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Abstract

Ensuring the reliability and security of an operating sys-
tem (OS) kernel is a critical and challenging task. To this
end, coverage-guided kernel fuzzing has been employed as
an effective technique for finding kernel bugs. Specifically,
in kernel fuzzing, input minimization is one critical stage to
provide short, coverage-preserving seeds for improving the
efficacy of fuzzing. However, we observe that the cost of the
minimization — taking over half of the fuzzing resources —
significantly limits the potential of kernel fuzzing.

To the best of our knowledge, no prior work explores and
mitigates the preceding problem in kernel fuzzing. To this end,
we introduce and design two general and novel optimization
strategies — influence-guided call removal and type-informed
argument simplification — for reducing the minimization cost.
The key idea of these two strategies is to reduce the number
of dynamic program executions needed for verifying whether
the new coverage achieved by the inputs is always preserved.

We optimized the input minimization stage by our strate-
gies in Syzkaller, the most popular and representative kernel
fuzzer, resulting in a prototype named SyzMini. Our evalu-
ation shows that SyzMini can significantly reduce the mini-
mization cost by 60.7%. Moreover, SyzMini improves branch
coverage by 12.5%, and finds 1.7~2X more unique bugs. On
the latest upstream kernel version, Syzmini has found 13 pre-
viously unknown bugs, all of which have been confirmed and
four have already been fixed. Our optimization strategies also
show the general applicability for improving the effectiveness
of other kernel fuzzers. We have made our implementation of
SyzMini publicly available at [1].

1 Introduction

The reliability and security of an operating system (OS) ker-
nel are of paramount importance. The bugs in the OS kernels

* Ting Su and Shaohua Li are the corresponding authors.
¥ Hui Guo, Shan Huang, Ting Su and Geguang Pu are also affiliated
with Shanghai Key Laboratory of Trustworthy Computing.

could potentially lead to serious system-wide consequences,
such as crashes [6, 16,29], privilege escalation [2,31] and ar-
bitrary code execution [25,48]. To this end, coverage-guided
kernel fuzzing [8,9, 19, 22, 38, 40, 44] has emerged as one
of the most effective approaches for discovering kernel bugs.
Indeed, Syzkaller [15], the most popular and representative
coverage-guided kernel fuzzer, has been integrated into the
testing pipeline of the Linux kernel. It has successfully un-
covered over five thousand bugs in Linux [43].

Generally, coverage-guided kernel fuzzing usually includes
two major stages in its core fuzzing loop: (1) mutation and
(2) minimization. The mutation stage mutates the seeds to
find interesting input programs (in the form of system call
sequences) that can cover new code of the tested kernel. Since
the new inputs are randomly generated, they are likely clut-
tered with redundant system calls or arguments. Therefore,
an important stage, minimization, is adopted. The minimiza-
tion stage compresses these interesting programs into a more
streamlined and higher-quality set containing only essential
calls and arguments while preserving the new coverage. Min-
imization, in turn, improves the efficacy of subsequent muta-
tions, thus being critical in the fuzzing campaign [35].

Take Syzkaller as an example, it adopts a one-by-one min-
imization strategy [15] to minimize interesting programs.
Given an interesting program P in the form of a system call
sequence, the minimization attempts to reduce P by (1) re-
moving each call in P one by one, and later (2) simplifying
each argument in the remaining calls one by one. Crucially,
each minimization attempt must be verified that the origi-
nal coverage achieved by P is always preserved by dynami-
cally executing the reduced program; otherwise, the attempt
is rolled back. Take Figure 1 for instance. Given a program P
that contains five system calls, with the last call c5 achieving
the new coverage, this stage first removes ¢ and executes the
reduced sequence. The attempt is rolled back as the coverage
of c;5 is altered due to the removal. This procedure is applied
to each of the other calls, thus four executions are required
(Figure 1(a)). Similarly, the minimization then considers each
call argument, where three executions are conducted for aj,
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Figure 1: Illustrative example of input minimization between Syzkallar and our approach Syzmini.

r1 and [a4] from the remaining calls [c},cs] (Figure 1(b)). In
total, seven program executions are needed to minimize P.

However, we observe a significant tension exists between
the benefits and the cost of the preceeding minimization in
kernel fuzzing. On the one hand, the minimization stage
improves the efficacy of subsequent mutations by provid-
ing short, coverage-preserving inputs. Our experiment on
Syzkaller (detailed in Section 3) shows that omitting the min-
imization, the coverage and the number of found bugs would
decrease by 27.5% and 40.4% respectively within a 48-hour
fuzzing campaign; moreover, the gap continues to widen with
prolonged fuzzing. Indeed, this minimization stage is critical
for the effectiveness of kernel fuzzing.

On the other hand, the minimization stage incurs significant
costs. For example, the one-by-one minimization in Syzkaller
requires dynamic program execution to verify the preserva-
tion of coverage at each attempt to remove calls or simplify
arguments. However, each program execution is expensive
because it involves context switching between the user and
kernel spaces. Our experiment (detailed in Section 3) reveals
that, during a 48-hour fuzzing campaign, 57.5% of program
executions are expended in the minimization stage, while the
remaining 42.5% of program executions are used by the mu-
tation stage. It is overwhelming that the minimization takes
over half of the fuzzing resources.

However, to the best of our knowledge, no prior work ex-
plores and mitigates the preceding tension in kernel fuzzing.
This paper aims to fill this gap. The key challenge is how to
significantly reduce the minimization cost of reducing interest-
ing programs. At the high level, our key idea is to reduce the
number of program executions needed for verifying whether
the new coverage is preserved—the fewer the program execu-
tions are, the lower the cost is.

To this end, this paper introduces two general and novel
strategies to optimize the minimization by respectively re-
ducing the number of program executions during removing
calls and simplifying arguments. In the scenario of removing
calls, let P be an interesting program and c be the target call
in P which achieves new coverage. Our key insight is that

removing the irrelevant calls in P (which have no execution
influence on ¢) will not affect the new coverage achieved by
c. Therefore, we could substantially reduce the number of
program executions needed for verifying the coverage by re-
moving these irrelevant calls at one time rather than one by
one. Indeed, whether a call can affect ¢’s coverage depends
on their inherent dependencies. For example, if a call does not
share any global kernel state with c, then this call has no exe-
cution influence on ¢; and can be safely removed. In practice,
this form of execution influence—often referred to as influence
relation [8,13,17,35,40]—-can be inferred through a combina-
tion of static and dynamic analysis on the system calls. In this
paper, we term this optimization strategy as influence-guided
call removal strategy.

Figure 1(c) illustrates this strategy. Based on the inferred
influence relation, we could identify that the calls ¢3, ¢3, ¢4
do not impact the execution of ¢s, and then attempt to remove
these calls at one time. If this attempt is successful (i.e., the
new coverage achieved by cs is preserved), P will be reduced
to [c1,¢s] by only one program execution. Later, we attempt to
remove ¢, which however fails to preserve the new coverage.
As a result, our strategy only consumes two executions to
minimize P, which reduces the minimization cost to half.

In the scenario of simplifying arguments, one-by-one mini-
mization is conservative and minimizes every argument. As a
result, it leads to a large number of program executions due
to the numerous arguments and their sub-fields involved. Our
key insight is that we only need to simplify those redundant ar-
guments or their sub-fields that truly matter for the subsequent
mutations. For example, removing superfluous elements from
an array argument could significantly reduce the space for
subsequent mutations, while investing similar effort in sim-
plifying a simple scalar argument leads to marginal benefits.
In this way, we could substantially reduce the number of pro-
gram executions needed for verifying the coverage without
sacrificing the benefits of minimization.

Based on the preceding insight, we design a type-informed
argument simplification strategy to optimize the minimization.
Given an interesting program P, this strategy analyzes the
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type information of each argument and its sub-fields in P.
If an argument or a field is fixed-size, the strategy skips the
simplification; the strategy only attempts to simplify those
variable-size arguments which may have redundant mutation
space. For example, in Figure 1(d), this strategy does not
simplify the fixed-size arguments a; (Integer type) and r|
(Resource type, a 4-byte file descriptor). It would simplify the
variable-size argument [a4] (Array type) to an empty array
while ensuring the coverage is preserved. As a result, the type-
informed strategy only consumes one program execution,
while the original minimization requires three executions.

To evaluate the effectiveness of our approach, we integrated
our proposed optimization strategies into Syzkaller, resulting
in a prototype named SyzMini [1]. Our evaluation demon-
strates that SyzMini significantly reduces the cost of mini-
mization: the number of program executions in minimization
is reduced by 60.7%. Compared to vanilla Syzkaller, SyzMini
achieves a 12.5% improvement in branch coverage and a 1.7 x
speedup, while discovering 1.7-2x more unique bugs. Fur-
thermore, SyzMini uncovered 13 previously unknown bugs in
the latest upstream Linux, all of which have been confirmed,
and four have already been fixed. To further illustrate the
generality and benefits of our approach, we enhanced three
distinct kernel fuzzing tools by optimizing the minimization:
SyzVegas (employing reinforcement learning for scheduling
fuzzing tasks), CountDown (accelerating finding memory-
related kernel bugs), and SyzDirect (directed fuzzing for re-
producing kernel bugs). With our enhancements, SyzVegas
increases branch coverage by 14.5% and discovers 50% more
bugs, CountDown identifies 66.7% more memory bugs, and
SyzDirect reproduces 1.5x more bugs within the same time
budget.

This paper has made the following contributions:

* To our knowledge, we are the first to explore and mitigate
the significant tension between the benefits and cost of
input minimization in kernel fuzzing.

* We introduce two general and novel optimization strate-
gies respectively for removing system calls and simpli-
fying arguments in minimization.

* We implement our optimization strategies for minimiza-
tion in Syzkaller and three distinct kernel fuzzers. The
extensive evaluation results demonstrate the effective-
ness, general applicability, and benefits of our approach.

2 Background

Fuzzing is an automated software testing technique first intro-
duced by Miller [34]. It aims to uncover bugs by repeatedly
sending random inputs to the target program [14, 33]. Kernel
fuzzers, domain-specific fuzzing tools for OS kernels, con-
tinuously generate system call sequences to find kernel bugs.

System Call
Sepecification

Kernel Fuzzing Loop
( Seed Corpus

i Arg Simplificatjion
—)| Seed Selection | Execution
\L q Simplify an Argument:>
| Mutation | Call Removal T

| Execution | q

Yes

Execution
Remove a Call

Interesting?

Figure 2: Overall workflow of Syzkaller

Figure 2 shows the workflow of Syzkaller [15], a state-of-the-
art coverage-guided kernel fuzzing tool. Syzkaller first loads
system call descriptions written in the declarative language
Syzlang [42] as well as the initial seed corpus, and then con-
ducts a fuzzing loop to explore interesting programs and find
new bugs. The fuzzing loop includes two major stages, i.e.,
mutation and minimization.

Mutation Stage. The mutation stage randomly selects a seed
from the corpus (the programs that previously found new
coverage), and then performs a series of random mutations
on the seed (e.g., inserting/removing a call, or changing the
value of an argument or its sub-fields) to generate more di-
verse programs. Each program will be executed on the tested
kernel and the achieved coverage for each call in the program
is collected independently. For instance, given a call sequence
[c1,¢2,...,cn], the coverage of each call is collected separately
in n branch arrays, e.g., cov_cy, cov_cy, ..., cov_c,,. The total
coverage achieved so far is maintained in another global set.
Hence, the fuzzer can identify the call that achieves new cov-
erage by simply comparing each branch array with the global
set, e.g., comparing cov_c; with the global set determines if
the call ¢ achieves new coverage. When the program achieves
new coverage, each call contributing to this new coverage is
treated as a target call for the next minimization.

Minimization Stage. The minimization stage minimizes an
interesting program as a new seed for subsequent mutation.
It first attempts to remove irrelevant calls and later simplifies
arguments in the program. It employs a one-by-one minimiza-
tion strategy. We explain the process as follows.

(D Removing Calls. Given an interesting program P =
[c1,¢2,...,cp], Where ¢; is the ith call in P. Let the last call
cn be the target call in P which achieves the new coverage.
In the minimization stage, Syzkaller first removes the first
call ¢; and executes the reduced program [c3,c¢3, ...,y tO
verify whether the new coverage is preserved. If the coverage
is preserved, c¢; will be removed from P. Because ¢ is an
irrelevant call w.r.t. ¢, which does not affect the execution of
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Table 1: Argument simplification methods in Syzkaller

Data Types Simplification Methods
Integer
Lo Flag Replace the current value
Primitive Type Protocol | with the default value of this type
Resource
Array S
Derived Type Buffer Minimize the number of elements
Pointer Simplify the pointed-to object
Struct
User-defined Type Union Simplify each sub-fields
Enum

¢p. In this case, P will be reduced to [cy,¢3, ..., ¢,|. Otherwise,
P remains unchanged. Later, Syzkaller attempts to remove
the next call ¢. This process continues until each call ¢; in P
(except c,) has been attempted.

@ Simplifying Arguments. Assuming after the call removal
there are m arguments [a;,as,...,a,] in P. Syzkaller would
first attempt to simplify the first argument a; to ¢} and execute
the simplified program to verify whether the new coverage
is preserved. If the coverage is preserved, a} replaces aj;
otherwise, a; remains unchanged. Each argument will be
attempted one by one to minimize P.

It is worth noting that simplifying arguments depends on
the argument types. Table | lists the simplification methods
for different argument types in Syzkaller. For the argument
of primitive type (e.g., Integer, Flag, Protocol or Resource),
Syzkaller replaces the argument by the default value of this
type. For the argument of derived type (e.g., Array, Buffer),
Syzkaller attempts to minimize the number of elements by
binary search. For the argument of user-defined data type (e.g.,
Struct, Union), Syzkaller recursively simplifies each sub-fields
of this argument one by one.

3 Motivation and Observation

In this section, we demonstrate and characterize the ten-
sion between the benefits and cost of minimization in kernel
fuzzing. To this end, we selected Linux 5.15, the widely-
used and stable long-term Linux version, as the fuzzing tar-
get; Syzkaller [15], the most popular kernel fuzzing tool,
as the kernel fuzzer. Specifically, we implemented a ver-
sion of Syzkaller without the minimization stage (named
as Syzkaller™). For each tool, we allocated 48 hours for
one fuzzing campaign to fuzz the kernel, and repeated each
fuzzing campaign for ten times to mitigate the randomness.

Observation 1: The minimization stage is crucial in
improving the effectiveness of kernel fuzzing in terms of
code coverage and number of found bugs.

We compared the branch coverage and the number of found
unique bugs of Syzkaller to those of Syzkaller—. As shown
in Figure 3, compared to Syzkaller, the branch coverage and

—— Syzkaller=
Syzkaller

—— Syzkaller~
Syzkaller

[y

Branches
[
w o w
o (=} o
~ ~ ~
Unique bugs
ON B O OO

o

0 4 812162024283236404448
Time (Hour)

o

0 4 8 12162024 2832364044 48
Time (Hour)

Figure 3: Syzkaller™ vs. Syzkaller on average coverage and
bug finding (shaded area: mean +1 standard deviation)

the number of found unique bugs of Syzkaller~ decrease by
27.5% and 40.4% respectively. Moreover, the gap gradually
widens over time. The results show that minimization plays a
crucial role in improving the effectiveness of kernel fuzzing.

Observation 2: The proportion of program executions
during the minimization stage accounts for 57.5%, lead-
ing to significant costs.

We recorded the number of programs executed during the
mutation and minimization stages respectively to measure
the cost. Figure 4 shows the proportions of the numbers of
program executions between mutation and minimization. We
can see that the minimization stage consumes more program
executions than the mutation stage. The minimization stage
reaches a peak of 68.1% at the time of 4.5 hours. The portion
gap gradually decreases over time but still accounts for 57.5%
at the time of 48 hours. In particular, removing calls accounts
for 34.0% and simplifying arguments accounts for 66.0%.

10 0.75
£0.8
S §0.50
Tosy 7 0o 5 oo
-]
%0_4 g-O 25 {

4
a 0.2 —— Minimization | & ¢ o9 —— call removal
Mutation Arg simplification

0

0 4 812162024283236404448
Time (Hour)

0 4 812162024283236404448
Time (Hour)

Figure 4: The proportion of program executions during mini-
mization and mutation over time (shaded area: mean +1 stan-
dard deviation).

The reason for this trend is that the fuzzer initially generates
a large number of interesting programs with new coverage.
Minimizing these programs requires a considerable number
of program executions. As a result, the proportion of pro-
gram executions in minimization rapidly increases in the first
four hours. Over time, although the number of interesting
programs gradually decreases, these programs become more
complex (e.g., involving more calls and arguments) due to the
subsequent mutation. These complex programs requires more
program executions to conduct the one-by-one minimization.
Overall, the proportion of program executions in the mini-
mization stage decreases slowly, but still surpasses that of the
mutation stage (after the 48 hours), leading to significant cost.
Summary: The preceding observations indicate that the
minimization stage is crucial for the effectiveness of kernel
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Figure 5: Overview of the influence-guided call removal and
the type-informed argument simplification strategies.

fuzzing, but introduces significant cost in terms of program ex-
ecutions. Our goal is to reduce this minimization cost, thereby
unleashing the potential of kernel fuzzing.

4 Approach and Implementation

Figure 5 shows the overview of our optimization strategies
(i.e., influence-guided call removal and type-informed argu-
ment simplification). These two strategies extend the de-
fault one-by-one minimization in Syzkaller. Specifically, the
influence-guided call removal leverages the influence rela-
tions between system calls to identify irrelevant calls and
remove these calls at one time. Later, the reduced program un-
dergoes the one-by-one minimization to guarantee the number
of calls in P is minimal (detailed in Section 4.1). The type-
informed argument simplification analyzes the types of each
argument and its sub-fields to identify which argument is
fixed-size or variable-size. It would skip the simplification
of the fixed-size arguments and only attempts to simplify the
variable-size arguments (detailed in Section 4.2).

4.1 Influence-guided Call Removal Strategy

We define the influence relation between two system calls:

Influence Relation: For two system calls c; and cj, c; has
an influence relation with c; if executing c; can change the
execution path of c¢; by modifying the kernel’s internal state
that ¢; depends on.

The definition describes the relation between system calls
based on the execution path. The relation exists when one
call ¢; can modify the global kernel state that the behavior of
another call ¢; depends on, thereby changing the execution
path of c;. In practice, the influence relation can be inferred by
the static and dynamic analysis on system calls [40]. We will

Algorithm 1: Influence-guided Removal Strategy

Input :Interesting Program: P = [cy, ¢, ...,cp), Influence
relation matrix: M

Output : Program after call removal P

// Step 1. Identify irrelevant calls

relevant_calls < {}

// analyze directly relevant calls

2 forifrom1ton—1do

3 L if Mci][cn] = 1 then

[

L relevant_calls < relevant_calls U {c;}

// analyze indirectly relevant calls

5 work_list < all relevant calls

6 while work_list is not empty do

7 Pick the last call ¢ j from work_list

8 for k from j—11to 1 do

9 if M{cy][cj] = 1 Ay & relevant_calls then

10 relevant_calls < relevant_calls U {cy }
L Add ¢y to work_list

12 irrelevant_calls<{cy,ca,...,c, } \relevant_calls
// Step 2. Remove irrelevant calls

13 P’ < P.remove_calls(irrelevant_calls)

14 target_call_cov + execute(P)

15 target_call_cov' < execute(P')

16 if target_call_cov € target_call_cov’ then

7 | PP

// Step 3. One-by-one call removal
18 one_by_one_call_removal (P)

describe how to collect the influence relations in Section 4.3.
In this section, we focus on explaining how to leverage these
collected influence relations to reduce the minimization cost.
Thus, we assume the influence relations have been collected
for n calls and stored in M—a two-dimensional matrix R"*",

Identify Irrelevant Calls. The strategy aims to identify all the
calls that are irrelevant to the target call based on the collected
influence relations. In algorithm 1, let P = [cy, 2, ...,c,] be
an interesting program (assuming the last call ¢, in P is the
target call which achieves new coverage) and M be the influ-
ence relation matrix. The strategy first obtains all the calls
that have direct influence relations with ¢, (lines 2-4), and
then identifies the calls that have indirect influence relations
with ¢, based on the transitivity of influence relation (lines
5-11). Specifically, on line 3, when M|c;][c,]=1 (denoting that
¢; has direct influence on ¢,), ¢; will be saved into the list
relevant_calls (which stores all the relevant calls). On line 9,
when M|ci|[c;]=1 (denoting that c; has indirect influence on
¢, through ¢ ), ¢ will be also saved into the list relevant_calls
(line 10). Specifically, the strategy uses a worklist algorithm
to iteratively identify all the calls that have indirect influence
on c,. Finally, we obtain the set of irrelevant calls (stored in
irrelevant _calls) w.r.t. P by filtering these collected relevant
calls from the set of the calls from P (line 12).

Example. In Figure 6, the program P is an interesting pro-
gram and cg is the target call. According to the influence
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Figure 6: An Example for Influence-guided Removal and
Type-informed Simplification

relation, ¢4 has direct influence on cg, and ¢ has indirect in-
fluence on c¢g through c4. Thus, {c1,c4} are the relevant calls
and the other calls {c;,c3,cs5} in P are identified as irrelevant.

Remove irrelevant calls at one time. When the irrelevant
calls are identified, the strategy attempts to remove these calls
at one time from P (line 13). If the new coverage of the target
call is preserved by P/, this attempt is successful and P is
reduced to P’ (line 17). Otherwise, the attempt will be rolled
back — some calls in irrelevant_calls actually influence the
execution of ¢,. No matter whether this attempt is successful
or not, the remaining relevant calls in P may not contribute to
the new coverage. Thus, P needs to undergo the one-by-one
call removal (i.e., the default one-by-one minimization for
removing calls) to ensure that each remaining call is truly
associated with the new coverage of the target call and the
number of calls in P is minimal (line 18). Compared to the
default one-by-one minimization in Syzkaller, this influence-
guided strategy is likely to remove many calls at one time and
thus reduce the minimization cost.

Example. After identifying {c»,c3,cs} are the irrelevant calls,
the strategy attempts to remove all these calls at one time.
Assuming this attempt is successful, P is reduced to [c1, ¢4, c6]
by only requiring one program execution. Later, the one-by-
one minimization consumes two program executions to check
whether c¢; and c4 would influence the execution of ¢g and
finally P is reduced to [c;, 6] (assuming c4 actually does not
influence the execution of cg). As a result, the optimization
strategy only takes three executions to remove calls, while the
default minimization requires five executions.

4.2 Type-informed Arg Simplification Strategy

We define fixed-size or variable-size arguments as follows.

For an argument a, a is a fixed-size argument if a only
involves fixed-length data types (e.g., Integer, Flag, Protocol
and Resource); a is a variable-size argument if a involves any
variable-length data type (e.g. Array and Buffer).

Analyze Argument Type. We detail how we analyze an argu-
ment type as follows. Given a program P after call removal,
the strategy analyzes the type of each argument a from the

Algorithm 2: Type-informed Arg Simplification Strategy

Input :Program after call removal: P = [cy,...,¢p]
Qutput : Final minimized program P

1 for i from 1tondo

2 for arg in cj.args do

3 Analyze arg’s type

4 L P <« type_informed_simplification(P,arg)

s Function rype_informed_simplification(P,arg)

6 if arg is a fixed-size argument then

7 L continue

8 else

// arg is a variable-size argument

9 if arg.type is Array or Buffer then

10 L P < simplify_variable-size_arg(P,arg)

11 if arg.type is Pointer then

12 P+

type_informed_simplification(P,arg.point_to_obj)

13 if arg.type is User-defined type then

14 for sub_field in arg.sub_fields do

15 P+

type_informed_simplification(P,sub_field)

16 | return P

17 Function simplify_variable-size_arg(P,arg)

18 P P.remove_element_by_binary_search(arg)
19 target_call_cov <+ execute(P)

20 target_call_coV' < execute(P')

21 if target_call_cov € target_call_cov' then

2 PP

23 L P < simplify_variable-size_arg(P,arg)

24 return P

calls in P based on Table 2 (lines 2-3 in Algorithm 2). Specif-
ically, if a belongs to primitive type (such fixed-length data
types as Integer, Flag, Protocol and Resource), a is classified
as a fixed-size argument. If a belongs to derived type (such
variable-length data types as Array and Buffer), a is classified
as a variable-size argument. If a belongs to Pointer, the strat-
egy will recursively analyze the type of the pointed-to object
of a to decide a’s argument type according to the preceding
definition. If a belongs to user-defined type, the strategy will
recursively analyze the type of each sub-fields of a to decide
a’s argument type according to the preceding definition. If
any point-to object or sub-field is a variable-length data type,
a is a variable-size argument. Otherwise, a is classified as a
fixed-size argument. In this way, any argument from the calls
in P can be classified into either fixed-size or variable-size.

Example. Taking the program P = [c], cg] after call removal
in Figure 6 as an example, assuming c¢; takes an argument
5 and returns ry; ¢, takes ry and {3,[1,2]}. The strategy can
identify 5 as Integer type and ry as Resource type. Since Inte-
ger and Resource are fixed-length data types, both of these two
arguments 5 and r; are classified as the fixed-size arguments.
For the argument {3, [1,2]}, the strategy will recursively ana-
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Table 2: Argument type classification in Linux kernels

Primitive Cat Derived Categor User-defined Categor
- ategory - ategory e ategory
Integer Array Variable-size Struct
Flag Fixed-size Buffer argument . Classify
- Union
Protocol | argument . Classify the each sub-field
Pointer . . Enum
Resource pointed-to object

lyze the type of each sub-field. As a result, 3 is identified as
Integer type and [1,2] is identified as Array type. Since the
field [1,2] involves a variable-length data type, the argument
{3,]1,2]} is classifed as a variable-size argument.

Type-informed Simplification. After obtaining the type in-
formation of the arguments, in Algorithm 2, this strategy
skips the simplification of fixed-size arguments (lines 6-7)
and only simplifies the variable-size arguments (lines 9-10).
For a variable-size argument arg, if the type of arg is Ar-
ray or Buffer, the strategy will iteratively remove elements
from arg to minimize the number of elements in the array
by binary search while ensuring the coverage is always pre-
served (lines 18-24). When the type of arg is Pointer or User-
defined, the strategy recursively checks the pointed-to object
(point_to_obj for Pointer type) or each sub-field (sub_field
for user-defined type) in arg and adopts the same method to
do simplification (lines 11-15). After traversing all the argu-
ments, the simplified program will be returned and added to
the seed corpus.

Example. According to the type analysis result of each ar-
gument in Figure 0, since 5 and r; are fixed-size arguments,
the strategy will skip their simplifications. For the variable-
size argument {3,[1,2]}, the strategy will skip simplifying
the sub-field 3 but simplify the sub-field [1,2]. It would con-
sume two executions to simplify [1,2] to [1] (assuming the
argument [1] can affect the execution of c). Finally, the sim-
plified P becomes a seed. Overall, the strategy only takes
two executions to simplify the arguments, while the default
minimization requires five executions. The reason of skipping
the simplification of those fixed-size arguments is that such
simplification does not help reduce redundant mutation space.

4.3 Implementation

We implemented the two optimization strategies (i.e., the
influence-guided removal and the type-informed simplifica-
tion) in Syzkaller (commit 1759857fa9bd [15]). We chose
Syzkaller because it is the most popular and representative
kernel fuzzing tool, and is a standard baseline used by many re-
cent work [3,8,9,20,41,44]. We name the version of Syzkaller
enhanced by the two optimization strategies as SyzMini.
Specifically, the influence-guided strategy needs the influ-
ence relations between the system calls as input. To this end,
we collected the influence relations by following Healer [40].
In practice, we use both static and dynamic analysis to infer
and collect the influence relations. In static analysis, given
two system calls ¢; and ¢}, ¢; has the influence relation with
¢; if (1) ¢; returns a resource type r, and at least one of the

parameters in c; is the resource type 7, or (2) ¢; has a pointer
parameter a that points to one resource type r with an outward
data flow direction, and c; has the resource type r with an in-
ward data flow direction. To collect static influence relations,
we analyze the type information of each parameter specified
by Syzlang [42]. In dynamic analysis, we leverage the default
minimization process in Syzkaller to infer dynamic influence
relations. Specifically, during minimization, if removing a
call ¢; affects the execution path (i.e., the coverage) of the
next call ¢;41, then ¢; influences c¢;. We ran Syzkaller until
the branch coverage saturated and collected the dynamic in-
fluence relations, which took about four days. We collected
a total of 74,865 influence relations including 44,966 static
influence relations and 29,899 dynamic influence relations.

SyzMini uses the default branch coverage supported by
Syzkaller to record the execution information of each call.
To check whether one minimization attempt is successful,
SyzMini verifies whether the branch coverage of a target
call is preserved. If the coverage is preserved, this attempt is
considered as successful.

5 Evaluation

This section evaluates the effectiveness of the two optimiza-
tion strategies for minimization (i.e., the influence-guided and
type-informed strategies) implemented in SyzMini. we aim
to answer the following research questions:

RQ1. How effective is SyzMini (which incorporates the
two optimization strategies for minimization) in terms of code
coverage and bug finding?

RQ2. What are the respective contributions of the influence-
guided and type-informed strategies in improving kernel
fuzzing?

RQ3. Why are the influence-guided and type-informed
strategies effective in improving kernel fuzzing?

RQ4. How effective are the two optimization strategies
when they are integrated into other distinct kernel fuzzers?

RQ5. What factors affect the effectiveness of the influence-
guided and type-informed strategies?

5.1 Evaluation Setup

All the experiments were conducted on a machine running 64-
bit Ubuntu 20.04 LTS and equipped with an AMD 3995WX
64-core CPU and 128G RAM. We selected Linux 5.15, 6.1,
and 6.11 as the target kernels to be tested. Specifically, Linux
5.15 and 6.1 are the stable long-term versions and are the most
widely used kernel versions by many distributions. Linux
6.11 is the latest upstream version at the time of our work.
All these three kernel versions were compiled with the same
configuration, i.e., enabling the KCOV and KASAN features
to collect code coverage and detect memory-related bugs.
During the fuzzing campaign, each kernel runs on a virtual
machine instance allocated with a 4-core CPU and 4GB RAM.
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Figure 7: Average branch coverage growth of SYZMINI on v5.15, v6.1 and v6.11 over 24 hours compared to those of SYZKALLER

(shaded area: mean %1 standard deviation)
Table 3: Coverage statistics of Syzkaller vs. SyzMini

v5.15 v6.1 v6.11 Overall
Syzkaller 145.371K  150.677K 133.172K  143.073K
SyzMini 164.724K  169.015K 149.311K 161.017K
Improvement | +13.3% +12.2% +12.1% +12.5%
Speed-up +1.83x% +1.61x +1.62x% +1.69 %

The influence-guided strategy is equipped with 74,865 entries
of influence relations (detailed in Section 4.3). Each tool uses
the same initial seeds as Syzkaller by default across the trials.

5.2 RQ1: Effectiveness of SyzMini

Setup of RQ1. We aim to evaluate the end-to-end effective-
ness of SyzMini which incorporates the two optimization
strategies. Thus, we compared SyzMini with Syzkaller in
terms of code coverage and the number of bugs found. Follow-
ing the general guidelines for fuzzing evaluation [24,37], we
allocated 24 hours for each kernel fuzzing tool (SyzMini and
Syzkaller) for one round of fuzzing campaign and repeated
such a fuzzing campaign for 10 rounds to reduce potential
randomness. We also measured the hitting-round and time-to-
exposure (TTE) for each found bug. These two metrics are
widely used in evaluating fuzzing techniques [4,7,41]. Specif-
ically, hitting-round represents the number of times a fuzzer
triggers a target bug in repeated experiments. 77E is the time
that a fuzzer triggers the target bug at the first time. We com-
puted the arithmetic average of TTE (denoted by uT TE) for
repeated experiments. If a fuzzer fails to trigger a target bug
in a given time duration (24 hours in our setting), the 7TE
of this bug is treated as 24 hours. Additionally, to study the
long-term effectiveness, we ran SyzMini and Syzkaller re-
spectively for three days on the latest upstream kernel version
Linux 6.11. We collected branch coverage and the number of
found bugs.

Code Coverage. Figure 7 plots the branch coverage achieved
by Syzkaller and SyzMini during the 24-hour fuzzing. Overall,
SyzMini outperforms Syzkaller on the three kernel versions.
Specifically, in the first 5 minutes, both tools generate and ex-
ecute the initial seeds, so they achieve similar coverage. Later,
a large number of interesting programs that require minimiza-
tion are generated. However, performing minimization on
these programs does not lead to coverage increases. Thanks

Table 4: Bug statistics of SyzMini and Syzkaller

#Unique Bugs Bug Distribution
Fuzzer v5.15 v6.1 v6.11 Total | v5.15 v6.1 v6.11 Total
SYZKALLER | 14 12 6 27 : &
SYZMINI 28 20 12 50

18(104 (12(8)4 (8 42 (382189

! The blue and yellow regions in the venn diagrams denote #bugs found by SyzMini
and Syzkaller, respectively; the gray regions denote #bugs found by both tools.

to our optimization strategies, SyzMini avoids a large number
of unnecessary program executions during minimization. It
allows SyzMini to spend more time on mutation. As a result,
SyzMini achieves the coverage improvement over Syzkaller
after 1.5 hours, and this improvement has been maintained
throughout the subsequent fuzzing. The shaded area denotes
the average branch coverage +1 standard deviation. The over-
lap between the shaded areas of SyzMini and Syzkaller is
small, indicating a significant difference.

Table 3 gives the detailed coverage statistics. For exam-
ple, on v5.15, SyzMini covered an average of 164.724K
branches in the 10 rounds of a 24-hour fuzzing campaign,
while Syzkaller covered an average of 145.371K branches.
As a result, SyzMini achieved 13.3% improvement in branch
coverage (see Row “Improvement”). Column “Overall” gives
the average number of covered branches on the three kernel
versions. Row “speed-up” presents the average speed-up of
SyzMini when achieving the same coverage as Syzkaller. On
average, SyzMini achieved 12.5% improvement in branch
coverage compared to Syzkaller with a speed-up of 1.69x.
The results indicate that the optimization strategies can signif-
icantly improve the effectiveness of kernel fuzzing in terms
of code coverage.

Bug Detection. Table 4 lists the bug statistics. For exam-
ple, on v5.15, SyzMini found a total of 28 unique bugs in
the 10 rounds of 24-hour fuzzing, while Syzkaller found a
total of 14 unique bugs. SyzMini found 2 x more bugs than
Syzkaller. Specifically, on v5.15, SyzMini found 18 bugs that
Syzkaller missed, while Syzkaller only found 4 bugs that
SyzMini missed. Column “Total” counts the total number of
unique bugs found in the three kernel versions. SyzMini found
a total of 50 unique bugs, while Syzkaller only 27 unique
bugs. Specifically, SyzMini and Syzkaller found a total of 22
common bugs on the three kernel versions (accumulating the
common bugs shown in the three venn diagrams of v5.15,
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Table 5: uTTE and hitting-round of each bug

hitting-round — uTTE (h) hitting-round  uTTE (h)
ID SK/SM SK/SM 1D SK/SM SK/SM
1 3/6 2227122 | 12 3/5 16.8/14.0
2 172 239/19.7 || 13 7/10 125735
3 4/8 15.8/10.8 || 14 1/2 23.5/20.9
4 1/3 23.1/209 || 15 2/4 19.4/159
5 5/5 17.0/13.8 || 16 1/4 22.3/18.9
6 719 1947158 || 17 2/8 22.4/13.1
7 3/4 22.8/19.4 || 18 1/6 234/13.3
8 3/3 21.7/20.7 || 19 1/3 22.3/19.5
9 1/2 22.3/20.1 20 10/10 4.21/2.0
10 1/2 22.0/20.8 || 21 1/3 239/19.4
11 9/9 119775 22 8/10 52728

! Sk and SM are Syzkaller and SyzMini, respectively. 1~10, 11~18 and
19~22 are the common bugs on v5.15, v6.1 and v6.11, respectively.

2 The green one indicates which tool achieves the higher hitting-round
or the lower uTTE.

v6.1, and v6.11 in Column “Bug Distribution”).

Table 5 gives the hitting-round and uTTE for each com-
mon bug. On any of these bugs, SyzMini found them faster
and more frequently than Syzkaller. Taking the bug with ID
1 as an example, the uTTE of Syzkaller is 22.2h, which is
1.8 x more than that of SyzMini (12.2h); moreover, SyzMini
successfully found this bug in 6 out of 10 rounds of fuzzing,
while Syzkaller only found it in 3 rounds. These strong results
show that SyzMini significantly outperforms Syzkaller in bug
finding.

Long-term Effectiveness. In the 10 rounds of a three-day
fuzzing campaign, SyzMini covered an average of 199.4K
branches, which is 5.6% more than that of Syzkaller (188.9K).
In terms of bug finding, although Syzkaller has been continu-
ously deployed to find bugs in the upstream kernel version,
SyzMini has still found 13 previously unknown bugs. We
reported each bug (with the corresponding reproducer and
kernel configuration) to the kernel maintainers. All these 13
bugs have been confirmed and 4 have already been fixed. Ta-
ble 6 lists these bugs. Therefore, SyzMini is also effective in
long-term fuzzing for improving coverage and finding bugs.

Table 6: Previously unknown bugs found by SyzMini.

ID  Subsystem Function Risk Status
1 Block bio_put_slab use after free confirmed
2 Gfs2 gfs2_quota_init kernel bug confirmed
3 NTFS3 end_buffer_read_sync out of bounds confirmed
4 Reiserfs update_stat_data kernel bug confirmed
5 Net netlink_unicast general protection fault confirmed
6 MM/pat get_pat_info inconsistent lock state fixed
7 Net cleanup_net use after free fixed
8 Bpf btf_name_valid_section out of bounds confirmed
9 Jfs jfs_syncpt null-ptr-deref fixed
10 Usb usb_disable_device refcount bug confirmed
11 Bpf build_id_parse_nofault paging fault fixed
12 Bluetooth sco_sock_close use after free confirmed
13 Ifs jfs_statfs.cold out of bounds confirmed

In summary, our optimization strategies not only improve
branch coverage by 12.1~13.3% and found 1.7~2.0x more
unique bugs, but find kernel bugs faster and more stably.

SyzMini®
— SyzMinif

SyzMini
— Syzkaller

SyzMini®
169K —— SyzMinif 24
165K 165K - SyzMini
65 162 — Syzkaller

Branches
Unique bugs

0

v6.11

v5.15 v6.1l

v6.11 v5.15 v6.1l

Figure 8: Numbers of covered branches and found unique
bugs by Syzkaller, SyzMini®, SyzMiniP and SyzMini.

5.3 RQ2: Contributions of Optimizations

Setup of RQ2. To investigate the respective contributions of
the two optimization strategies in improving kernel fuzzing,
we implemented two versions of SyzMini: SyzMini* and
Ssziniﬁ. SyzMini® only includes the influence-guided strat-
egy while SyzMiniP only includes the type-informed strategy.
We compare the code coverage and the number of found
unique bugs between Syzkaller, SyzMini®, SyzMiniP and
SyzMini to analyze the contributions of the two optimization
strategies. Following the setup of RQ1, we ran each tool for
24 hours and repeated 10 rounds.

Results. Figure 8 shows the numbers of covered branches and
the numbers of found unique bugs by Syzkaller, SyzMini%,
SsziniB and SyzMini. For example, on v5.15, equipped with
the influence-guided strategy, SyzMini®* achieved an average
of 4.0% branch coverage improvement (from 145K to 151K)
and found 5 more unique bugs (from 14 to 19), compared
to Syzkaller. By comparing Sszinil3 and SyzMini, without
this influence-guided strategy, SsziniB’s branch coverage
dropped by 3.7% (from 165K to 159K) and missed 9 unique
bugs (from 28 to 19). Thus, the influence-guided strategy is
useful in improving kernel fuzzing.

For the type-informed strategy, on v5.15, SyzMiniP
achieved an average of 9.1% more branch coverage (from
145K to 159K) and found 5 more unique bugs, compared to
Syzkaller. By comparing SyzMini* and SyzMini, without
the type-informed strategy, the branch coverage achieved by
SyzMini® dropped by 8.2% (from 165K to 151K) and missed
9 unique bugs. The results indicate that the type-informed
strategy is also important in improving kernel fuzzing. We
also note that SyzMiniP achieved more improvement than
SyzMini%. We will explain this phenomenon in Section 5.4.

It is worth noting that the optimization effects of these two
strategies are orthogonal. Because these two strategies act on
two different steps (i.e., removing calls and simplifying argu-
ments) in minimization. Thus, SyzMini achieved the highest
coverage and found the most number of bugs compared to
Syzkaller, SyzMini® and SyzMiniP.

In summary, the influence-guided strategy improves the
coverage by 3.5~4.6% and increases the number of found
unique bugs by 1~1.35x, while the type-informed strategy
enhances coverage by 8.3~9.1% and increases the number of
found unique bugs by 1.2~1.5x. The optimization effects of
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Table 7: Numbers of program executions under different min-
imization strategies in removing calls and simplifying args.

Number of Program Executions
Removing Calls  Simplifying Args All
140,620 260,239 400,859
influence-guided | 60,372 (57.1%J) - 320,611 (20.0%J)
type-informed - 96,896 (62.8%1) 237,516 (40.7%)
both optimizations | 60,372 (57.1%]) 96,896 (62.8%])) 157,268 (60.7%))

Minimization
one-by-one

the two optimization strategies are orthogonal.

5.4 RQ3: Reasons of Effectiveness

Setup of RQ3. We designed a controlled experiment to ex-
plain why the two optimization strategies can improve the
effectiveness of kernel fuzzing by reducing the cost of min-
imization. To this end, We ran Syzkaller for 24 hours and
collected 16,266 interesting programs that need minimiza-
tion. We applied the default one-by-one minimization strat-
egy in Syzkaller, the influence-guided strategy and the type-
informed strategy in SyzMini respectively to minimize these
interesting programs. We counted the number of program exe-
cutions needed for verifying the coverage to approximate the
cost required by these different minimization strategies. Addi-
tionally, we also measured the portions of program executions
between mutation and minimization before and after applying
the two optimization strategies to explain the effectiveness.

Results. Table 7 gives the numbers of program executions
under different minimization strategies. Compared to the one-
by-one minimization, the influence-guided strategy reduced
57.1% program executions when removing calls (see Column
“Removing Calls”), while the type-informed strategy reduced
62.8% program executions when simplifying arguments (see
Column “Simplifying Args”). Overall, the influence-guided
and type-informed strategies respectively avoided 20.0% and
40.7% of the total program executions required by the one-
by-one strategy. Moreover, when both strategies are enabled,
they can reduce a total of 60.7% program executions. These
results show that the two optimization strategies can avoid
a large number of program executions during minimization.
As a result, SyzMini can allocate more time to the mutation
stage and execute more diverse programs. It explains why
SyzMini can achieve higher coverage and find more bugs
than Syzkaller.

It is also worth noting that the type-informed strategy re-
duces 40.7% program executions, which is about 2X more
than that of the influence-guided strategy (20.0%). The for-
mer strategy can reduce more cost of minimization than the
latter. This result explains why SyzMiniP can achieve more
improvement than SyzMini®* for kernel fuzzing in RQ?2.

Figure 9 shows the portion of program executions be-
tween the minimization and mutation stages in a 24-hour
fuzzing campaign before and after applying the optimiza-
tions on the three kernel versions (i.e., comparing between
Syzkaller and SyzMini). Compared to Syzkaller, SyzMini

Mutation = Minimization

100%

51.8% 52.5% e

88.5% 86.5% 83.5%

Proportion

20%

Syzkaller SyzMini
v5.15 v6.1 v6.11

Syzkaller SyzMini Syzkaller SyzMini

Figure 9: Proportion of program executions between mutation
and minimization in SYZKALLER and SYZMINI

significantly reduce the proportion of program executions in
minimization, while substantially increases the proportion of
program executions in mutation. Taking v5.15 as an example,
Syzkaller’s minimization occupies 48.2% program execu-
tions, while SyzMini’s minimization only occupies 11.5%
(reduced by 75.7%); on the other hand, Syzkaller’s mutation
occupies 51.8% program executions, while SyzMini’s muta-
tion occupies 88.5% (increased by 70.5%). The results show
that SyzMini does reduce the minimization cost and more
time is allocated to mutation.

In summary, the influence-guided and type-informed opti-
mization strategies reduce 60.7% of program executed during
the minimization and more time is allocated to the mutation,
thereby enhancing the effectiveness of kernel fuzzing.

5.5 RQ4: Applicability of Optimizations

Setup of RQ4. We aim to evaluate the generability and appli-
cability of our optimization strategies on other distinct kernel
fuzzers. To this end, we conducted a survey of research work
on kernel fuzzing which was published in the recent five years
(2019-2024) in relevant top venues (S&P, USENIX, CCS,
NDSS, OSDI, SOSP, Eurosys, ATC). We collected 11 papers.
We excluded 3 papers that did not open-source their tools,
and 5 papers whose tools had not been actively maintained
anymore. We finally obtained SyzVegas [44], CountDown [3]
and SyzDirect [41] as the target fuzzers, all of which are built
on Syzkaller but are designed for different purposes.

Specifically, SyzVegas targets adopting reinforcement
learning for better scheduling seed selection, mutation and
generation. CountDown targets detecting memory-related ker-
nel bugs by a reference counter-guided mutation operator.
SyzDirect is a direct kernel fuzzing tool which targets repro-
ducing kernel bugs. These three tools are the state-of-art with
different application scenarios. We implemented our optimiza-
tion strategies in SyzVegas, CountDown and SyzDirect, and
obtained their enhanced versions SyzVegas™t, CountDown™
and SyzDirect™. We investigate whether their performance
could be further improved.

To ensure fairness, we followed the default setups and eval-
uation metrics of these tools described in their papers. To

1460 2025 USENIX Annual Technical Conference

USENIX Association



100K

[}
w 80K 220
2 H
g 60K ©
3
& 40K _9-10
@ 50k — SyzVegas =:, — SyzVegas
SyzVegas™* SyzVegas*
o' 0
0 4 8 12 16 20 24 0 4 8 12 16 20 24

Time (Hours) Time (Hours)

Figure 10: SyzVegas vs. SyzVegas™ in term of branch cov-
erage and number of unique bugs (shaded area: mean +1
standard deviation).

compare SyzVegas and SyzVegas™, we measured code cov-
erage and number of found bugs. To compare CountDown
and CountDown™, we counted the number of found KSAN
bugs (memory-related errors reported by Kernel Address San-
itizer). To compare SyzDirect and SyzDirectt, we used uTTE
and hitting-round to evaluate the directed fuzzing abilities.
Specifically, SyzDirect provides a list of 100 kernel bugs as
its evaluation dataset. Considering the experimental cost, we
selected the first 10 bugs as the evaluation dataset in this paper.
To prepare the dataset, we compiled the corresponding ten ver-
sions of Linux kernels with the configuration recommended
by SyzDirect. We ran each tool 24 hours and repeated each
experiment 10 rounds to migrate randomness. Thus, this eval-
uation for the three kernel fuzzing tools and their respective
enhanced versions took 5,760 machine hours.

SyzVegas vs SyzVegast. Figure 10 shows the achieved
code coverage and the number of found unique bugs on
Linux v5.15. With the help of the two optimization strategies,
SyzVegas™ improves branch coverage by 14.5%. SyzVegas™
found 24 unique bugs, while SyzVegas only found 16 unique
bugs. It is clear that our optimization strategies enhances
SyzVegas in code coverage and bug finding.

CountDown vs CountDown ™. Table 8 lists the number of
KASAN bugs found by CountDown and CountDown™ on
Linux v5.11. During the 10 rounds of a 24-hour fuzzing cam-
paign, CountDown™ found a total of 43 KASAN bugs, while
CountDown only found 27 bugs. CountDown™ also achieved
4.5% more branch coverage. CountDown leverages the mem-
ory relation between system calls to guide the mutation of
seeds for finding memory-related bugs. However, all the seeds
in the corpus require minimization to improve mutation effec-
tiveness. Our optimization strategies reduce the minimization
cost, thereby allowing CountDown to have more time in per-
forming memory-related mutations for finding KASAN bugs.
Table 8: CountDown vs. CountDown™ on the KASAN bugs

All KASAN Bugs Branch Coverage
Tool Min Max  Total Min Max Avg
CountDown 0 5 27 1169k  120.7k  119.0k
CountDown™ 1 7 43 119.7k  130.1k 1243k
Improvement | 11 21 66.7%1 | 2.4%1T 1.8%1T 4.5%71T

SyzDirect vs SyzDirect™. Table 9 gives the uTTE and hitting-
round for reproducing each target bug. SyzDirect™ success-
fully reproduced 9 bugs, while SyzDirect reproduced 6 bugs.

Table 9: SyzDirect vs SyzDirectt on bug reproduction

. SyzDirect SyzDirect™
Bug ID Commit ID ,uTTErzlhitting-mund ,uTTEyNhitting—mund

1 3f2db250099f X 16.0h~4/10
2 ¢9a2f90f4d6b 21.6h~2/10 20.0h~4/10
3 b1a811633f73 X 21.2h~1/10
4 2£fd10bcf0310 21.2h~2/10 10.1h~8/10
5 b648ebadc69e X X

6 20aaef52eb08 13.6h~10/10 12.8h~10/10
7 3b0c40612471 18.8h~4/10 17.6h~6/10
8 ffb324e6f874 X 22.1h~1/10
9 0lfaae5193d6 18.7h~4/10 14.4h~6/10
10 b2a616676839 20.4h~6/10 14.10h~8/10

The 6 bugs reproduced by SyzDirect were all reproduced by
SyzDirect™. Moreover, for these 6 bugs, SyzDirect™ achieved
higher hitting-rounds and lower yTTE compared to SyzDi-
rect. The results shows that our optimization strategies can
enhance the directed fuzzing ability of SyzDirect. Given a
bug location, SyzDirect prioritizes the mutations of seeds that
are close to the bug location. But it still requires minimization
to improve the quality of seeds. Our optimization strategies
save the minimization cost, and give SyzDirect more time to
mutation for increasing the probability of reproducing bugs.
In summary, the influence-guided and type-informed opti-
mization strategies are orthogonal to the optimization strate-
gies of existing kernel fuzzing tools. They improve SyzVegas by
covering 14.5% more coverage and finding 1.5 X more unique
bugs, help CountDown identify 66.7% more KASAN bugs and
enhance SyzDirect by reproducing 1.5x more kernel bugs.

5.6 RQS5: Factors affecting Optimizations

Setup of RQS5. We aim to analyze the factors that could affect
the effectiveness of our optimization strategies. Specifically,
the influence-guided optimization strategy leverages the influ-
ence relations between system calls to reduce the minimiza-
tion cost. Thus, the number of influence relations is a critical
factor affecting the strategy’s effectiveness. To this end, we
conducted a controlled experiment to study the impact of dif-
ferent numbers of influence relations on the effectiveness of
this strategy. In our experiment, we have 74,865 influence
relations in total. We selected the first 10%, 20%, ..., 100%
respectively from the list of these 74,865 influence relations
as the input of the influence-guided strategy and observe the
number of program executions during minimization.

The type-informed strategy reduces the minimization cost
by skipping simplifying the fixed-size arguments. Thus, the
number of fixed-size parameters (including the pointed-to
objects if the parameters are Pointer type and the sub-fields
if the parameters are user-defined type) in the system calls
affects this strategy’s effectiveness. However, obtaining all
the system calls in the Linux kernel is difficult. We note that
Syzkaller regularly updates the tested system calls when the
Linux kernel has new updates. To this end, we analyzed the
tested system calls provided by Syzkaller in the recent five

USENIX Association

2025 USENIX Annual Technical Conference 1461



126166
120K

[}
o

100K

S
o

N
o

59273 60923 60372

Number of executions
©
o
~
Reduced proportion

0K
10 20 30 40 50 60 70 80 90 100
Influence relation proportion(%)

10 20 30 40 50 60 70 80 90100
Influence relation proportion(%)

Figure 11: Number of program executions used for removing
calls in minimization, and the reduced proportion of program
executions compared to the one-by-one minimization.

years (2019-2024). We developed a script to scan all the tested
system calls based on the Syzlang syntax [42], and counted the
numbers of fixed-size and variable-size parameters according
to the analysis method in Section 4.2.

Influence-guided Strategy. Figure 11 shows (1) the numbers
of program executions used for removing calls in minimiza-
tion, and (2) the reduced proportions of program executions
compared to the one-by-one minimization (calculated by the
similar method in Table 7) under different proportions of in-
fluence relations. We can see that when the proportion of
influence relations increases, the number of program execu-
tions used for removing calls gradually decreases (see the
left subfigure), and the reduced portion of program execu-
tions gradually increases (see the right subfigure). When the
proportion of influence relations reaches 60%, the number
of program executions and the reduced portion of program
executions gradually stabilize. The reason is that, when the
number of influence relations increases, the number of irrel-
evant calls identified by the influence-guided strategy in the
program to be minimized gradually saturates. It also indi-
cates that the number of collected influence relations in our
experiment is enough for the strategy to take effect.

It is worth noting that this evaluation has also implied the
relationship between such precision and optimization effec-
tiveness. The reason is that proportion adopted essentially
approximates the precision of influence relationship. When
a smaller proportion of influence relation is given, the type-
informed strategy will erroneously identify more irrelevant
calls in the interesting program, reducing the precision of
inferring irrelevant calls. The final result in Figure 11 shows
that when the proportion of influence relation increases, the
optimization effect increases; however, when the proportion
reaches beyond 60%), its effect on the optimization strategy is
negligible.

Type-informed Strategy. Table 10 shows the numbers of
fixed-size and variable-size parameters in the system calls
provided by Syzkaller. Indeed, we can see that the number of
fixed-size parameters account for a large portion. Taking the
version of Syzkaller in Dec. 2020 as an example, the propor-
tion of fixed-size parameters is 80.5%, while the proportion
of variable-size parameters is only 19.5%. The results shows
that the tested system calls in Linux kernels are composed of
a large number of fixed-size parameters. The type-informed

Table 10: Numbers of fixed-size and variable-size parameters
in the system calls provided by Syzkaller.

Fixed-size Parameter ~ Variable-size Parameter
101,897 (80.5%) 24,679 (19.5%)
103,442 (80.1%) 25,643 (19.9%)
107,575 (80.2%) 26,557 (19.8%)
112,523 (80.6%) 27,145 (19.4%)
285,517 (74.0%) 100,631(26.0%)

Date Commit ID
2020-12  79264ae39cle
2021-12  36bd2e486525
2022-12  ab32d50881df
2023-12  fb427a078200
2024-12  d7f584ee3c24

strategy can avoid simplifying many unnecessary arguments
which cannot benefit reducing the redundant mutation space.
As a result, the number of program executions needed for
verifying the coverage could be significantly reduced.

In summary, for the influence-guided strategy, within the
threshold of 60% influence relations, increasing the number
of relations can improve its effectiveness and its optimization
effect gradually stabilizes as the number of relations contin-
ues to grow. For the type-informed strategy, the fixed-size
parameters occupy a high proportion in tested system calls,
which help reduce the cost of simplifying arguments.

6 Discussion

SyzMini optimizes the minimization stage in kernel fuzzing
and does not affect other parts of a coverage-guided ker-
nel fuzzer. Figure 5 shows the extension implemented by
SyzMini on top of Syzkaller. In the literature, a number of
research work has been conducted to improve different as-
pects of kernel fuzzing (e.g., generating system call descrip-
tion [8,9, 39], mutating the seeds [13, 40] and scheduling
the fuzzing tasks [20]). SyzMini is orthogonal to these ex-
isting work and would not affect any of these improvements.
Thus, our optimization strategies are not limited to Syzkaller.
Our extensive evaluation in Section 5.5 has also shown the
significant effectiveness improvement when integrating our
strategies into three kernel fuzzers (SyzVege, Countdown and
SyzDirect) for different application scenarios. We believe in-
tegrating our optimization strategies to other kernel fuzzers
will boost their effectiveness as well.

7 Related Work

Kernel Fuzzing. Since the success of Syzkaller [15], there
has been much research work to improve the effectiveness of
kernel fuzzing. A number of research work [5,8,9,11,17,18,
39,45] has been devoted to obtaining more comprehensive
system call specifications for producing high-quality seeds.
Moonshine [35] aims to generate high-quality initial seeds by
distilling the collected system call sequences, thereby enhanc-
ing the mutation effectiveness. Other work [10, 13,17,23,40]
utilizes the relationship between system calls to narrow the
mutation space. SyzVegas [44] leverages reinforcement learn-
ing to better schedule the fuzzing tasks such as program gen-
eration, mutation and minimization. Different from these ex-
isting work, our work SyzMini aims to reduce the cost of
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minimization in kernel fuzzing, which has not been explored
before.

Kernel Fuzzing Acceleration. There are some research work
to accelerate kernel fuzzing. Horus [32] improves the commu-
nication speed between the host machine and the virtual ma-
chine running the tested kernel by replacing the remote proce-
dure calls (RPCs) with direct memory access. Agamotto [12]
observes that the kernel driver fuzzers frequently execute sim-
ilar test cases, so it dynamically creates multiple checkpoints
for these test cases to skip redundant parts. Different from
these work, our work SyzMini accelerates kernel fuzzing by
reducing the minimizaiton cost.

Input Minimization. Zeller et al. [47] first propose the con-
cept of delta debugging to minimize the failure-inducing input.
Delta debugging has been adapted in many scenarios. For ex-
ample, AFL-family tools [28, 30,46] use afl-cmin [26] and
afl-tmin [27] to respectively minimize the seed corpus and an
input file for improving the effectiveness of fuzzing. Specifi-
cally, afl-tmin [27] takes an input file and tries to remove as
much data as possible while maintaining the same coverage
as observed initially. In compiler fuzzing, C-Reduce [36] is
used to reduce the bug-triggering C program by removing
redundant code. In GUI testing, SimplyDroid [21] simplifies
crash-triggering Ul event traces for Android apps. However,
these existing minimization techniques based on delta debug-
ging cannot be directly applied to minimize the system call
sequences from OS kernels. Because they do not consider the
dependencies between the system calls and the type structures
of arguments.

8 Conclusion

We have proposed two general and novel optimization strate-
gies to reduce the cost of minimization stage in kernel fuzzing.
The influence-guided strategy leverages the influence relation
between system calls to optimize the call removal and the
type-informed strategy utilizes the argument type information
to avoid unnecessary simplification. Our evaluation shows
that the minimization cost can be greatly reduced, compared
to Syzkaller. The optimization strategies also help improve
branch coverage and find more unique bugs. We believe our
optimization strategies are general and could benefit many
other kernel fuzzers.
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