁𝑊𝑓 score of
the format sequences of each message pair within the cluster (line
9). Specifically, given two message format sequences, which con-
tain the field boundaries within the messages, i.e., 𝐹𝑎 and 𝐹𝑏 , their
format alignment score NW𝑓 is calculated as

𝑁𝑊 𝑓 (𝑖, 𝑗 ) = max


𝑁𝑊 𝑓 (𝑖 − 1, 𝑗 − 1) +𝐶 (𝐹𝑎 [𝑖 ], 𝐹𝑏 [ 𝑗 ] ),
𝑁𝑊 𝑓 (𝑖 − 1, 𝑗 ) + GAP_SCORE,
𝑁𝑊 𝑓 (𝑖, 𝑗 − 1) + GAP_SCORE

𝐶 (𝑚,𝑛) =
{

MA_SCORE, 𝑖 𝑓 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 (𝑚) = 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 (𝑛)
MISMA_SCORE, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Figure 6: An illustrative example of Semantic Refinement module.

where 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 (𝑚) indicates the offset of boundary m in the
message; 𝐶 (𝐹𝑎 [𝑖], 𝐹𝑏 [ 𝑗]) compares whether the ith boundary of
the message a and the jth boundary of the message b, i.e., 𝐹𝑎 [𝑖]
and 𝐹𝑏 [ 𝑗], are the same; GAP_SCORE (the default value is set as -2) is
for penalizing discontinuities between format sequences; MA_SCORE
(the default value is set as 1) is for encouraging matches of the
same boundaries; and MISMA_SCORE (the default value is set as -1)
is for penalizing mismatches of different boundaries. In the end of
each iteration, the algorithm updates the highest alignment score
𝑚𝑎𝑥𝑠𝑐𝑜𝑟𝑒 and the optimal clustering basis 𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑝𝑜𝑠 (lines 10–
12). Finally, BinPRE accepts the boundary pair of highest alignment
score as the Command field, and clusters messages with their Com-
mand field value (lines 16–17).

3.5.2 Entropy-Based Type Refinement. Observing that field types
mirror the underlying patterns of field value variations, we adopt
entropy-based characteristics to refine the results of type inference.

In the Semantic Inference module, BinPRE utilizes execution in-
formation to infer semantic types. However, the inference results
may not be reliable for the fields that are rarely retrieved. There-
fore, BinPRE utilizes the content variation patterns of a field within
the same message clusters to refine these results. It employs an
information-theoretic approach to capture the variation patterns
of field contents across the messages, with the assumption that
messages within the same cluster have similar formats and seman-
tics. BinPRE leverages Shannon entropy [59] to characterize the
variation patterns. For field 𝑓𝑖, 𝑗 , whose boundaries are of offset 𝑖
and 𝑗 , its Shannon entropy is

𝐻 (𝑓𝑖,𝑗 ) = −
∑︁

𝑣∈𝐶𝑖,𝑗

𝑃 (𝑣) log𝑃 (𝑣) ,

where C𝑖, 𝑗 is the collection of the 𝑖-th to 𝑗-th byte of messages in
the Cluster 𝐶 . The probability of a value 𝑣 in C𝑖, 𝑗 , denoted as 𝑃 (𝑣),
is calculated as its frequency in 𝐶𝑖, 𝑗 .

To reduce false positives, BinPRE only uses extreme entropy
patterns to refine the inferred semantic types. The Static and Bytes
types present two extremes of conveyed information: the Shannon
entropy of the former is expected to be relatively small, and the
latter to be large. BinPRE then calculates the median Shannon
entropy of all fields within the same cluster 𝐶 . The inference result
of the Static (Bytes) type is valid only when its Shannon entropy is
smaller (larger) than the median.

BinPRE also uses entropy characteristics to infer the semantic
type of fields that lack execution information. It is based on the

Table 3: Constraints between semantic functions and types.

Field Function Constraint on Field Type

Command Should be Group
Length Should be Integer
Delim Should be Static or Group
Aligned Should be Group or Bytes
Checksum Should be Integer
Filename Should be String

intuition that similar Shannon entropy usually appears in fields
of the same semantic types. For a field of unknown type, BinPRE
finds the field with the closest Shannon entropy within the same
message cluster, and regards them as sharing the same type.

3.5.3 Type-Based Function Refinement. We observe that there are
some constraints between semantic types and functions. For a cer-
tain semantic function, its corresponding semantic type is con-
strained to a small subset. For example, the Length field should be
the Integer type, as the data length is an integer value. Therefore,
we utilize the refined semantic types to refine the semantic func-
tions. BinPRE applies such constraints to remove the unreasonable
inference results of semantic functions. Table 3 summarizes the
constraints. The Command field should be of Group type, as the
server typically selects one of the options for parsing an input mes-
sage based on the Command value; The Length field and Checksum
field should be of Integer type according to their definitions; The
Delim field should be of Static or Group type, as it serves as data
boundaries; The Aligned field should be of Group or Bytes type,
according to its typical implementations; Similarly, the Filename
field should be of String type.
Example-4. Figure 6 illustrates the process of Semantic Refinement
module. Assume it takes the given five messages as inputs. The
left part shows the format and semantic results obtained from the
Format Extraction and Semantic Inference modules. The right part
shows the results obtained after executing the Semantic Refinement
module. BinPRE first iterates over all the message fields to identify
the optimal clustering basis 𝑓7 based on the similarity of message
formats. It then figures out that the Shannon entropy of 𝑓4,5 in the
first cluster is zero, and thus removes the inference result of Bytes
through entropy-based type refinement. Similarly, it also removes
the unreasonable inference result Delim of 𝑓4,5 through type-based
function refinement. With the Semantic Refinement module, BinPRE
finally achieves the correct semantic inference of 𝑓4,5.
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3.6 Implementation

BinPRE is implemented in Python3 and C++. The Execution Monitor
module taint tracks binary files with the dynamic instrumentation
tool Pin [17]. It uses Scapy [19] to derive execution information of
messages, aiding subsequent field inference. The Format Extraction
module implements instruction-based semantic similarity analy-
sis from Section 3.3 to extract the message formats. The Semantic
Inference module infers field semantics with the rules in Table 2,
and validates filename conventions through file path syntax. The
Semantic Refinement module follows the three-step process from
Section 3.5, utilizing the results from Format Extraction and Seman-
tic Inference modules to improve the overall correctness of field
inference. BinPRE is modularly designed. The modules export uni-
form interfaces and could be easily extended to support additional
field semantics.

4 EVALUATION

Our evaluation aims to answer the following research questions:

• RQ1: How accurate is BinPRE in performing format extraction?
• RQ2: How accurate is BinPRE in performing semantic inference?
• RQ3: How effective are BinPRE’s semantic refinement compo-
nents in improving the accuracy of semantic inference?

• RQ4: How useful are the field inference results of BinPRE in
improving such downstream tasks as protocol fuzzing?

4.1 Setup

4.1.1 Baselines. We compared BinPRE with five state-of-the-art
PRE tools:

• Polyglot [30] is an ExeT-based tool that infers key field seman-
tics with simple heuristics to facilitate further format extraction.

• AutoFormat [47] is an ExeT-based tool that extracts formats
with hierarchical, parallel, and sequential relationships.

• Tupni [36] is an ExeT-based tool that identifies field formats from
instruction frequency and record sequences.

• BinaryInferno [31] is a NetT-based tool that infers fields with
multiple atomic detectors of different heuristic rules.

• DynPRE [50] is a NetT-based tool that extracts field formats
through the interactive capabilities of the server.

Among all baselines,AutoFormat cannot infer semantics, while
the others have very limited support. Since Polyglot, AutoFor-
mat, and Tupni are not publicly available, we re-implemented our
versions of their techniques and validated with the examples in
their papers before the comparison (detailed in Section 4.3).

4.1.2 Benchmarks. We constructed the benchmarks as follows:
Protocols. We selected 7 [4–7, 13, 20, 21] popular protocols eval-
uated by the prior PRE tools Polyglot [30], AutoFormat [47],
Tupni [36], BinaryInferno [31] and DynPRE [50]. These 7 proto-
cols are widely-adopted and covering textual, binary, and mixed
categories. Their application scenarios include industrial control
and network communication. Among them, S7comm was a propri-
etary protocol, and the others are open-sourced. We additionally
selected another real-world protocol Ethernet/IP [14] from prior
work [60, 62]. It is an industrial protocol that is widely adopted
across many industrial sectors, including factory automation and
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Figure 7: An illustration of format extraction metrics.

hybrid process control. Thus, we evaluated BinPRE with 8 real-
world protocols. Among these 8 protocols, 7 have been evaluated
by at least one prior PRE tool, and 4 have been evaluated by at
least two prior tools. In particular, BinPRE has 2, 1, 4, 2, 4 common
protocols with Polyglot, AutoFormat, Tupni, BinaryInferno
and DynPRE, respectively.
Messages. Each protocol is tested with 50 messages with diverse
and real-world usage scenarios. The messages are collected from
two sources: (1) open-source network trace datasets [8–12, 40]; and
(2) protocol clients or other relevant tools [3] when the former is
unavailable. Since the binary analysis based PRE techniques like
BinPRE are not sensitive to the sizes of input messages, we did not
use a larger dataset size. On the other hand, the two network-based
PRE techniques (BinaryInferno and DynPRE) are designed to
be capable of handling small-sized input messages. Table 9 in the
Appendix [41] lists the evaluated protocols and their characteristics
including the server under testing, the message sources and the
number of different message types. For Ethernet/IP and HTTP, we
ran the protocol client and the command line tool curl with different
options/parameters, respectively, to obtain diverse messages. For
other protocols, we randomly filtered the input messages with dif-
ferent types and contents from their open-source traces to improve
diversity and reduce dataset biases.
Ground-truth. We adopted protocol specifications as the ground-
truth. For each message, its ground-truth includes field boundaries
(format) and field type/functions (semantics). Specifically, for each
protocol’s 50 messages, we use Wireshark’s packet dissectors to
parse each message and obtain the ground-truths of field formats
and semantics. We also referred to the protocol RFCs for validation.

4.1.3 Protocol fuzzing. Protocol fuzzing is an important applica-
tion scenario of PRE. To evaluate how well the PRE tools assist the
downstream task performance, we incorporate their field inference
results into a classical generation-based fuzzer, Boofuzz [1], to
guide test generation. Specifically, for the fields supported by PRE
tools, we applied the corresponding types/functions in Boofuzz
to these fields. For the unsupported fields, we adopted the random
strategy, which only leverages the format extraction results to limit
the boundaries of each random field. Each scheme was tested for 10
hours on a machine with a Core i7-13700 CPU and 16GB memory.

4.1.4 Metrics. We adopt different metrics for different tasks.
Format extraction task is evaluated with the accuracy and F1-

score (a combination of precision and recall) of field boundary
detection [31, 50]. As illustrated in Figure 7, each boundary offset
position between two adjacent bytes can fall into one of the four
categories: FP, TP, FN, and TN. Based on these definitions, we cal-
culated accuracy (i.e., the number of correctly inferred positions
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out of all offset positions), precision (i.e., the number of inferred
true field boundaries out of all inferred boundaries), and recall (i.e.,
the number of inferred true field boundaries out of all true bound-
aries). We also counted the number of perfect fields, of which both
boundaries are accurately detected, and calculated perfection (i.e.,
the number of perfectly inferred fields out of all true fields).

Semantic inference task is evaluated with the precision, recall,
and F1-score (a combination of precision and recall) of field seman-
tic type/function identification. As different tools support different
semantic types/functions (see Section 2.3), we evaluated type/func-
tion separately. Specifically, precision is calculated as the number of
inferred true types/functions out of all inferred types/functions, and
recall is calculated as the number of inferred true types/functions
out of all true types/functions.

Protocol fuzzing is evaluated with branch coverage improve-
ment. We used SanitizerCoverage [18] to identify covered unique
branches. As any server’s startup executes fixed program paths, we
focus on the branches covered after the server has started.

4.2 Results

4.2.1 RQ1: Format. Figure 8 summarizes the average performance
of each tool on format extraction, and Table 4 details the results.

Overall, BinPRE significantly outperforms the baselines, achiev-
ing an average accuracy/F1-score/perfection of 0.90/0.86/0.73, due
to its effective instruction-based semantic similarity analysis. In
comparison, the baselines are 13-60% lower.

In some cases, BinPRE has similar or slightly lower performance
than the best baseline, due to the correlation between the format
extraction algorithm and protocol characteristics. For example, the
S7comm protocol has compact message structures and the behav-
ioral differences between fields are relatively small (i.e. several
adjacent fields only retrieved by the parsing process). Meanwhile,
Polyglot leverages the typical patterns of the single instruction-
based field segmentation, which is particularly effective on such
protocols. Therefore, it perfectly identifies 27% more fields than
BinPRE. As another example, BinPRE does not consistently achieve
the highest perfection on the HTTP protocol, as the server uses
delimiters as the starting point of the key-value pair field: the de-
limiters and their subsequent fields share similar semantics and
are processed in similar ways. Thus, BinPRE fails to identify their
boundaries in some cases.
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Figure 9 shows the numbers of over-segmentation and under-
segmentation errors of the common strategy for format extraction
used by the prior ExeT-based tools (detailed in Section 2.2), the three
ExeT-based baselines and BinPRE, respectively. We excluded the
fields which have not been accessed by the servers because these
fields cannot be inferred from the instruction traces. Compared with
the alternatives, BinPRE has 63∼70% fewer segmentation errors,
and achieves the best trade-off between over-segmentation and
under-segmentation errors.WhileAutoFormat has the least under-
segmentation errors, it comes at the cost of more over-segmentation
errors. Moreover, BinPRE has 72% fewer segmentation errors than
the common strategy used by the prior ExeT-based tools.

Answer to RQ1 (Format): BinPRE identifies field formats with
the perfection score of 0.73, which outperforms all the baselines.

4.2.2 RQ2: Semantics. Overall, BinPRE achieves an average preci-
sion, recall, and F1-score of 0.72/0.77/0.74 for semantic type infer-
ence and 0.77/0.91/0.81 for semantic function inference.

We compared BinPRE with the baselines, except for AutoFor-
mat which does not support semantics inference. Figure 10 shows
the average F1-score on each semantic which is supported by at
least one baseline. BinPRE greatly outperforms baselines in all cases.
Specifically, Polyglot and Tupni are 24% worse than BinPRE on
the Length field, as they heavily rely on behavior-based heuristic
rules, which are not resilient towards diverse protocol implemen-
tations. DynPRE’s and BinaryInferno’s poor format extraction
performance results in a high number of errors on semantic infer-
ence. Furthermore, the context-based rules of BinaryInferno are
not suitable for datasets of diverse formats.
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Table 4: Format extraction result summary, including accuracy, F1-score, and perfection (Bold numbers indicate the best results).

Protocol BinPRE Polyglot AutoFormat Tupni BinaryInferno DynPRE

Acc. F1. Perf. Acc. F1. Perf. Acc. F1. Perf. Acc. F1. Perf. Acc. F1. Perf. Acc. F1. Perf.

Modbus 1.00 1.00 0.99 0.91 0.93 0.84 0.91 0.93 0.84 0.82 0.87 0.61 0.79 0.79 0.32 0.71 0.79 0.39
S7comm 0.79 0.83 0.60 0.85 0.90 0.87 0.82 0.88 0.80 0.86 0.91 0.85 0.54 0.52 0.09 0.65 0.71 0.28

Ethernet/IP 0.95 0.92 0.66 0.75 0.71 0.79 0.52 0.56 0.38 0.72 0.69 0.75 0.77 0.57 0.28 0.90 0.83 0.42
DNP3.0 0.95 0.95 0.88 0.90 0.84 0.63 0.65 0.72 0.75 0.75 0.67 0.25 0.61 0.50 0.25 0.59 0.36 0.08
DNS 0.74 0.66 0.62 0.73 0.66 0.58 0.39 0.46 0.44 0.63 0.58 0.47 0.82 0.46 0.11 0.45 0.41 0.26
FTP 0.88 0.86 0.57 0.42 0.59 0.24 0.52 0.64 0.57 0.56 0.63 0.07 0.72 0.00 0.00 0.79 0.67 0.36
TFTP 0.99 0.96 0.89 0.25 0.36 0.30 0.44 0.43 0.30 0.83 0.74 0.30 0.89 0.00 0.00 0.77 0.46 0.07
HTTP 0.86 0.72 0.60 0.24 0.33 0.56 0.63 0.51 0.65 0.20 0.32 0.58 0.83 0.00 0.00 0.82 0.14 0.03
Average 0.90 0.86 0.73 0.63 0.66 0.60 0.61 0.64 0.59 0.67 0.68 0.49 0.75 0.35 0.13 0.71 0.54 0.24

Table 5: F1-score of semantic inference for field Command.

Protocol BinPRE# BinPRE
Modbus 0.85 1.00
S7comm 0.22 1.00
Ethernet/IP 0.67 1.00
DNP3.0 0.00 0.00
TFTP 0.00 1.00
Average 0.35 0.80

* BinPRE# is a variant of BinPRE, which omits format-based clustering.

BinPRE also has relatively high performance on the other seven
semantics that are unsupported by baselines: it has the F1-scores
of 0.56 for Static, 0.61 for Integer, 0.50 for Group, 0.54 for Bytes,
0.15 for String, 0.00 for Aligned and 0.67 for Filename. BinPRE fails
to identify the fields Aligned in our benchmark suite. Because the
fields Aligned typically do not serve any functionality, and thus
have little behavioral and contextual features.

Answer to RQ2 (Semantics): BinPRE achieves the F1-scores of
0.74/0.81 on semantic inference for types/functions. It outper-
forms all the baselines on each semantic type/function.

4.2.3 RQ3: Ablation. We conducted ablation studies to assess the
effectiveness of Semantic Refinement module in semantic inference.
Format-based clustering. Table 5 shows the Command field
identification results with and without format-based clustering
(BinPRE#). As the format extraction module fails to correctly seg-
ment the command fields of DNS, FTP, and HTTP, we focus on the
remaining protocols. The result shows that format-based clustering
offers effective semantic refinement: BinPRE achieves the F1-score
of 0.8, while BinPRE# drops to 0.35. Both BinPRE# and BinPRE fail
on DNP3.0, as DNP’s messages of different commands share similar
formats, which conflicts with BinPRE’s conjunctures.
Type/function refinement.We compared BinPRE with its vari-
ant which omits type/function refinement. As shown in Table 6,
adopting type (function) refinement improves the semantic infer-
ence’s precision by 0.08 (0.25), recall by 0.07 (0.06), and F1-score
by 0.08 (0.19). It is worthy noting that adopting both refinements
improves the F1-score of Command by 0.29, Length by 0.26, Bytes
by 0.18, and Group by 0.15. These improvements are achieved by
handling the complex and irregular protocol implementations by
refining inference results with extra contextual information.

Answer to RQ3 (Ablation): All the three components of Semantic
Refinement module are effective in refining semantic inference re-
sults. Format-based clustering improves the F1-score of command
inference from 0.35 to 0.80. Type(function) refinement improves
the F1-score of semantic results from 0.66(0.62) to 0.74(0.81).
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Figure 11: Numbers of unique branches covered by PRE-

enhanced Boofuzz (averaged across three repeated runs).

4.2.4 RQ4: Downstream tasks. We evaluated the field inference
results from BinPRE and the baselines to enhance the downstream
task of protocol fuzzing. Since BinPRE provides the information
of both field formats and semantics (types and functions), we also
evaluated the two variants of BinPRE: (1) BinPRE∗ (only keeping
the field formats and types) and (2) BinPRE∗∗ (only keeping the
field formats). Figures 11 and 12 summarize the results of branch
coverage by fuzzing four representative protocols, i.e., Modbus,
Ethernet/IP, HTTP and FTP, from our benchmark suite. Modbus
and Ethernet/IP are binary protocols, while HTTP and FTP are text
protocols. To mitigate the randomness during fuzzing, we ran each
configuration for three times and computed the average values.
Branch Coverage. In Figure 11, BinPRE+ denotes the union results
of unique branches covered by BinPRE, BinPRE∗ and BinPRE∗∗. It
indicates the overall usefulness of the PRE results (with different
levels of information) of BinPRE to enhance Boofuzz. The Random
strategy denotes the results of the vanilla Boofuzz without given
any results of the PRE tools (i.e., Boofuzz simply generate random
message contents). In Figure 11, for each protocol, we give the
numbers of branches covered by Boofuzz enhanced by the results
of different PRE tools, and the improved branch coverage w.r.t. the
random strategy. On average, BinPRE-enhanced Boofuzz (denoted
by BinPRE+) achieves 20%/29%/5%/8% (51%/22%/16%/111%) higher
branch coverage on Modbus/Ethernet IP/HTTP/FTP, compared to
the best ExeT-based (NetT-based) baseline Polyglot (DynPRE).
BinPRE-enhanced Boofuzz improves the performance of vanilla
Boofuzz (denoted by Random) by covering 244%/133%/482%/148%
more branches on Modbus/Ethernet IP/HTTP/FTP. BinPRE is par-
ticularly effective in improving fuzz testing on binary protocols
because the binary protocols have compact and diverse field formats
and semantics. It covers 244% more branches on Modbus, and 133%
more on Ethernet/IP. On the loosely formatted text protocols, the
information of field formats is more useful for fuzzing: BinPRE∗∗
covers more branches on HTTP/FTP than BinPRE/BinPRE∗.
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Table 6: BinPRE’s semantic inference results w/ and w/o type/function refinement (Bold numbers indicates the best results).

Protocol
BinPRE Semantic Type BinPRE Semantic Function

w/o Refinement w/ Refinement w/o Refinement w/ Refinement

Pre. Rec. F1. Pre. Rec. F1. Pre. Rec. F1. Pre. Rec. F1.

Modbus 0.83 0.61 0.70 0.83 0.84 0.83 0.43 0.87 0.57 0.77 1.00 0.87

S7comm 0.50 0.53 0.52 0.51 0.55 0.53 0.42 0.56 0.48 0.85 0.56 0.67

Ethernet/IP 0.60 0.77 0.67 0.80 0.90 0.85 0.46 1.00 0.63 1.00 1.00 1.00

DNP3.0 0.55 0.70 0.62 0.71 0.70 0.71 0.43 1.00 0.60 0.77 1.00 0.87

DNS 0.59 0.79 0.67 0.59 0.79 0.67 0.25 0.98 0.40 0.29 0.98 0.45

FTP 0.62 0.62 0.62 0.62 0.62 0.62 0.87 1.00 0.93 0.90 1.00 0.95

TFTP 0.50 0.67 0.57 0.75 1.00 0.86 0.33 0.50 0.40 0.67 1.00 0.80

HTTP 0.95 0.92 0.94 0.94 0.78 0.85 0.94 0.93 0.93 0.95 0.77 0.86
Average 0.64 0.70 0.66 0.72 0.77 0.74 0.52 0.85 0.62 0.77 0.91 0.81

Table 7: Speedup of BinPRE-enhanced Boofuzz variants (i.e., BinPRE, BinPRE∗ and BinPRE
∗∗
) over those enhanced by prior

PRE tools in achieving highest identical branch coverage (Numbers larger than 1x indicate higher speeds of achieving coverage).

Modbus Ethernet/IP HTTP FTP

BinPRE BinPRE∗ BinPRE∗∗ BinPRE BinPRE∗ BinPRE∗∗ BinPRE BinPRE∗ BinPRE∗∗ BinPRE BinPRE∗ BinPRE∗∗

Polyglot 408.7x 670.7x 0.2x 513.3x 365.8x 154.8x 0.5x 2.7x 3.9x 0.7x 3.1x 5.4x
Tupni 975.1x 1628.8x 0.4x 20.1x 14.5x 2.1x 5.1x 1.1x 1.7x 0.8x 2.5x 6.7x

AutoFormat 3585.9x 5986.5x 0.5x 49.9x 35.9x 3.7x 26.9x 4.7x 8.6x 0.7x 4.7x 38.9x
BinaryInferno 82.6x 76.0x 45.1x 6989.0x 4997.4x 1752.6x 3972.0x 4038.4x 2383.0x 84.0x 70.2x 101.1x

DynPRE 5.5x 4.6x 2.7x 1134.1x 807.5x 0.0006x 1.4x 0.7x 1.0x 1233.6x 1761.9x 1606.7x
Random 29.5x 29.4x 35.2x 8.7x 6.1x 3.9x 36.1x 36.7x 12.8x 133.6x 111.6x 160.7x

Efficiency Figure 12 shows the numbers of unique branches cov-
ered by Boofuzz enhanced by the results of different PRE tools.
We can see that BinPRE-enhanced Boofuzz variants (i.e., BinPRE,
BinPRE∗ and BinPRE∗∗) outperforms those enhanced by the prior
PRE tools in most cases. In Table 7, we computed the speedup
of BinPRE-enhanced Boofuzz variants over those enhanced by
the prior PRE tools in achieving highest identical branch coverage.
The numbers greater than 1.0x indicate higher speeds of achieving
branch coverage. We can see that in most cases BinPRE-enhanced
Boofuzz variants are faster than the other baselines.
Revealed CVEs. BinPRE helped Boofuzz discover a new zero-
day vulnerability CVE-2024-31504 (CVSS score of 7.5 HIGH) in
FreeMODBUS. It could cause a buffer overflow and thus lead to a
denial of service. This vulnerability is related to two critical fields:
(1) a length field (in the message’s header) and (2) a variable-length
field (in the message’s payload). It is triggered when the value of
the former is large enough to allow the latter to exceed the buffer
limit, which causes a buffer overflow when FreeMODBUS tries to
read it. Specifically, a specific protocol variable n is overwritten by
a variable-length field, which indexes the array fd_bits, causing a
segmentation fault when n is overwritten to a large integer.

Only BinPRE helps Boofuzz discover this CVE, as BinPRE is
the only PRE tool that correctly segments the two critical fields and
correctly infers their types/functions — a Length field with integer
type, and a field with Bytes type. During the fuzzing, the inferred
Length function renders the server to process the entire message
payload, and the inferred Bytes type facilitates the generation of
byte sequences with arbitrary length. However, all the baseline tools
fail to identify these two fields. AutoFormat, Tupni, BinaryInferno,
and DynPRE fail in format extraction, while the other tools fail in
semantic inference. Therefore, the baselines cannot find this CVE.
Additionally, BinPRE also helps Boofuzz find one CVE-requested
bug (a buffer overflow vulnerability in FreeMODBUS) and one
known vulnerability CVE-2020-29596 in Miniweb.

Answer to RQ4 (Downstream tasks): BinPRE can enhance pro-
tocol fuzzing, and help discover new or known vulnerabilities.
The BinPRE-enhanced Boofuzz achieves 5∼29% higher branch
coverage, compared to the best prior ExeT-based PRE tool.

4.3 Discussions

Cost of BinPRE. The runtime cost of BinPRE includes two parts:
(1) tracking execution information of input messages; and (2) in-
ferring format and semantics from the execution information. For
the first part, BinPRE’s instrumentation introduces average 59%
runtime overhead. For the second part, analyzing 50 messages takes
less than 2 minutes on a machine with a Core i5-1038NG7 CPU and
8GB memory. As protocol reverse engineering is typically a one-
time cost, we believe that such overhead is affordable, considering
BinPRE’s benefits on downstream tasks.
Reproduction of Baselines. Three of the baselines (Polyglot,
AutoFormat and Tupni) are not publicly available. Therefore, we
re-implemented them according to their algorithm descriptions and
validated our implementations with the given examples in their
original papers. We observe that our evaluation results are also
consistent with their claims.

• Polyglot: Sections 3–6 of its paper were re-implemented. Its
format extraction algorithm and direction field identification
strategy are validated on the DNS protocol. Its keyword and
separator (delimiter) identification strategies are validated on the
HTTP protocol. Our implementation achieved the same results
as described in the paper. Note that Command and Length are
the most common keyword and direction fields, respectively [30].
Therefore, their identification strategies were implemented and
compared in our evaluation.

• AutoFormat: Section 3 (excluding 3.2.2) of its paper was re-
implemented. Its format extraction algorithm is validated on the
HTTP protocol, achieving the same results as in the paper.
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Figure 12: Numbers of unique branches covered by Boofuzz in ten hours enhanced by the results of different PRE tools.

• Tupni: Sections 3.1–3.5 of its paper were re-implemented. Its
format extraction algorithm is validated on the HTTP protocol.
Our implementation has slightly different outputs from the pa-
per. These discrepancies are caused by the unused fields and
delimiter checking within the server, which is consistent with
the root causes i.e., “a program ignores certain parts of an input”.
Note that neither the original Tupni nor our implementation
supports delimiter recognition. Therefore, we believe that our
implementation could reflect the original capability of Tupni.

The other baselines are open-sourced and we directly used them.
While their performances align with their paper descriptions, there
are variations on DynPRE. For instance, DynPRE performed worse
on the HTTP protocol in our evaluation because it segments fields
based on dynamic analysis of server responses, limiting context in-
formation when a protocol generates similar responses for different
inputs. This issue was confirmed by DynPRE’s authors.
Effect of Data Size. We also evaluated the effectiveness of BinPRE
on small-sized input messages. We created a 5-message dataset by
randomly sampling from the 50-message one used in our evalua-
tion. BinPRE has achieved similar performance on the 5-message
dataset with the average F1-scores of 0.87 for format extraction
and 0.75/0.84 for semantic type/function inference, respectively. It
shows that BinPRE does not rely on large-sized input messages
and could maintain the similar performance on small-sized ones.
Limitations. The taint analysis module of BinPRE only works at
byte-level. It cannot accurately deal with bit-level fields like bit-
flags. To our knowledge, all existing PRE tools take byte as the basic
unit for field inference due to the dominance of byte-level fields.

5 RELATEDWORK

5.1 Automated Protocol Reverse Engineering

Existing work proposes two types of PRE techniques: (i) network
traffic-based (NetT-based) inference; and (ii) execution trace-based
(ExeT-based) inference [39]. NetT-based inference [25, 26, 32, 35,
43, 57, 63, 66] leverages numerous messages within sessions and
investigates their relationships. It infers protocol specifications by
capturing message features from sessions. ExeT-based inference [27,
30, 33, 34, 36, 47–49, 61, 64] takes the binary files of servers as inputs.
It monitors the execution trace and tracks the message parsing
process in binary files, which reveals the internal design logic. With
these execution information, it segment messages into fields and

infers field semantics. While BinPRE and the prior ExeT-based
work all use taint analysis, they have distinct differences in format
extraction, semantic inference and refinement. We will discuss the
differences in the next two sections.

5.2 PRE for Format Extraction

Format extraction is an essential PRE task. NetT-based approaches
identify field boundaries through statistical methods. Netzob [26]
andNetplier [66] adopt alignment-basedmethods.Discoverer [35]
recursively clusters messages of the same type. BinaryInferno [31]
treats messages as information sequences and proposes an infor-
mation theoretic approach method. DynPRE [50] further utilizes
response messages to enhance boundary identification. These ap-
proaches rely on diverse large-scale message data.

ExeT-based approaches monitor the execution traces to extract
field boundaries. Polyglot [30] is one of the first efforts to em-
ploy taint analysis techniques to monitor the binary files of target
protocols and capture execution traces. It uses three specific field
functions (direction field, keyword, and separator), which are in-
ferred by heuristic patterns of execution traces, to segment fields.
Building upon the format partitioning framework of Polyglot,
AutoFormat [47] and Tupni [36] propose hierarchical and packet
field recognition methods. The former segment fields are based on
the locality of executed instructions and the similarity of their call
stacks. The latter identifies candidate fields based on byte occur-
rences and merges the consecutive bytes processed in one loop into
one field. Prospex [34] further extends AutoFormat to the session
level, tracking and dividing the message parsing process within a
complete session based on system calls. These techniques rely on
the behavioral features observed in execution traces of message
parsing. However, due to the variations in protocol implementa-
tions, these features may not reflect the actual message formats.
To address this issue, BinPRE compares the semantic similarity by
approximating the operator sequences between executed instruc-
tion sequences. The instruction-based semantic similarity analysis
of BinPRE can capture deeper internal relationship between bytes
and is more resilient to different protocol implementations.

5.3 PRE for Semantic Inference

Semantic inference focuses on understanding the meanings of each
field in the messages [29]. NetT-based approaches face obstacles to
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inferring protocol semantics, as the network traces only contain
syntax information [28]. While researchers propose clustering [23,
24, 44], supervised deep-learning [65, 68] and other heuristic [45,
52] solutions to additionally support semantic inference, they highly
rely on large-scale diverse network packets. In addition, they are
only able to handle limited field semantics and have low inference
accuracy (illustrated in Table 1).

ExeT-based inference approaches extract field semantics from
the execution information of the protocol binaries. One line of
work, including Dispatcher [27], captures library function seman-
tics to infer field semantics. Another line of work [30, 36], designs
heuristic rules to analyze the execution traces of fields and iden-
tify behavioral semantic features, which are then mapped to field
semantics. However, these work suffer from inadequate and inaccu-
rate semantic inference due to their limited and inaccurate behavior
based rules. For instance, Polyglot and Tupni infer only three and
two semantic functions with limited accuracy, respectively.

BinPRE differs from them in two aspects: 1) we are the first
to construct a library of atomic semantic detectors for semantic
inference; and 2) BinPRE utilizes contextual information to refine
the semantic inference results in a systematic way. The former
addresses the inadequate rules of semantic inference, while the
latter mitigates the inaccurate results of semantic inference.

5.4 Protocol Fuzzing

Protocol fuzzing is widely used for testing protocol implementa-
tions, and generates massive test cases to trigger abnormal runtime
behaviors [38, 67].

Mutation-based fuzzers (e.g., NSFuzz [58], AFLNet [56], and
ChatAFL [53]) require initial seeds with proper formatting and con-
tent. They then employ various mutationmethods on these message
seeds. Generation-based fuzzers (e.g., Boofuzz [1] and Peach [15])
generate semi-valid messages based on the given templates. Their
effectiveness heavily depends on the pre-defined protocol structures.
However, real-world protocols typically have complex structures
and communication logic. Manually constructing initial seeds and
templates requires huge efforts and also knowledge of the protocol
specifications. BinPRE tackles a different problem from these work.
It provides automated PRE solutions to assist protocol fuzzing.

6 CONCLUSION

Protocol reverse engineering aims to infer the specifications of
closed-source protocols. In this paper, we propose BinPRE, a binary
analysis based PRE tool that supports both format extraction and
semantic inference. It incorporates an instruction-based seman-
tic similarity analysis for format extraction, and a novel library
composed of atomic semantic detectors and a cluster-and-refine
paradigm for improving semantic inference. We evaluate BinPRE
with a variety of protocols and achieve high accuracy on the format
extraction and semantic inference tasks. It also effectively supports
the downstream task of protocol fuzzing.
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