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Characterizing and Finding System Setting-Related
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Abstract—Android, the most popular mobile system, offers a
number of user-configurable system settings (e.g., network, lo-
cation, and permission) for controlling devices and apps. Even
popular, well-tested apps may fail to properly adapt their behaviors
to diverse setting changes, thus frustrating their users. However,
there exists no effort to systematically investigate such defects.
To this end, we conduct the first large-scale empirical study to
understand and characterize these system setting-related defects
(in short as “setting defects”), which reside in apps and are trig-
gered by system setting changes. We devote substantial manual
effort (over four person-months) to analyze 1,074 setting defects
from 180 popular apps on GitHub. We investigate the impact,
root causes, and consequences of these setting defects and their
correlations. We find that (1) setting defects have a wide impact
on apps’ correctness with diverse root causes, (2) the majority of
these defects (≈70.7%) cause non-crashing (logic) failures, and (3)
some correlations exist between the setting categories, root causes,
and consequences. Motivated and informed by these findings, we
propose two bug-finding techniques that can synergistically detect
setting defects from both the GUI and code levels. Specifically, at
the GUI level, we design and introduce setting-wise metamorphic
fuzzing, the first automated dynamic testing technique to detect set-
ting defects (causing crash and non-crashing failures, respectively)
for Android apps. We implement this technique as an end-to-end,
automated GUI testing tool named SETDROID. At the code level,
we distill two major fault patterns and implement a static analysis
tool named SETCHECKER to identify potential setting defects. We
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evaluate SETDROID and SETCHECKER on 26 popular, open-source
Android apps, and they find 48 unique, previously-unknown setting
defects. To date, 35 have been confirmed and 21 have been fixed by
app developers. We also apply SETDROID and SETCHECKER on five
highly popular industrial apps, namely WeChat, QQMail, TikTok,
CapCut, and AlipayHK, all of which each have billions of monthly
active users. SETDROID successfully detects 17 previously unknown
setting defects in these apps’ latest releases, and all defects have
been confirmed and fixed by the app vendors. After that, we collab-
orate with ByteDance and deploy these two bug-finding techniques
internally to stress-test TikTok, one of its major app products.
Within a two-month testing campaign, SETDROID successfully finds
53 setting defects, and SETCHECKER finds 22 ones. So far, 59 have
been confirmed and 31 have been fixed. All these defects escaped
from prior developer testing. By now, SETDROID has been inte-
grated into ByteDance’s official app testing infrastructure named
FASTBOT for daily testing. These results demonstrate the strong
effectiveness and practicality of our proposed techniques.

Index Terms—Empirical study, system settings, android apps,
GUI testing, static analysis.

I. INTRODUCTION

ANDROID supports the running of millions of apps nowa-
days. Specifically, a number of user-configurable system

settings are offered by the (preinstalled) system app Settings
on Android for controlling devices and apps. For example, users
can change the system language, switch to another type of
network connection, grant or revoke app permissions, or adjust
the screen orientation. When these settings change, an app is
expected to correctly adapt its behavior, and behave consistently
and reliably.

However, achieving the preceding goal is challenging. Even
popular, well-tested apps may be unexpectedly affected due to
inadequate considerations of diverse setting changes. For ex-
ample, WordPress [1], a popular website and blog management
app (which has 10,000,000∼50,000,000 installations on Google
Play and 2,800 stars on GitHub), suffered from two defects
triggered by switching to the airplane mode (a commonly-used
setting during traveling). One defect was triggered when a user
turned on the airplane mode when publishing a new blog post;
WordPress was stuck at the post uploading status even after the
user later turned off the airplane mode and connected to the
network [2]. The other defect was triggered when a post-draft
was created under the airplane mode; WordPress constantly
crashed at the next startup [3]. Both defects were labeled as
critical but escaped from pre-release developer testing.
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Fig. 1. Overview of our study, including three steps: (a) data collection, (b) data analysis, and (c) application.

Moreover, these setting defects can be frustrating. For ex-
ample, NextCloud [4] is a popular on-premise file-sharing app
(which has 1,000,000∼5,000,000 installations on Google Play
and 3,300 stars on GitHub). A user reported that he could
not use the auto-upload functionality for unknown reasons [5].
After extended discussion, the developers finally found that the
auto-upload functionality failed because the power saving mode
was turned on. The user complained that he preferred keeping
the power saving on all day to save battery. To make sure that
the auto-upload functionality would work, he already added
NextCloud into the whitelist of the power saving mode (which
allows NextCloud to use battery without any restrictions), but
the functionality still did not work.

Despite these setting defects’ real-world occurrences and im-
pact, there exists no effort to systematically investigate these de-
fects in Android apps. For example, prior work studies only very
limited types of system settings (e.g., app permissions [6], [7]
and screen orientation [8]). Thus, we are lack of comprehensive
understanding on these setting defects. On the other hand, state-
of-the-art fully-automated GUI testing techniques [9], [10], [11]
cannot effectively detect these setting defects for two major
reasons. First, these techniques usually constrain the testing
within the app under test and thus have no or little chance to
detect these defects, which require interacting with the system
app Settings. Second, these techniques are limited to de-
tecting crash failures [11], [12], [13] due to the lack of strong
test oracles [14], while many setting defects are non-crashing
logic ones that lead to app freezing, functionality failures, or
problematic GUI display, which our study will demonstrate.

To fill this gap, we conduct the first systematic study to
understand and characterize these setting defects. Specifically,
we aim to investigate the following research questions:
� RQ1 (impact): Do settings defects have a wide impact on

the correctness of apps in the wild?
� RQ2 (root causes): What are their major root causes?
� RQ3 (consequences): What are their common conse-

quences? How do they manifest themselves?
� RQ4 (correlations): Are there any correlations between

setting categories, root causes, and consequences?
Answering these questions can help understand the impact,

root causes, and consequences of these setting defects, and also
benefit bug finding and diagnosing. Specifically, Fig. 1 shows
the overview of this study, which contains three steps. In step (a),
we study the Android documentation [15], [16] to summarize
the main setting categories and the keywords of settings (Section

II.A). We then use these keywords to mine 1,074 setting defects
from the issue repositories of 180 popular Android apps on
GitHub (Section II.B). In step (b), we carefully study these
defects by reviewing the bug reports and analyzing the root
causes, fixes, consequences, and the correlations (Section II.C),
and present the answers to RQ1∼RQ4 in Section III. In step (c),
informed by the study, we propose SETDROID and SETCHECKER

to help find setting defects in Section IV.
Our study reveals that setting defects have a wide, diverse im-

pact on the correctness of apps. Specifically, out of the 180 apps,
171 apps (=95%) use at least one setting option in their code, and
162 apps (=90%) have been affected by setting defects. Further,
we distill five major root causes. Specifically, incorrect callback
implementations and lack of setting checks are the most common
ones. We also note that only a few setting defects (≈2%) are
caused by the mutual influence between two settings, while some
were device-specific due to the fast evolution of Android. On the
other hand, setting defects lead to diverse consequences, includ-
ing crashes, functionality failures, problematic GUI display, and
disrespect of setting changes. Specifically, the majority of these
defects (≈70.7%) cause non-crashing failures, which indeed
poses a significant challenge on existing fully-automated GUI
testing techniques.

By analyzing the correlations between the setting categories
and their common root causes and consequences, we find that
the setting defects from all setting categories could lead to
non-crashing failures. Moreover, the lack of setting checks is the
most common root cause for almost all setting categories. This
finding inspires us to use static analysis to detect such defects
by summarizing code-level fault patterns. On the other hand,
we find that almost all setting defects manifest themselves on
the GUI pages. This finding inspires us to find setting defects
via black-box GUI-level testing. In all, these correlations offer
us deep understanding of setting defects and useful insights
for designing effective bug-finding techniques (detailed in Sec-
tion III.D).

Specifically, guided by the preceding findings, we propose
setting-wise metamorphic fuzzing, the first automated testing
approach at the GUI level to effectively detect setting defects
without requiring explicit oracles. Our key insight is that an
app’s behavior should, in most cases, remain consistent if a
given setting is changed and later properly restored, or exhibit
expected differences if not restored. We realize our approach
in SETDROID, an automated, end-to-end GUI testing tool, for
detecting both crashing and non-crashing setting defects. We
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apply SETDROID on 26 popular, open-source Android apps.
SETDROID has successfully discovered 42 unique, previously-
unknown setting defects. So far, 31 have been confirmed and
20 fixed by the developers. We further apply SETDROID on five
highly popular industrial apps that each have billions of monthly
active users worldwide, i.e., WeChat [17] and QQMail [18] from
Tencent, TikTok [19] and CapCut [20] from ByteDance, and
AlipayHK [21] from Alibaba. In these apps’ latest releases,
SETDROID successfully finds 17 setting defects, all of which have
been confirmed and fixed by the app vendors. The majority of all
these setting defects (49 out of 59) cause non-crashing failures,
which cannot be detected by existing fully automated dynamic
testing tools (corroborated by our evaluation in Section V).

Further, we distill two major fault patterns (tackling the major
root cause, i.e., lack of setting checks) at the code level, and build
a static analysis tool named SETCHECKER to identify potential
setting defects. We apply SETCHECKER on the same 26 open
source apps tested by SETDROID. SETCHECKER successfully
finds 17 unique, previously-unknown setting defects, 6 of which
have not been found by SETDROID. So far, 4 have been con-
firmed and 1 fixed by the developers. The result shows that
SETCHECKER can synergistically complement SETDROID. We
give more detailed analysis on SETDROID and SETCHECKER in
Section V.E.

Afterward, we collaborate with ByteDance and deploy SET-
DROID and SETCHECKER internally to help find setting defects
in TikTok, another major app product from ByteDance with
billions of monthly active users worldwide. Within a two-month
testing campaign, SETDROID successfully finds 53 setting de-
fects. To date, 48 of them have been confirmed, and 20 have been
fixed. On the other hand, SETCHECKER successfully detects 22
defects. To date, 11 have been confirmed and fixed. By now,
SETDROID has been intergated into ByteDance’s official app
testing infrastructure named FASTBOT [22], [23]. These results
clearly demonstrate the strong effectiveness and practicality of
our techniques. In summary, this article makes the following
major contributions:
� We conduct the first systematic study on setting defects

to understand and characterize their impact, root causes,
consequences, and correlations.

� Informed by this study, we propose two bug-finding tech-
niques to detect setting defects. At the GUI level, we intro-
duce setting-wise metamorphic fuzzing, the first automated
GUI testing technique to effectively detect setting defects.
At the code level, we distill two major fault patterns and
use static analysis to find setting defects.

� We implement the two bug-finding techniques as two tools
namely SETDROID and SETCHECKER, respectively. SET-
DROID and SETCHECKER have revealed 48 setting defects in
26 open-source apps and 92 defects in five industrial apps.
The majority of these defects cause non-crashing failures
and could not be detected by existing testing tools. Our
evaluation also shows that SETDROID and SETCHECKER

outperform prior techniques and complement each other
in finding setting defects.

� We have made our tools and dataset publicly avail-
able at https:// github.com/ setting-defect-fuzzing/ home, to

facilitate the replication of our work as well as the future
research in this direction.

In an earlier version [24] of the work in this article, we studied
the setting defects in Android apps and developed the setting-
wise metamorphic testing tool named SETDROID. In this article,
we have made substantial extensions in six aspects. (1) We
investigate the correlations between the setting categories and
their root causes and consequences (corresponding to the new
research question RQ4). Based on this analysis, we obtain some
new observations and insights, which were not identified by our
prior work (see Section III.D). Based on the correlation analysis,
we find that the setting defects from some setting categories
are more suitable for static analysis than dynamic analysis. (2)
We propose two generic optimizations for SETDROID in terms
of testing efficiency and precision (see Section IV.A.D). To
improve the efficiency of SETDROID, we use static analysis to
identify and run only relevant setting changes against the app
under test. This optimization reduces 15∼85% testing time. To
improve the precision of SETDROID, we analyze the reasons
of false positives and reduce one major type of false positives
related to the language setting. This optimization reduces the
prior false positive rate from 80.8% to 19.4%. We confirm that
both optimizations do not incur any false negatives. (3) Informed
by the answers to RQ4, we develop a static analysis tool named
SETCHECKER to help find setting defects. Specifically, we sum-
marize two major fault patterns and use control/data-flow anal-
ysis to find setting defects at the code level (see Section IV.B).
(4) We evaluate the effectiveness of SETCHECKER on 26 apps
(see Section V.C), and compare SETCHECKER with other static
analysis tools (see Section V.D). SETCHECKER finds 6 new set-
ting defects, which were not found by SETDROID; SETCHECKER

also outperforms other static analysis tools in finding setting
defects. We further compare and analyze the effectiveness of
SETDROID and SETCHECKER in Section V.E (corresponding
to the new research question RQ7). Indeed, SETDROID and
SETCHECKER can complement each other. (5) We collaborate
with ByteDance and apply SETDROID and SETCHECKER in-
ternally to test TikTok, one major app product of ByteDance.
SETDROID and SETCHECKER successfully find 53 and 22 setting
defects, respectively, which escaped from developer testing. SET-
DROID has been integrated into ByteDance’s official app testing
infrastructure named FASTBOT. (6) We open-source our tools
and dataset at https:// github.com/ setting-defect-fuzzing/ home,
to facilitate the replication of our work and motivate the future
research in this direction.

II. EMPIRICAL STUDY METHODOLOGY

A. Summarizing Setting Categories

To systematically summarize the setting categories, we in-
spect the Android documentation [15], [16] and the mainstream
Android systems (Android 7.1, 8.0, 9.0, and 10.0). We finally
identify 9 major setting categories. Further, we summarize (1)
the commonly used keywords to denote the settings in these
categories; these keywords are used by the bug-report collection
in Section II.B; and (2) the specific Android SDK APIs (includ-
ing classes, methods, or variables) used by or related to these
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TABLE I
LIST OF 9 MAJOR SETTING CATEGORIES SUMMARIZED BY OUR STUDY INCLUDING THEIR LEVELS, KEYWORDS, AND BRIEF DESCRIPTIONS

setting categories; these APIs are used by the impact analysis
in Section II.C. Table I lists these 9 major setting categories.
The column “Setting Categories” lists the category names of
these settings as classified by Android, “Keywords” gives the
commonly used keywords to denote the settings within these
categories, and “Description” summarizes their main function-
alities.

B. Collecting Bug Reports of Setting Defects

We follow the three steps to collect valid bug reports of setting
defects.

1) Step 1: App Collection: We choose open-source Android
apps on GitHub as our study subjects because we can view their
source code, defect descriptions, reproducing steps, fix patches,
and discussions. Specifically, we collect the app subjects as
follows.
� We use GitHub’s REST API [25] to crawl all the Android

projects on GitHub. We focus on the apps that are released
on Google Play and F-Droid, the two popular Android app
markets. Because these apps can receive feedback from
real users and thus are usually well maintained. We attain
1,728 Android projects.

� To focus on those projects that contain enough bug reports
for our study, we keep only the projects with over 200
closed bug reports. We then attain 215 Android projects.

� We manually inspect each project and exclude the ones
that are not real apps (e.g., some projects are simple demo
apps to illustrate third-party Android libraries). Finally, we
attain 180 Android apps as our study subjects.

Fig. 2 shows the characteristics of the 180 apps in terms of
the numbers of stars and issues (i.e., bug reports) on GitHub, the
installations on Google Play, and the app categories. We can see
that these apps are popular and diverse, serving as a solid basis
for our analysis.

Fig. 2. Characteristics of the 180 apps under study.

2) Step 2: Bug-Report Collection: From the 180 apps, we
attain 177,769 bug reports in total. To collect bug reports for our
study, we use three sets of keywords to filter bug reports. When
a bug report contains at least one keyword from each of these
three keyword sets, we select the bug report to include in our
study.
� Setting keywords: A bug report within our study scope

should contain at least one of the setting keywords listed in
Table I. For each keyword, we consider the possible forms
that users may use (e.g., capitalization, abbreviations, and
tenses). For example, users may use “power saving” to
represent “power save”.

� Defect/failure keywords: We focus on the bug reports that
describe real app defects/failures rather than feature re-
quests or documentation issues. Thus, we use the keywords
of “crash”, “exception”, “bug”, and “issue” to filter bug
reports.

� Reproducing keywords: To facilitate bug-report analysis,
we focus on the bug reports that contain the reproduc-
ing steps. We use the keywords of “repro”, “STR”, and
“record” to filter bug reports. These reproducing steps are
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important, helping us understand and confirm whether a
bug report indeed reflects a setting defect.

Finally, we attain 11,656 bug reports within our study scope.
3) Step 3: Dataset Construction: To answer RQ1, RQ2, and

RQ3, we manually inspect the 11,656 bug reports from the pre-
vious step, and keep only the valid bug reports by the following
rules:
� We retain only the bug reports where the reporters or

developers make clear statements that changing system
settings is a necessary condition for triggering the failures.
For example, we exclude the bug reports that just mention
settings.

� When we do not have clear clues from bug reports, we
reproduce the failures to confirm whether they reflect set-
ting defects. To reproduce the failures, we need to obtain
the corresponding app versions. If the app versions are
no longer available on the app markets (Google Play or
F-Droid), we will check whether the app’s GitHub repos-
itory releases the corresponding app versions. Otherwise,
we will pull the corresponding version of source code and
manually build the app. We reproduce the failures based
on the steps described in the corresponding bug reports.

Finally, we successfully attain 1,074 valid bug reports as the
dataset for our subsequent analysis. Among these bug reports,
482 are closed and linked with code fixing commits.

C. Analysis Methods for Research Questions

This section details the analysis methods used to answer the
research questions. Note that, to avoid omissions and misclassi-
fications in answering RQ1, RQ2, and RQ3, four co-authors
participate in the process for data collection, classification,
manual analysis, and cross-checking.

1) Analysis Method of RQ1: To answer RQ1, we focus on the
180 apps collected from GitHub and investigate (1) the usage of
settings in the apps, i.e., which apps use which setting categories;
and (2) the impact of setting defects against the apps, i.e., which
apps are ever affected by which setting defects.

To investigate the usage of settings, we use static analysis to
analyze whether an app uses specific APIs (classes, methods,
or variables) of each setting category (summarized in Section
II.A) in their code. We observe that this method is feasible
and reliable because using these specific APIs is the only way
for an app to access settings. For example, apps use the class
ConnectivityManager to query the network connectivity,
and get notified when the network connectivity changes; apps
use method checkSelfPermission to check whether spe-
cific permissions have been granted; apps use the system vari-
able Settings.System.SCREEN_BRIGHTNESS to read
the current screen brightness. Thus, we use these classes, meth-
ods, or variables to determine which setting category is used by
an app. We give the complete list of these APIs of each setting
category used in this study on the web page of our supplementary
materials [26]. To investigate the impact of setting defects, we
focus on the 1,074 setting defects collected from the 180 apps.
We inspect how many apps out of the 180 apps were affected by

these setting defects and which setting categories these setting
defects belong to.

2) Analysis Method of RQ2: To answer RQ2, we focus on
analyzing the setting defects in the 482 fixed bug reports out
of the 1,074 valid bug reports. We study the fixed bug reports,
including developer comments and code fixes, to understand
the setting defects’ root causes. If necessary, we also refer to
Android documentation [15] or Stack Overflow [27] to find more
clues.

Specifically, two co-authors first work on a common set of bug
reports to identify the root causes based on (1) the causes behind
these setting defects and (2) the defect fixing strategies. Then,
the two co-authors discuss together with the other co-authors
to reach the consensus on the initial categories. After that, the
four co-authors work separately on the remaining bug reports to
classify the root causes. They discuss and cross-check together
when the categories need to be updated (e.g., add, merge, or
modify categories).

3) Analysis Method of RQ3: To answer RQ3, we focus on
all the 1,074 valid bug reports. We study these bug reports to
determine the consequences. If necessary, we reproduce the
failures to observe the consequences (Section II.B.3 describes
the reproduction process).

Specifically, similar to the analysis on root causes, the two
co-authors first work on a common set of bug reports to identify
the consequences. Then, the two co-authors discuss together
with the other co-authors to reach a consensus on the initial
categories. After that, the four co-authors work separately on
the remaining bug reports to classify the consequences. They
discuss and cross-check together when the categories need to be
updated (e.g., add, merge, or modify categories).

In addition, we studied the manifestations of these 1,074
setting defects, i.e., whether these defects will manifest as GUI
defects (i.e., whether a defect would be manifested through GUI
pages when it is triggered) and whether these defects would lead
to some GUI differences (i.e., whether a defect would lead to
some GUI differences when the relevant setting is on or off).
We count the number of bugs that will manifest as GUI defects
and lead to some GUI differences. These information helps us
to design effective bug finding techniques.

4) Analysis Method of RQ4: To answer RQ4, we use the
analysis results from RQ1∼RQ3 as the basis, and summarize the
root causes and the consequences within each setting category.
We investigate the correlations between the setting categories,
root causes, and consequences from different aspects. For ex-
ample, we inspect which root causes are the most common
across different categories, whether one root cause could lead to
different consequences within one setting category, etc.

III. STUDY RESULTS AND ANALYSIS

A. RQ1: Impact of Settings Defects

To understand the impact of setting defects, we investigate
two aspects: (1) the usage of settings in the apps; (2) the impact
of setting defects against the apps.

Table II (column “#Apps using settings”) lists the number of
apps that use APIs related to each setting category. The result is
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TABLE II
STATISTICS OF THE IMPACT OF SETTINGS ON THE APPS

based on the list of setting-related APIs summarized in Section
II.A. Note that the numbers in Table II may overlap because one
app may use multiple settings. Row “#Total” gives the unique
number of apps that use settings. Additionally, the data in Table II
may not characterize the exact numbers of apps affected by the
settings because it is difficult in practice to collect all possible
setting-related APIs. In some cases, some settings do not provide
explicit APIs. For example, we have not counted the usage of
some settings (e.g., “Developer”, “Accessibility”, denoted by
“-” in “Others” in Table II) because they do not export explicit
APIs. But when an app uses the APIs in our list, we are sure that
the app depends on the corresponding settings. Thus, the current
results in Table II can be viewed as the lower bound of setting
usage by apps.

In Table II, we can see that 95% (171/180) of the apps
use at least one setting-related API. For the remaining 9 apps,
we manually examined their source code. Indeed, they do not
use system settings, and no setting defects were reported. For
example, one of the nine app is a calculator app, which has simple
functionalities and does not use any system setting. Among
all the setting categories, “Apps and notification” is the most
commonly used one because most non-trivial apps use dynamic
permissions and notifications. The setting category “Network
and connect” is also commonly used. For “Display”, we find
many apps check the changes of font size, screen brightness,
screen orientation, and multi-window mode. For ”Location and
security”, apps use the APIs like android.location and
com.google.android.gms.location for localization.
Apps use android.media.AudioManager to access vol-
ume and ringer mode control in the “Sound” category. The
API PowerManager#isPowerSaveMode is usually used
to check whether the device is in power saving mode by apps
in the category “Battery”. Although there are only 57 apps that
check the battery settings in the code, we find there are more
apps that are actually affected by this setting.

Table II (column “#Apps were affected”) counts which apps
were ever affected by setting defects according to the 1,074 bug
reports in our dataset. We find that most apps were affected by
at least one setting defect. Specifically, 162 apps have setting
defects, which account for 90% (162/180) of the 180 apps under
study. The three categories “Display”, “Network and connect”,
and “Apps and notifications” have the widest impact on the app’s
correctness.

Table II (column “#Setting Defects”) classifies the defects
reflected by the 1,074 bug reports in our dataset according
to the defects’ setting categories. Similar to the observation

TABLE III
MAJOR ROOT CAUSES OF SETTING DEFECTS

Fig. 3. Patch for ankiDroid’s issue #4951.

from column “#Apps were affected”, we can see that the three
categories “Display”, “Network and connect”, and “Apps and
notifications” lead to the majority (701/1,074≈65.2%) of setting
defects. This result indicates that the settings in these categories
are more likely to cause setting defects than the other ones.

Answer to RQ1: Our study reveals that 95% (171/180) of
apps in our dataset use system settings according to the
setting-related APIs used in the app code. 90% (162/180 )
of apps were ever affected by setting defects. Thus, setting
defects indeed have a wide impact on the app correctness.

B. RQ2: Root Causes of Setting Defects

To analyze the root causes, we focus on investigating 482
fixed bug reports with explicitly-linked code fixing commits. We
finally identified five major categories of root causes based on
the reasons behind these setting defects and the corresponding
defect fixing strategies. Table III summarizes these root causes
ordered by their corresponding numbers of bug reports from the
most to least. We next explain and illustrate these root causes.

1) Incorrect Callback Implementations: To properly handle
settings, developers are required to properly implement the
callback methods, which are called by the Android system
when some settings change. For example, when users grant
or deny permissions, the callbackonRequestPermission-
sResult() is called; when users change the system language,
specific Activity lifecycle callbacks (e.g., onCreate()) are
called. If these callbacks are not correctly implemented, setting
defects may occur. Thus, these defects are usually fixed in
specific callbacks.

For example, in AnkiDroid [28]’s Issue #4951, when a user
grants the storage permission from the permission request dia-
log, the original 3-dot menu icon disappears from the top-right
corner of the screen. The reason is that the developers do not
properly handle the app logic in the callback. Fig. 3 shows the
patch. When the user responds to the permission request, the
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Fig. 4. Patch for nextCloud’s issue #2889.

system invokes the callback onRequestPermissionsRe-
sult() (Line 1). After the user grants the storage permission,
the original menu should be redrawn because its content is
changed. However, the developers forget to call invalida-
teOptionsMenu() to redraw the menu (Line 5). As another
example, some users will enable the “Do not keep activities”
setting option to reduce system resource consumption. How-
ever, this setting change requires developers to properly handle
Activity lifecycle callbacks (e.g., properly saving app data) be-
cause Android may kill any activity running in the background.
WordPress’s issues #9685 and #5456 lead to fatal crashes due to
the developers fail to properly handle app data in the callbacks.

2) Lack of Setting Checks: Many apps could be affected
when specific settings (e.g., network) change. If developers fail
to properly check the status of these settings or do not monitor
the status while using related setting APIs, some serious failures
may occur. These defects are usually fixed by adding conditional
checks.

For example, in NextCloud’s Issue #2889, the user complains
that some app functionalities are affected even if she whitelists
the app from the power saving. As shown in Fig. 4, the developers
check only whether the device is in the power saving mode
byPowerManager#isPowerSaveMode() (Line 3), but do
not check whether the app is in the whitelist of the power saving
mode by PowerManager# IsIgnoringBatteryOpti-
mizations(). In the end, the developers fix the defect by
adding this check (Lines 5-6).

3) Fail to Adapt User Interfaces: Some settings, e.g., multi-
window display, font size, languages, and dark mode, affect the
user interfaces (UIs) of apps. If an app fails to properly adapt
its UIs when these settings change, some display defects may
exist. We observe that such setting defects are usually fixed by
modifying the resource files (e.g., XML layouts) rather than the
app code.

For example, because the UI layouts are not properly de-
signed, Status [29]’s Issue #914 leads to the disappearance of
some UI elements when the app adapts itself to the multi-window
display mode. In Frost [30]’s Issue #1659, when users change
the system language from German to Russian, the texts overlap
or cannot be displayed completely within the screen, because
the translation from German to Russian leads to much longer
texts.

4) Mutual Influence Between Settings: Some settings have
explicit or implicit mutual influence, which many app devel-
opers are unaware of. This factor may lead to some unexpected
setting defects. The fixes of such defects usually involve multiple
settings.

Fig. 5. Patch for openlauncher’s issue #67.

One typical example of explicit mutual influence is that the
positioning in Android can be affected by the settings of both net-
work and location. Because Android supports positioning via ei-
ther GPS or network or both. In Commons [31]’s Issue #1735, the
app crashes if it is opened offline. The root cause is that the app
calls locationManager#getlastknownlocation()
to get the current geographic location via network. When the
network is closed, this call returns a NULL value, which is later
used by getLatitude(). As a result, the app crashes by a
NullPointerException.

One typical example of implicit mutual influence is that
when the power saving mode is enabled, some settings such
as location, network, and animation are affected. This factor
may make the failure diagnosis quite difficult. For example, in
Clover [32]’s Issue #360, the app is always stuck for unknown
reasons and then forced closed. The developers finally locate
the culprit: the animation is automatically disabled when the
power saving mode is on. The app is stuck because the startup
animation cannot be played.

5) Lack of Considering Android Versions: The Android sys-
tem evolves fast, and some setting mechanisms may change.
This factor may lead to some device-specific setting defects.
For example, in Openlauncher [33]’s issue #67: when a user
changes the volume while the “do not disturb” (DND) mode is
enabled (in the notification setting category), the app crashes.
The root cause is that since Android’s Nougat version, if an
app is in the DND mode, the app needs to get the AC-
CESS_NOTIFICATION_POLICY permission before it can
use AudioManager to change the volume. As shown in
Fig. 5, the developers fix this defect by checking whether the
the system version is above Android 7.0 (Line 1) before calling
the AudioManager#setStreamVolume() (Line 7). Take
another case as an example, in TUM Campus’s issue #714, a
user reported that when he opens WiFi on his device (which is
shipped with Android 4.4.2), the app will crash. The root cause
is that DFN-PKI, the service used by TUM Campus to issue,
distribute and check digital certificates, is not compatible with
Android 4.4.2 or lower. These setting defects are induced by
compatibility issues but triggered by changing specific system
settings.

6) Other Minor Reasons: The other reasons for setting de-
fects are usually related to the app’s domain-specific logic. For
example, in WordPress, when a user edits and saves a post’s
draft, the app will automatically upload the draft to the server
and overwrite the previous saved draft (on the server). However,
in WordPress’s issue #10525, if a user turns on the Airplane
mode and then edits a post’s draft, and turns off the Airplane
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mode while saving the draft, the UploadStarter() method
in WordPress will be called twice to update the draft on the
server. However, these two method calls refer to the same piece
of draft. As a result, the latter one will access the draft deleted
by the former one, and eventually leads to app crash. Since the
bugs in this category are caused by app-specific erroneous logics,
we do not categorize them into other generic categories of root
causes.

Answer to RQ2: Our study distills 5 major root causes
of setting defects. Among these causes, incorrect callback
implementations, lack of setting checks, and fail to adapt user
interfaces are responsible for the majority (410/482≈85.1%)
of setting defects. Mutual influence between settings and lack
of considering Android versions could lead to setting defects,
despite only a few (39/482 ≈8%).

C. RQ3: Consequences of Setting Defects

This section summarizes the four major consequences of the
defects reflected by the 1,074 bug reports in our dataset. We
detail the four major consequences w.r.t. their numbers of defects
from the most to least. Specifically, we find that the majority
(759/1,074 ≈70.7%) of setting defects lead to non-crashing
consequences, in addition to the crashing failure.

1) Crash: 315 of the 1,074 setting defects lead to app crash.
In most cases, users can recover the app by restoring the setting
changes and restarting the app. But in some cases, users cannot
restore the settings changes, and the app is totally broken. For ex-
ample, in OpenFoodFacts [34]’s Issue #1118, when users switch
to the Hindi language, the app preference page anymore cannot
be opened and just crashes. The users have to reinstall the app.

2) Disrespect of Setting Changes: 285 setting defects disre-
spect the changes of settings, i.e., setting changes do not take
effect. The main reason is that developers fail to consider some
settings, and thus the app does not adapt itself to these setting
changes. For example, in Signal [35]’s Issue #6411, even if users
turn on the “Do not disturb” mode, Signal is still making the
sound from time to time when notifications come in, annoying
the users. Other failure manifestations include untranslated texts
or incomplete translations when the system language is changed.

3) Problematic UI Display: 218 setting defects lead to prob-
lematic UI display. Some settings, e.g., languages and themes,
may affect UI display if the corresponding resource files are not
correctly implemented. For example, in the email client app K-9
[36], users can see the quoted texts from the last reply when
writing an email. But when the app’s theme is changed to the
dark mode, the quoted texts from the last reply become invisible.
Because the developers forget to adjust the color of the quoted
texts (which are in black) according to the current theme.

4) Functionality Failure: 197 setting defects lead to func-
tionality failure, i.e., the original app functionality cannot work
as expected when some setting changes happen. In most cases,
the affected apps do not alert users that the functionality fails
due to the setting changes; in some cases, the apps may give
a wrong alert and mislead the users. For example, in syncthing
[37]’s Issue #727, the background synchronization functionality

does not work for unknown reasons. After a long discussion, the
developers find that the functionality fails because the power
saving mode is enabled. In this case, syncthing does not alert
the users that the power saving mode is affecting the synchro-
nization functionality, and thus confuses the users. Other failure
manifestations include app stuck, black screen, infinite loading,
data loss, and unable to refresh.

The remaining 59 defects’ consequences are very specific
(e.g., slaggy GUIs, delayed updates of app data on GUIs), so
we do not discuss them in detail.

In addition, according to our investigation of bug mani-
festation in Section II.C.3, most of the setting defects would
manifest through GUI pages. According to our statistics,
out of all the 1,074 setting defects, 1,000 setting defects
(93.1%≈1,000/1,074) manifest as GUI defects, 841 of which
(78.3%≈841/1,074) would lead to some GUI differences when
the relevant setting is turned on or off.

Answer to RQ3: Our study reveals that setting defects lead
to diverse consequences. The majority (759/1,074 ≈70.7%)
cause the non-crashing failures and manifest as GUI defects,
which are hard to be automatically detected by existing
testing tools.

D. RQ4: Correlations Between Setting Categories, Root
Causes, and Consequences

To investigate the correlations between the setting categories
and their common root causes and consequences, we count the
settings, root causes, and consequences of all bug reports in
our dataset as described in Section II.C.4 and summarize them
in Table IV. In Table IV, column “Setting” denotes the setting
categories. For column “Root Causes”, we count the root causes
of the bug reports under the corresponding setting category and
sort the root causes in terms of their occurrences in the bug
reports from the most to the least (i.e., the root causes are sorted
by their popularity within each setting category). Note that we
list only the common root causes (which are responsible for
more than 5% of the bug reports). For column “Consequences”,
we sort the consequences in a similar way within each setting
category.

1) What are the Correlations?: Based on the results in Ta-
ble IV, we have three important observations. First, the setting
defects from all the setting categories could lead to non-crashing
failures, in addition to crashes. It indicates that designing ef-
fective bug finding techniques for these non-crashing failures is
indeed important and useful for all the settings. This observation
also explains why our proposed bug finding techniques in Sec-
tion IV can find setting defects from different setting categories.
Specifically, “Disrespect of setting” and “Problematic UI dis-
play” are the two most common consequences for the five setting
categories (i.e., “Network”, “Sound”, “Battery”, “Language”,
and “Time”). In addition, some consequences happen in only
some specific settings, e.g., data loss affects only “Network”
and “Display”.
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TABLE IV
CORRELATIONS BETWEEN THE SETTING CATEGORIES AND THEIR COMMON ROOT CAUSES AND CONSEQUENCES

Second, “Lack of setting checks” is the most common root
cause for almost all setting categories. It indicates that capturing
this type of root cause is most beneficial for finding setting de-
fects. This observation motivates the design of our static analysis
technique in Section IV.B to focus on this root cause. Moreover,
we find that one type of root cause may lead to different conse-
quences. For example, due to the lack of setting checks on the
network connection, Signal suffers from two defects with dis-
tinct consequences. In issue #6447 [38], a user reports that when
he switches from WiFi to data (and vice versa), Signal cannot
receive notifications anymore. In issue #5353 [39], another user
complains that if he calls his friends offline, Signal will crash.
On the other hand, we find that one type of consequence could be
caused by different root causes. For example, WordPress’s issues
#9685 and #5456 discussed in Section III.B.1 are caused by the
incorrect callback implementation, while Issue #67 of Open-
launcher [33] discussed in Section III.B.5 is caused by lack of
considering Android versions. But both defects lead to crashes.

Third, although the consequences of setting defects are di-
verse, the triggering conditions of most setting defects are
similar, i.e., when some related setting is changed, the app may
show some unexpected behaviors on the GUI pages. In other
words, an app can work well under some setting, but when the
setting changes, the app may go wrong (e.g., crash, data loss, and
functionality failures). This observation motivates the design of
our dynamic analysis technique via injecting setting changes in
Section IV.A.

2) Which Bug Finding Technique is More Suitable?: Based
on the preceding correlation analysis, we find that the setting de-
fects from some setting categories are more suitable for dynamic
analysis (i.e., testing), while others are more suitable for static
analysis. In column “Suitable techniques”, we indicate which
bug finding technique(s) we believe is more suitable or are both
suitable. We next discuss the reasons why we reach such conclu-
sions. In Section V, we empirically compare the effectiveness
between the proposed dynamic and static analysis techniques,
and the experimental results corroborate our conclusions here.

Next, we discuss our observations and conclusions in detail
for each setting category.
� Network. We observe that Android provides many different

network-related APIs, and the apps use different ways to
manage network connections. In addition, network-related
defects have different fault patterns. For example, the
network connection is not checked before or during the
usage of network-related APIs, and the network connec-
tion is not properly recovered after the network type is
switched. Thus, it could be difficult to summarize all pos-
sible fault patterns with different network-related APIs at
the code level. Meanwhile, from the GUI level, the possible

consequences of network-related defects (e.g., disrespect
of setting, crash, wrong prompt, infinite loading, and data
loss) are clear and easier to be identified. Therefore,
network-related defects are more suitable for dynamic
analysis than static analysis.

� Location. The location-related defects lead to crash, wrong
prompt, and incorrect positioning. For the consequence of
incorrect positioning, it is difficult for dynamic analysis
to identify such defects as these changes will not reflect
on the attributes of UI widgets. However, it is simpler to
detect such defects at the code level, as they have the similar
fault patterns, i.e., the state of location setting fails to be
checked before or after the location-related APIs are used.
Thus, static analysis is more suitable in this case.

� Sound and battery. According to our observation, it is
difficult for dynamic analysis to identify abnormalities for
volume (e.g., no sound can be heard) and battery related
defects at the GUI level. On the other hand, static analysis
is more suitable for these two settings because there are
some specific fault patterns at code level. For example, for
battery, we can check whether an app fails to check whether
it is in the power saving whitelist when the power saving
mode is on.

� Display. The changes of display settings could affect app
lifecycle. Specifically, the major root cause, i.e., incorrect
(lifecycle) callback implementations, can lead to crash,
problematic UI display, data loss, and disrespect of setting.
Finding such defects at the code level requires tracking
the storage and recovery of application specific data, but
this tracking is hard to be precise. Meanwhile, it is easier
to observe these consequences at the GUI level. Thus,
dynamic analysis is more suitable in this case.

� Other settings. For the setting defects from other setting
categories (i.e., “Permission”, “Language”, and “Time”),
some fault patterns can be characterized at the code level,
but they may not cover all possible faulty cases. In some
cases, dynamic analysis will be able to detect more types
of setting defects, when we add appropriate oracle rules.
Thus, for these settings, both dynamic and static analysis
may help.

Answer to RQ4: There are indeed some correlations be-
tween setting categories and their root causes and conse-
quences. These correlations provide guidance for design-
ing effective and appropriate bug finding techniques for
the setting defects as well as justifying the design of our
techniques.
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IV. DETECTING SETTING DEFECTS

A. Setting-Wise Metamorphic Fuzzing

1) High-Level Idea: Our key insight is that, in most cases, the
app behaviors should keep consistent if a given setting is changed
and later properly restored, or show expected differences if not
restored. Otherwise, a likely setting defect is found. For example,
an app’s functionalities should not be affected if the network
is closed but immediately opened; or an app should show the
texts in a different language if the default language is changed.
Thus, based on the preceding observation, we are inspired to
leverage the idea of metamorphic testing [40] to tackle the oracle
problem.

2) Approach: Our approach, setting-wise metamorphic
fuzzing, randomly injects a pair of events 〈ec, eu〉 into a given
seed GUI test E to obtain a mutant test E′, where ec changes
a given setting, while eu properly restores the setting or does
nothing. By comparing the GUI consistency between the seed
test E and the mutant test E′, we can tell whether the app
behaviors have been affected.

Formally, let E be a seed GUI test that is a sequence of
events, i.e., E = [e1, . . . , ei, . . . , en], where ei is a user event
(e.g., click, edit, swipe, screenrotation). E can be executed
on an app P to obtain a sequence of GUI layouts (pages)
L = [�1, . . . , �i, . . . , �n+1], where �i is a GUI layout (which
consists of a number of GUI widgets). Specifically, if we view
the execution of ei as a function, then �i+1 = ei(�i), i ≥ 1. By
injecting a pair of new events 〈ec, eu〉 into E, we can obtain a
mutant GUI test E′ = [e′1, . . . , ec, . . . , eu, . . . , e

′
n] that can be

executed on P to obtain a sequence of GUI layouts (pages)
L′ = [�′1, . . . , �c, . . . , �u, . . . , �

′
n+1]. To ease the illustration of

our technique, we assume the injection of 〈ec, eu〉 will not break
the execution of seed test E. In Section IV.A.3, we explain how
our design holds this assumption. Next, we compare the GUI
consistency between the GUI layouts of E (i.e., L) and those of
E′ (i.e., L′), respectively, to find defects. In practice, we check
the GUI consistency by comparing the differences of executable
GUI widgets between L and L′. Let e.w be the GUI widget w
that e targets.

Oracle Checking Rule I. The rule I is coupled with the
following two strategies that inject 〈ec, eu〉 into E to obtain
E ′. Conceptually, in most cases, the app behaviors should keep
consistent.
� Immediate setting mutation. We inject ec followed imme-

diately by eu. For example, ec turns on the power saving
mode, and eu immediately adds the app into the whitelist
of power saving. Here, ec globally changes the power
saving setting (affecting the app under test), while ec can
be viewed as restoring the setting for the app under test.

� Lazy setting mutation. We inject ec first and inject eu
only when it is necessary (e.g., the app prompts an alert
dialog or a request message). For example, ec revokes app
permission, and eu grants the permission only when the app
requests that permission. Note that our study justifies the
rationale of the lazy mutation strategy because prompting
proper alerts to users is demanded by Android design
guidelines to improve user experience [41].

Fig. 6. Workflow of SETDROID to find setting defects.

The preceding figure illustrates Rule I: under these two in-
jection strategies, if there exists one GUI event ei ∈ E ′ and its
target widget ei.w cannot be located on the corresponding layout
�′i ∈ L′ (�′i corresponds to �i ∈ L), then a likely setting defect
is found. Because it likely indicates that the app’s behaviors are
affected. Formally,

∃ei.ei.w ∈ �i ∧ ei.w /∈ �′i (1)

Oracle Checking Rule II. Under Rule II, we inject only ec into
E (eu is ignored). This rule aims to confirm that changing a
given setting, e.g., languages, hour format (12-hour or 24-hour
format), indeed leads to some GUI changes. For example, when
the default language is changed, we check whether the texts in
�i and �′i are indeed in the expected different languages while no
other inconsistencies appear. In practice, we use the language
identification tool named langid [42] to determine the language
of each text.

Thus, Rule I does equal checking on GUI consistency and
applies to three common consequences of setting defects, i.e.,
crash (a special case of GUI inconsistency), functionality failure,
and problematic UI display. Rule II does inequality checking on
GUI consistency and applies to the checking of disrespect of
setting changes.

3) Design and Implementation of SETDROID: We design and
implement our approach as an automated GUI testing tool
named SETDROID. Fig. 6 depicts the workflow. It has four main
modules: (a) test executor, (b) setting change injector, (c) oracle
checker, and (d) bug report reducer. We detail the four modules
as follows.

Test Executor. The test executor runs the same app under test
(AUT) on two identical devices A and B in parallel. During
testing, the executor generates a seed test on-the-fly on device
A and replays the same seed test injected with setting changes
(i.e., the mutant test) on device B at the same time. Specifically,
the executor works in a loop: (1) get the current GUI layout
of the AUT on device A, (2) randomly choose an executable
widget from the layout and generate an event, (3) execute the
event on both devices A and B. This on-the-fly strategy offers
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TABLE V
LIST OF PAIRS OF EVENTS FOR SETTING CHANGES

the flexibility for injecting setting changes at runtime, which
avoids breaking the seed test. We require that devices A and B
are identical (e.g., the same Android versions and screen sizes)
because doing so ensures that the testing environment is exactly
the same and reduces uncertain environmental factors during
testing.

We use random seed tests because they are diverse, practical,
and scalable to obtain. In practice, we use the UI AUTOMATOR

test framework [43] to execute events and obtain GUI layouts.
Note that the event generation procedure (i.e., steps (1) and (2))
in the test executor module can be replaced by any automated
test input generation algorithms [11], [44], [45] or existing
developer-written tests.

Setting Change Injector. During the above process, the setting
change injector will randomly inject a pair of events 〈ec, eu〉
into device B. We clarify the design and implementation of this
module as follows.

What Kinds of 〈ec, eu〉 are Supported? Table V lists the sup-
ported pairs of events for setting changes (see Column “Setting”
and “Pair of events for setting changes”). According to our
empirical study, these pairs of events in Table V can manifest
the majority of setting defects and cover the other forms of
setting changes. Note that because our oracle checking rules are
generic, it is easy and flexible to include other pairs of setting
changes in the future. Specifically, the two devices A and B
are initialized with the same default setting environment before
testing: airplane mode off, Wi-Fi on, mobile data on, location
(high accuracy) on, battery saving mode off, multi-window off,
screen orientation in the landscape, DND mode off, language is
English, and 12-hour format.

Among the nine setting categories in Table I, Table V only
considers seven categories except for the “developer” and “ac-
cessibility” ones. We did not consider the “developer” cate-
gory because we find that developer options are not commonly
used by app users but are mainly used by app developers for
debugging. Also, the number of setting defects caused by the
“developer” category is small, and app developers are usually
not interested in such setting defects. We did not consider the
“accessibility” category because adapting oracle checking rule
I for the accessibility options is difficult and applying oracle

checking rule II needs to be ad-hocly designed for each acces-
sibility option. Based on the preceding considerations, we only
target the setting categories which can manifest the majority of
setting defects according to our study.

How to Inject 〈ec, eu〉? Typically, the setting change injector
injects ec after a GUI event in the seed test by coin-flipping
and later injects eu according to the two mutation strategies
defined in Section IV.A. Under oracle checking rule I, the setting
change injector restores the changed setting (i.e., executing eu)
when necessary. For example, ec revokes/denies app permission,
and eu grants the permission only when the app requests that
permission via a permission request dialog. Note that prompting
proper alerts to users is demanded by Android design guidelines
to improve user experience. Under oracle checking rule II, the
setting change injector injects only ec and does not inject eu.
Besides the preceding main injection strategies, informed by
our study, we adopt the following two important considerations
in designing this module.

First, we find that many setting defects (211/486≈43.4%) in
our study are triggered by changing settings at runtime rather
than before starting the apps. Guided by this insight, SETDROID

randomly injects the pair of events 〈ec, eu〉 at any position of a
seed test (i.e., injecting ec after each GUI event by coin-flipping
and later injecting eu) rather than only at the beginning of a
seed test. Moreover, if one pair of 〈ec, eu〉 is injected and no
setting defect is found, the next same pair of 〈ec, eu〉 is injected
again later. This process continues until the seed test ends. In
Section V.B, the comparison between SETDROID and Baseline
B (which changes the settings only before starting the apps)
justifies the usefulness of this strategy because SETDROID finds
much more defects than Baseline B.

Second, we find that only a few setting defects (10/486≈2%)
are caused by explicitly changing two settings (i.e., two settings
are changed to non-default values at the same time), and no
defects are caused by changing more than two settings. Guided
by this insight, the setting change injector randomly injects
one single pair of events 〈ec, eu〉 at one time, which does not
interleave with others. Only the screen orientation (which is
viewed as a normal user event) may be interleaved with other
setting changes.

Oracle Checker. After each event is generated by the test
executor, the oracle checker dumps the GUI layouts from devices
A and B, and checks whether the layout of device B is consistent
with that of device A (i.e., Rule I), or shows expected differences
w.r.t. that of device A (i.e., Rule II), while also monitoring app
crashes. If a defect is found, the checker generates a bug report
that includes the executed events, GUI layouts, and screenshots.

Bug Report Reducer. The bug report reducer removes any
bug report that is duplicated or cannot be faithfully reproduced.
Specifically, it replays the recorded GUI tests that trigger setting
defects for multiple runs to decide reproducibility. It uses the
GUI inconsistencies between the two layouts as the hash key to
remove any duplicated bug report. This step does not incur any
false negatives.

Specifically, to improve the reproducibility, we have made
several decisions in tool implementation: (1) waiting each GUI
event to take effect before executing the next one to reduce the
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risk of flaky tests, (2) limiting the length of each test case (100
events in our case), (3) clearing the app data and resetting the
mutated settings between each test case, and (4) recording all the
executed events, the screenshots and the mutated setting options
for bug reproduction. Specifically, SETDROID removes a bug if
it cannot be faithfully reproduced before reporting. Therefore,
all the defects reported by SETDROID are reproducible.

4) Optimizations of SETDROID: Compared to our prior
work [24], we optimize SETDROID in terms of testing efficiency
and precision.

Optimization I: Identify the Relevant Settings of an App. We
add a generic optimization strategy in the setting change injector
(module (b) in Fig. 6) to identify the relevant settings of an
app (i.e., which settings are used by the app). Specifically, we
perform static analysis to determine which settings are relevant
to the app. In particular, we analyze whether an app uses specific
APIs (classes, methods, or variables) of each setting category
in its code. This analysis is similar to that used by RQ1. In
this way, SETDROID needs to apply only the relevant pairs of
events for setting changes (see Table V) to stress test an app, and
thus substantially improves testing efficiency. This optimization
strategy will not introduce false negatives because the setting
defects (e.g., network accessing issues) only appear when the
app fails to properly adapt to the change of some specific setting
(e.g., network). If the app’s functionality does not rely on the
specific setting, it is safe to avoid changing the relevant setting
(e.g., closing/opening the network connection). In our case, our
technical insight is that if an app does not use any API related to
that setting, the app does not rely on that setting. In Section V.C.2,
we show the improvement of testing efficiency by applying this
optimization strategy.

Optimization II: Reduce the False Positive Rate. In our
prior work [24], the false positive rate of Rule II is high
(535/662≈80.8%). We analyze the experimental results and find
that materialistic and RedReader incur the majority of false
positives (435/535≈81.3%) of Rule II. These two apps are
newsreaders in English. When SETDROID changes the default
language, the texts of these newsreaders do not need to be
translated. But SETDROID assumes that these behaviors violate
Rule II, i.e., disrespect of setting changes. SETDROID reports one
defect when a news article is detected, thus leading to a large
number of false positives.

To this end, we add a generic optimization strategy in the bug
report reducer (module (d) in Fig. 6) to reduce the false positives.
Our key observation is that only local strings specified in an app
should be translated, while non-local strings such as the texts in
a news article loaded from a remote server should be escaped.
We find that each app has a strings.xml file in its resource
folder, and this file stores the app’s local strings. Thus, the bug
report reducer can automatically remove the false positives if
the reported untranslated strings are not in strings.xml.
This optimization strategy will not introduce false negatives.
Because our key technical insight is that only local strings in
the strings.xml file need to be translated. Deleting those
bug reports related to non-local strings will not remove the valid
setting defects. In Section V.C.2, we will show the results by
applying this optimization.

Fig. 7. Fault pattern I.

In addition, we find that some false positives are caused by
the reserved keywords that do not need to be translated when
the language is changed. However, the proportion of such false
positives is small. Thus, we do not reduce them; otherwise, we
have to use some ad-hoc strategies.

B. Static Analysis for Setting Defects

According to the results of our empirical study, we find that
some setting defects can be detected at the code level. We
summarize two major fault patterns and propose a static analysis
tool named SETCHECKER to detect the setting defects.

1) Fault Pattern Analysis: We analyze 482 fixed bug reports
in the dataset of our study. By analyzing these reports, we
characterize these setting defects as two fault patterns:
� Fault Pattern I. As shown in Fig. 7, if there exists some pro-

gram trace S=[s0, . . . , si, . . . , sn] in the the control-flow
graph (CFG) of an app, where si is a statement denoting an
invocation of API α. It is known that all settings in the de-
vice have two states: on and off. The first fault pattern is that
API α (e.g., AudioManager#setStreamVolume()
in Fig. 7) can be executed only if the state of setting
σ (permission ACCESS_NOTIFICATION_POLICY in
this case) is on; otherwise, an exception will be thrown.
However, if none of the statements between s0 and si
checks whether the state of setting σ is on (e.g., is-
NotificationPolicyAccessGranted() in Fig. 7
is an API that checks whether the state of permission
ACCESS_NOTIFICATION_POLICY is on), the app has
a suspicious setting defect.
Example of Fault Pattern I. Fig. 5 in Section III.B.5
shows such a defect. Before calling AudioMan-
ager#setStreamVolume() (Line 7), the AC-
CESS_NOTIFICATION_POLICY permission is not
checked (Line 3). As since Android’s Nougat version, if
an app is in the DND mode, the app needs to get the
ACCESS_NOTIFICATION_POLICY permission before
calling setStreamVolume(). If an app never checks
this permission before calling setStreamVolume(),
SecurityException will be thrown during the run-
ning of the app.

� Fault Pattern II. As shown in Fig. 8, if there exists some pro-
gram trace S=[s0, . . . , si, . . . , sj , . . . , sn] in the control-
flow graph (CFG) of an app, where si is a statement
assigning the return value of an API α to the variable υ,
and sj is a statement using the variable υ (or the alias of
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Fig. 8. Fault pattern II.

Fig. 9. Example of fault pattern II.

variable υ). The second fault pattern is that sj uses υ (or
the alias of variable υ), but none of the statements between
si and sj checks whether the value of υ (or the alias of
variable υ) is valid or not. In the illustrative example of
Fig. 8, the API α is LocationManager #getLast-
KnownLocation(), and the variable loc accepting the
return value of API α, which is later used by sj . If υ is
not checked (i.e., whether υ is a NULL value), a suspicious
setting defect is found in the app.
Example of Fault Pattern II. Fig. 9 shows such a defect of
OneBusAway [46], which is an app serving real-time transit
information. The return value of a setting-related API is not
checked before being used. Specifically,LocationMan-
ager #getLastKnownLocation() (Line 6) returns
the current geographic location via GPS. When the location
setting is closed or the GPS signals is not stable, NULL
value will be returned. Therefore, a non-NULL check (Line
10) should be performed before using the return value of
this API (Line 11).

Note that fault patterns I and II aim at finding different types of
setting defects, which require different static analysis strategies.
� Fault pattern I aims at those setting defects in which the

states of related settings are deterministic (that is, the
states of these settings only change when an app user
turns on/off these settings). For example, the states of
permission, sound, and battery settings are deterministic.
Thus, checking the states of these settings before the API
invocation is safe. In Section IV.B.2 (Algorithm 1), we

Algorithm 1: Finding Defects w.r.t. Fault Pattern I.

adopt the backward control-flow analysis to detect such
defects.

� Fault pattern II aims at those setting defects in which
the states of related settings are non-deterministic (that
is, the states of these settings may be changed by an
app user or affected by the external environment). For
example, the states of network and location settings are
non-deterministic. Take the location setting as a concrete
example, even if the state of a device’s location setting
(e.g., the GPS) is on, the return value of LocationMan-
ager#getLastKnownLocation() (i.e., the location
information obtained from the GPS) may still be invalid
(e.g., NULL) if the GPS signal is weak or lost due to
the external environment. Thus, for these settings, only
checking their states before calling the relevant API is un-
safe, and we should additionally check their return values
before used by the API. In Section IV.B.2 (Algorithm 2),
we adopt the forward data-flow analysis to detect such
defects.

2) Static Defect Detection: To detect the setting defects w.r.t.
the preceding two fault patterns, we propose a static analysis
tool named SETCHECKER. We implement SETCHECKER based
on SOOT [47]. SOOT is an analysis and transformation frame-
work, which provides some analysis functionalities including
call graph construction, def/use chain analysis, and data-flow
analysis, etc. SETCHECKER combines control-flow and data-flow
analyses to detect setting defects.

(1) Algorithm 1. The algorithm shown in Algorithm 1 detects
defects w.r.t. fault pattern I. First, we summarize a mapping
list based on our empirical study. If there exist two APIs, the
first of which requires the state of setting σ to be on, and the
second of which can check the state of setting σ, we store them
as a tuple p < requireSettingAPI, checkSettingAPI >
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and add them to the mapping list. The algorithm takes
the APK file of an Android app and a tuple p <
requireSettingAPI, checkSettingAPI > in the mapping
list as input. After initialization (Line 1), the algorithm
first gets all methods (Line 2) and the method call graph
(Line 3) of the given Android app, then traverses ev-
ery method, and looks for all methods using the API
p.requireSettingAPI (Lines 4-5). If a method m is found
to use API p.requireSettingAPI , the algorithm searches the
method call graph and gets all method call traces that can
reach m as a method list named methodsTraces (Line 6). For
each method call trace methodsTrace in the methodsTraces
(Line 7), a variable isCheckSettingAPIExist is used to
represent whether the setting check API p.checkSettingAPI
is found in this methodsTrace. The initial value of
isCheckSettingAPIExist is false (Line 8). For each method
list methodsTrace, the i+ 1th element of methodsTrace
is the caller of the ith element (where i is the index of
list methodsTrace, i >= 0). Specifically, the first element of
methodsTrace, i.e., methodsTrace[0], is method m. The al-
gorithm first sets target to API p.requireSettingAPI (Line
9), sets caller to method m (Line 10), and then starts the loop.
In each loop iteration, the algorithm checks whether the caller
calls the setting check API p.checkSettingAPI before calling
the target by performing dominator analysis [48] (Lines 11-
13). If there exists a dominator that uses p.checkSettingAPI ,
the algorithm sets the value of isCheckSettingAPIExist
to true (Line 14) and exits the loop (Line 15). Otherwise, it
sets target to the current caller (Line 16), updates caller
to the caller of the current caller, and enters the next loop
iteration (Line 10). In the end, if isCheckSettingAPIExist
is still false (Line 17), then on this trace, the state of
setting σ has not been checked from the beginning of the
entry method to the point where p.settingDependentAPI
is called. Therefore, a suspicious setting defect is found,
and the method call trace is added to the set defectSet
(Line 18).

(2) Algorithm 2. The algorithm shown in Algorithm 2 de-
tects defects w.r.t. fault pattern II. We implement this algorithm
based on the forward data-flow analysis framework provided by
SOOT. Algorithm 2 takes the APK file of an Android app and
an API settingDependentAPI as input. Whether the return
value of the API settingDependentAPI is NULL depends
on the state of setting σ. After initialization (Line 2), Algo-
rithm 2 first gets all methods (Line 3) of the given Android
app, then traverses every method, and finds all methods using
the API settingDependentAPI (Lines 4-5). If a method m
uses API settingDependentAPI , the algorithm calls func-
tion findDefect to detect whether there is a setting defect
in method m (Line 6). Function findDefect first performs
the branched nullness analysis on target method m to confirm
which statements are at risk of using NULL values (Line 8). We
implement the function nullnessAnalysis in reference to the
classic reaching-definition data-flow framework [48]. Let s be a
statement. Let gen(s) andkill(s) be the dataflow facts generated
or killed by s. Let pred(s) be the predecessor statements of
s. The data-flow equations used for a given basic block s in

Algorithm 2: Finding Defects w.r.t. Fault Pattern II.

reaching definitions are

in(s) =
⋃

p∈pred[s]
out(p) (2)

out(s) = gen(s) ∪ (in(s)− kill(s)) (3)

Based on the generic equations, we customize the gen and kill
sets. If s is an assignment statement in which any variable in the
set in(s) or the return value of API settingDependentAPI
is assigned to a variable v, variable v will be added to the set
gen(s). If s is a conditional statement that performs the non-
NULL check at any variable v in the set out(s), variable v and
its aliases will be added to the set kill(s). It is worth noting
that the algorithm computes out sets from in sets sensitive to
branches as we implement a branched forward flow analysis.

The return value of nullnessAnalysis is a list of nodes,
each of which represents a statement s with two sets in(s)
and out(s) (denoted as n.inSet and n.outSet, respectively).
These two sets describe the variables that may have NULL value
before and after the execution of this statement. After executing
nullnessAnalysis (Line 8), the next step (implemented in func-
tion findDefect shown in Line 7) is to find which statements
use variables that may have NULL values. Since findDefect
is a recursive function, a variable methodsTrace is used to
record how many methods of the app have gone through (Line
10). For each statement in the target method m (Line 11), if any
variable of the inSet is used in this statement, a setting defect
is found, and the methodsTrace is added to the set of recorded
defects defectSet (Lines 13-17). If the statement calls another
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method of the app, and the variable v in the n.inSet is used as
the parameter of the call, then findDefect will enter the called
method to find the suspicious setting defects, and set the initSet
to variable v. If setting defects are found in the called method,
they will be merged into the defectSet (Lines 18-24).

V. EVALUATION

We evaluate the effectiveness of our two bug finding tech-
niques and the usefulness of our insights gained from the study
by answering RQ5, RQ6, and RQ7:
� RQ5: How effectively can SETDROID and SETCHECKER

find previously-unknown setting defects in real-world An-
droid apps (including both open-source and industrial
apps)?

� RQ6: Do our insights gained from the study help SETDROID

and SETCHECKER find setting defects that cannot be found
by prior tools?

� RQ7: What are the differences between SETDROID and
SETCHECKER in finding setting defects? Can they com-
plement each other?

A. Evaluation Setup of RQ5

We consider the 30 apps from prior work [49] as the eval-
uation subjects, because most of these apps are selected from
the popular open-source apps on GitHub [50]. Considering our
experiment requires developers’ feedback, we focus on those
actively-maintained apps. Thus, our evaluation subjects include
26 apps as the other 4 apps are obsoleted.

1) Setup of SETDROID: We run SETDROID on a 64-bit Ubuntu
18.04 machine (64 cores, AMD 2990WX CPU, and 64GB
RAM), Android emulators (Android 8.0, Pixel XL). SETDROID

applies the 13 pairs of setting changing events (in Table V) sepa-
rately on each app. For each pair, SETDROID randomly generates
20 seed tests (each seed contains 100 events) for fuzzing, which
takes about 1 hour. Thus, the whole evaluation for 26 apps
takes 1*13*26=338 CPU hours (nearly 14 CPU days). Here,
the whole testing time is computed assuming the optimization
strategy in Section IV.A.4 is not enabled. In Section V.C.2, we
discuss the reduction of testing time when the strategy is enabled.
Specifically, for each bug report, SETDROID provides the failure-
triggering event trace and the screenshots. With this information,
we manually inspect all bug reports and count the true positives
(TP for short) and false positives (FP for short). We validate each
TP on real Android devices before reporting these TPs. When
the triggering trace and the consequence of a TP are different
from those of each of all bug reports submitted by us so far, we
submit a new bug report in the issue repositories. For each bug
report, we provide the developers with the failure-reproducing
steps and videos to ease failure diagnosis. If the bug report is
not marked as a duplicate one by the developers, we regard it as
a unique defect. We also evaluate SETDROID on five industrial
apps from Tencent, ByteDance and Alibaba, i.e., WeChat [17],
QQMail [18], TikTok [19], CapCut [20], and AlipayHK [21], all
of which each have billions of monthly active users. We allocate
a 2-day testing time for each app and run on two real devices
(Galaxy A6s, Android 8.1.0). Then, we inspect any found defects
and report them to the developers.

2) Setup of SETCHECKER: We run SETCHECKER on the same
Ubuntu 18.04 machine in Section V.A.1 to analyze each app. For
each suspicious defect reported by SETCHECKER, we manually
verify whether it is a true positive or a false positive by inspecting
the suspicious faulty code to infer a failure-triggering test on the
GUI pages. If the test can witness the suspicious defect, we
count it as a true positive. Specifically, we constrain our manual
inspection time on each suspicious defect as 10 minutes. If we
cannot verify a suspicious defect within 10 minutes, we give
up this suspicious defect and do not report it to the developers
(i.e., we count it as neither a true positive or a false positive).
We verify the reported suspicious defects on both an Android
emulator (Android 8.0, Pixel XL) and a Galaxy A6s mobile
phone (Android 8.1.0).

B. Evaluation Setup of RQ6

1) Setup of Dynamic Testing Tools: Existing fully automated
dynamic testing tools for Android can be divided into two
categories. The first category includes generic testing tools [51],
[52], [53], [54], [55], [56], [57], [58]. These tools focus on
only the app under test and do not interact with the system
app Settings to change settings which were confirmed by
a recent study [11]. The second category includes tools for
detecting specific failures [6], [49], [59], [60]. To our knowledge,
PREFEST [49] and PATDROID [6] are the two relevant dynamic
testing tools for SETDROID. PREFEST does app preference-wise
testing but also considers some system settings (i.e., WiFi,
Bluetooth, mobile data, GPS locating, and network locating),
while PATDROID considers permissions. Note that in principle
all these existing tools cannot detect non-crashing failures that
SETDROID targets. But we still do the comparison. Specifically,
we build two baselines for comparison:
� Baseline A (random testing): This baseline mimics one

typical generic testing tool, Monkey [51], which randomly
explores the app under test without explicitly changing
settings. This baseline follows the same testing strategy
of Monkey. We do not choose to directly run Monkey.
Because Baseline A can generate tests based on widgets
(which are intuitive), while Monkey generates pixel-based
events (which are hard to understand). In addition, Baseline
A can help reproduce setting defects much more easily. In
practice, Baseline A just runs Module (a) in Fig. 6.

� Baseline B (random testing+setting changes): This base-
line mimics the testing strategies of PREFEST and PAT-
DROID, which change settings before starting an app and
then randomly explore the app. Baseline B considers all
the setting changes in Table V, including all the settings in
PREFEST and PATDROID. In practice, Baseline B just runs
Modules (a) and (b) in Fig. 6.

� We also run PREFEST and PATDROID for direct comparison
with SETDROID.

Note that we allocate 13 hours (the same testing time used
by SETDROID) for each setting change of the two baselines,
PREFEST, and PATDROID to test each of 26 open-source apps
on one emulator, and check the generated bug reports to con-
firm whether they could find setting defects. To eliminate
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TABLE VI
LIST OF THE 48 SETTING DEFECTS FOUND BY SETDROID AND SETCHECKER AND THE DETAILED STATISTICS OF THE EVALUATION RESULTS

randomness, we test each app three times and take the average
values as the final results.

2) Setup of Static Analysis Tools: Existing static analysis
tools for Android can be divided into two categories. One
category is generic static analysis tools that detect various types
of code faults, while the other category focuses on specific
types of code faults. For the first category, we choose Android
LINT [61] to compare with SETCHECKER because LINT is the
most popular Android static analysis tool. It can check an
Android project with source code for diverse types of issues
for correctness, security, performance, usability, accessibility,
and internationalization. For the second category, to our best
knowledge, there is no static analysis tool for detecting all
types of setting defects. We note that two tools REVDROID

[62] and ARPDROID [63] can find defects caused by runtime
permissions. However, we find that ARPDROID reports a lot
of false alarms. The high number of false alarms prevents us
from identifying real defects within reasonable manual efforts.
So we decide to compare REVDROID with only SETCHECKER.
REVDROID is a static analysis tool to detect the potential defects
caused by permission revocation (similar to the setting changes
in our context). We run LINT [61] and REVDROID on the same
Ubuntu 18.04 machine and manually verify and count the
number of found setting defects for each tool.

C. Results of RQ5

1) Effectiveness: Table VI shows the setting defects found
by SETDROID and SETCHECKER, respectively. Columns 2-4 give

the app name, the number of installations on Google Play (“-”
indicates that the app is not released on Google Play), and the
number of stars on GitHub; Columns 5-8 give the information
of detected defects, which contains issue ID, issue state (fixed,
confirmed, under discussion with developers, or waiting for the
reply), related setting, and consequence. As shown in Table VI,
out of the 26 apps, SETDROID and SETCHECKER detect 48 unique
and previously-unknown setting defects in 26 apps. so far, 35
have been confirmed and 21 have been fixed. The results demon-
strate the effectiveness of SETDROID and SETCHECKER. Further,
we receive positive feedback from developers. For example,
one developer of Forecastie comments that “Yep, good spot.
Cheers for posting this bug”; one developer of Omni Notes
responds “Thanks for pointing my attention to that”; “Well
spotted. Cheers for the bug report.”. These comments show
that SETDROID and SETCHECKER can find defects cared by
developers.

2) Usability: Table VI shows the detailed evaluation re-
sults of SETDROID and SETCHECKER on each app. Specifically,
Columns 9-12, respectively, show the results of SETDROID,
including the FPs of oracle checking rule I (#FPSI ), the TPs of
oracle checking rule I (#TPSI ), the FPs of oracle checking rule II
(#FPSII , the numbers preceding and following the symbol “→”,
respectively, denote the FPs of SETDROID before and after using
the FP reduction strategy (see Optimization II in Section IV.A.4))
and the TPs of oracle checking rule II (#TPSII , the numbers
preceding and following the symbol “→”, respectively, denote
the TPs of SETDROID before and after using the FP reduction
strategy).
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During testing, SETDROID reports 293 defects in total. Among
them, 149 defects are reported by oracle checking rule I, 124 of
which are TPs (124/149≈83.2%); the remaining 144 defects
are reported by oracle checking rule II, 116 of which are TPs
(116/144≈80.6%). We analyze the FPs of these two rules and
identify some major reasons.
� FPI of oracle checking rule I. Rule I in fact has a very

low false-positive rate (16.8%). We find that all these FPs
are caused by specific app features triggered by setting
changes. For example, when the screen orientation setting
is changed, app Always On pops up animation on top of
the screen, leading to some GUI inconsistencies between
the two devices.

� FPII of oracle checking rule II. In our prior work, the false-
positive rate of Rule II is high (535/662≈80.8%). To reduce
the false positive rate, we analyze the experimental results
and add a generic FP reduction strategy for SETDROID (see
Section IV.A.4) in this journal version. The current result
clearly shows that the strategy is useful as it substantially
reduces the false positive rate of Rule II from 80.8% to
19.4% (≈28/144). And no true positive is removed after
the FP reduction strategy is applied. The remaining FPs
are caused by some reserved keywords that do not need to
be translated after the language is changed.

On the other hand, in our prior work, we have to run 13
hours for each pair of events for setting changes in Table V
for one app. To improve testing efficiency, we add a generic
optimization strategy for SETDROID (see Section IV.A.4) in this
journal version, i.e., we perform static analysis to determine
which settings are relevant to the app and inject only the relevant
pairs of events for setting changes in Table V. In Table V’s
Column 13 (i.e., (#StrategyS)), the numbers preceding and
following the symbol “→”, respectively, denote the numbers
of pairs of events for setting changes needed to run on each app
before and after the optimization strategy (see Optimization I in
Section IV.A.4) is applied (note that our prior work applies all
the 13 pairs of events for setting changes on each app). We can
see that this optimization strategy reduces 2∼11 irrelevant pairs
of events for setting changes, reducing 15∼85% testing time.
The results clearly shows that the strategy is useful. Moreover,
to investigate whether this optimization strategy will bring false
negatives, we manually confirmed that for all the benchmark
apps, none of the settings (which induce the setting defects
found by SETDROID before optimization) are filtered out by this
optimization strategy. The result shows that this strategy does
not incur any false negatives in our experiment.

As for SETCHECKER, 78 suspicious setting defects are found in
26 apps. In Table V, Columns 14-15 respectively give the number
of setting defects reported by SETCHECKER (#ReportedP ) and
the number of verified setting defects (#VerifiedP ). Specifically,
out of 78 defects, 46 are successfully verified with real tests,
achieving the hit rate of 59.0% (≈46/78). For each of the
remaining 32 defects, there is one of three main reasons for
failing to verify. (1) The mapping between the source code
and the corresponding GUI widgets are hard to be set up. As
a result, we sometimes cannot know which UI widgets should
be executed to reach the code of interest. (2) The preconditions

TABLE VII
SETTING DEFECTS FOUND IN THE FIVE INDUSTRIAL APPS

required to manifest the defect are difficult to be satisfied. As a
result, even if the faulty code is successfully reached, the defect
still cannot be triggered. (3) The found defect is located in a piece
of dead code, which could not be triggered in reality. In addition,
Column 16 (TimeP ) in Table V reports the static analysis time
cost on each app. We can see that the static analysis on these
open-source apps is efficient.

3) Diversity of Found Defects: From Table V, we can see that
the setting defects found by SETDROID and SETCHECKER are
diverse: the apps are affected by different settings with different
consequences.

In terms of root causes, we inspect all 20 fixed defects and
find that most of them are due to the lack of setting checks. For
example, RadioBeacon will stay in the infinite loading status
when the network is disconnected during uploading, and cannot
recover after the network is connected. Some defects are caused
by incorrect callback implementations (e.g., AnkiDroid has one
defect that fails to properly handle permission callbacks), while
some defects are caused by mutual influence between settings
(e.g., as some apps may use both GPS and the network for
positioning, network fluctuations may affect the positioning
function. Suntimes has a setting defect caused by calling the
location obtained when the network is lost.) On the other hand,
most of the language defects are caused by the incomplete
translation.

These setting defects also lead to different consequences in
addition to crashes. For example, some apps lack necessary
prompts or give wrong prompts when their functions fail. When
the device-only mode is turned on, Omni Notes cannot insert the
current location into the notes and prompts the user with a wrong,
confusing message “location not found”. As an example of
disrespect of settings, when the users change the default system
language to another language, Always On indeed adjusts to the
new language. But when Always On is closed and reopened, the
language setting gets lost and rolls back to the default language.

4) Practicality: As shown in Table VII, SETDROID detects 17
unique and previously-unknown setting defects in 5 commercial
apps, all of which have been confirmed and fixed by Tencent,
ByteDance, and Alibaba. Note that we report only those defects
that we believe to be true positives (TP) to the app vendors, and
the TP rates are high (80.8% on average across the five apps).
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TABLE VIII
COMPARISON OF SETDROID AND OTHER DYNAMIC TESTING TECHNIQUES. C AND NC REPRESENT CRASHING AND NON-CRASHING CONSEQUENCES,

RESPECTIVELY

Table VII shows the details of these defects. According to our
observation, these defects affect different modules and lead to
different consequences. Some defects are severe and quickly
fixed by the vendors. Afterwards, ByteDance collaborates with
us and deploys SETDROID to stress test TikTok, one of its major
app products. Within a two-month testing campaign, SETDROID

successfully finds 53 setting defects in TikTok. So far, 48 of
them have been confirmed, and 20 have already been fixed.

We also apply SETCHECKER on the latest version of Tik-
Tok at the time of study. Due to the large code base, it takes
SETCHECKER about 17 hours to scan TikTok for setting defects.
Finally, SETCHECKER successfully finds 22 defects in TikTok.
14 of them are due to the lack of permission checks, and the
remaining 8 are related to network settings. So far, 11 defects
have been fixed.

We find that SETDROID and SETCHECKER only have one
common setting defect. We inspected the testing results and
found two major reasons. One reason is that TikTok has many
complex functionalities, and SETDROID failed to cover the func-
tionalities where the defects reside due to its random seed tests.
On the other hand, SETCHECKER can scan the whole code base.
Another reason is that most of the fault patterns implemented in
SETCHECKER complements the ability of SETDROID. We will
discuss the differences between these two tools in detail in
Section V.E.

Answer to RQ5: SETDROID and SETCHECKER are effective
and practical in finding setting defects for real-world apps.
The found defects are diverse in terms of root causes and con-
sequences and are of developers’ concern. These two tools
also show reasonable usability as their false positive rates
are low. Moreover, SETDROID’s two optimizations did not
incur false negatives on all the tested apps, and significantly
improved testing precision and efficiency.

D. Results of RQ6

Table VIII shows the comparison results of SETDROID and
other dynamic testing techniques and the baselines. Row “#De-
fects” denotes the number of unique setting defects. We can
see that SETDROID can detect more crashing and non-crashing
setting unique defects than the other techniques. Baseline A
does not detect any defect because it does not explicitly change
settings like existing automated app testing tools, while Baseline
B detects only 3 crashes (which are also detected by SETDROID)
because it only changes settings before running tests. Because
PREFEST and PATDROID cover only limited types of settings, we
compare the number of defects detected by PREFEST/PATDROID

TABLE IX
COMPARISON OF SETCHECKER AND OTHER STATIC ANALYSIS TOOLS

and a restricted SETDROID (focusing on only those types of
settings covered by PREFEST/PATDROID), respectively (shown
in the last eight columns of Table VIII). PREFEST does not detect
any setting defect while PATDROID detects two crashes related
to permissions. Note that the crashes detected by PATDROID

and SETDROID do not overlap, likely caused by the random-
ness in test generation. In summary, (1) SETDROID detects 33
non-crashing setting defects, none of which can be detected
by other approaches under comparison. (2) SETDROID is de-
signed to change settings at random events, indeed exposing
more setting defects, compared to Baseline B. (3) PREFEST and
PATDROID focus on the combinations of setting changes, but do
not detect any defects caused by multiple settings in our subjects,
conforming to our findings that most of the setting defects can
be manifested by one single setting. These results indicate the
superiority of SETDROID over existing tools and usefulness of
our study insights in designing SETDROID.

Table IX shows the comparison results of SETCHECKER, LINT,
and REVDROID. Row “#Defects” denotes the number of setting
defects reported by these static analysis tools after false posi-
tives are manually excluded. Initially, LINT finds 142 suspicious
defects in 26 apps. But after manual inspection, we find only
one of them is a real setting defect, which is due to the lack of
permission checks. This result indicates that LINT lacks the fault
patterns related to setting defects, and SETCHECKER can well
complement LINT. On the other hand, REVDROID can detect only
permission related defects. Initially, REVDROID reports 99 sus-
picious defects in 17 apps. We manually check these suspicious
defects and confirm that 23 of them are true positives, and the
remaining 76 are false positives. Note that all these 23 true posi-
tives are also found by SETCHECKER. We find two major reasons
for explaining the false positives of REVDROID. (1) REVDROID

fails to identify that some permissions are already checked
before calling the permission-related APIs. For example, app
A2DP Volume already checks ACCESS_COARSE_LOCATION
and ACCESS_FINE_LOCATION permissions before calling
LocationManager# removeUpdates(). But REVDROID

still reports it as an suspicious defect. We find 20 false pos-
itives are caused by such a factor. (2) REVDROID mistakenly
reports defects related to non-dangerous permissions. In fact,
non-dangerous permissions are automatically granted when an
app is installed and cannot be revoked. So we do not need
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TABLE X
NUMBER OF THE SETTING DEFECTS FOUND BY OUR TWO TOOLS

to check these non-dangerous permissions. 49 of 76 reported
suspicious defects are such false positives.

Answer to RQ.6: Inspired by the insights of our study, SET-
DROID is designed to be able to detect non-crashing setting
defects that cannot be detected by existing automated testing
tools. SETCHECKER can detect more setting defects than prior
static analysis tools with the help of the fault patterns distilled
from our study and achieve higher accuracy.

E. Results of RQ7

Table X shows the differences between SETDROID and
SETCHECKER in terms of the setting defects found in the 26
open-source apps. Specifically, SETDROID reports 293 defects,
240 of which are TPs, while SETCHECKER reports 78 defects,
46 of which are successfully verified with real tests. In total, 48
unique and previously-unknown setting defects are found, 11
of which are found by both tools. In detail, 31 setting defects
are found by only SETDROID, and 6 defects are found by only
SETCHECKER. Specifically, for the network, display location,
and sound settings, SETDROID finds 11, 9, 5, and 0 defects,
respectively, while SETCHECKER finds 8, 0, 8, and 12 defects,
respectively. These results are consistent with our analysis in
Section III.D, i.e., dynamic analysis techniques (such as SET-
DROID) are better for finding the defects related to the network
and display settings while static analysis techniques (such as
SETCHECKER) are more suitable for finding those related to
the location and sound settings. Indeed, these results show that
SETDROID and SETCHECKER can complement each other in
finding setting defects. We next give more detailed analysis on
the effectiveness of these two tools.

Why are some setting defects missed by SETDROID? Through
our analysis, we note three major reasons for explaining why
SETDROID may miss some setting defects while SETCHECKER

can still find them. First, some setting defects will not cause
GUI inconsistency, so it is difficult for SETDROID to detect them.
For example, SETCHECKER finds OpenBikeSharing’s issue #59
(affected by permission setting, the app cannot display the map
of the user’s location), while SETDROID misses it. The reason
is that no matter whether OpenBikeSharing successfully locates
the user’s location, the dumped GUI layout of the map interface
are consistent. As a result, SETDROID does not have the chance
to manifest the GUI inconsistencies. Second, SETDROID’s effec-
tiveness is also limited by the coverage of random seed tests. For
example, SETCHECKER finds KISS’s issue #1835 (a setting defect
related to permission), while SETDROID misses it. In issue #1835,
the app fails to prompt proper alerts if a user searches contacts
when the “read contacts” permission is disabled. However, this
defect can be triggered only when the searched text is a valid

contact name. This condition is difficult to be satisfied by the
random seeds of SETDROID. Third, some setting defects can be
triggered on only specific Android versions. Thus, they are easier
to be found by static analysis such as SETCHECKER than dynamic
analysis.

Why are some setting defects missed by SETCHECKER? Most of
setting defects are non-crashing failures, and many of them are
caused by application specific logic errors. Thus, summarizing
the complete and accurate fault patterns at the code level to
capture all setting defects is almost impossible. The fault patterns
of some setting defects are ad-hoc from the perspective of root
causes. For example, a user of ownCloud reports in issue #1498
that if the device is offline during the upload process, the upload
of the app will be suspended immediately, and the user cannot
resume the upload after the network is restored. The developer
solves this defect by adding a button with the text “retry” and
the response method of the “retry” button. From the code level,
most apps just need to catch the exception and prevent the apps
from crashing when offline. Not all network-related apps require
a retry button to resume interrupted operations, so it is difficult
to summarize a common fault pattern for this defect. Thus, we
summarize only some common fault patterns to detect some
categories of some common setting defects, and other setting
defects cannot be caught.

Discussion. (1) What are the ability boundaries of SETDROID

and SETCHECKER? As a static analysis tool, SETCHECKER can
quickly find defects related to the supported settings As shown in
Table VI, for the 26 open source apps we tested, it takes only 29
seconds on average to complete the analysis. But SETCHECKER

has some limitations. First, the types of defects found by
SETCHECKER are limited by the supported fault patterns. For
example, in Section V.E, there are some setting defects found by
SETDROID which cannot be detected by SETCHECKER. Second,
SETCHECKER requires the availability of the app source code
(or at least the unobfuscated APK file). Third, it requires more
effort to verify the setting defects reported by SETCHECKER by
constructing the real tests. For SETDROID, it can detect various
types of setting defects due to the generic oracle rules. SETDROID

can also provide the real tests to reproduce the reported setting
defects. But SETDROID also has some limitations. First, as we
discussed in Section V.E, SETDROID cannot detect the setting
defects that will not lead to GUI inconsistencies (e.g., volume
and power consumption related issues). Second, SETDROID’s
effectiveness could be affected by the adequacy (e.g., code cover-
age) of the seed tests used for mutation, and the Android versions
used for testing (because some setting defects are compatibility
issues).

(2) How to apply SETDROID and SETCHECKER in practice?
In practice, both SETDROID and SETCHECKER can find some
setting defects which are hard to be detected by the other, due to
their respective technical limitations. Thus, these two tools are
complementary in bug finding. From the tool users’ perspective,
they could apply the tools according to the actual scenarios.
For example, if users cannot obtain the app source code (or at
least the unobfuscated APK file), they could choose SETDROID

because it is a black-box testing tool; in the scenario of in-house
testing (when the app source code is available) with tight testing
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time, they could use SETCHECKER because it can quickly identify
potential bugs without running the app. If the users are not
subject to the preceding limitations, they could run both tools to
find as many setting defects as possible. Note that in this case the
running order of these two tools does not affect the bug finding
results.

Answer to RQ.7: In terms of the numbers of found setting
defects, SETDROID is more effective than SETCHECKER. But
SETCHECKER can complement SETDROID by finding more
defects which are hard to be found by SETDROID.

VI. DISCUSSION

A. Relationships Between SETDROID’s Testing Mechanism and
the Root Causes of Setting Defects

We wish to discuss the relationships between SETDROID’s
testing mechanism and the root causes of setting defects. It can
help readers understand why SETDROID can detect the various
categories of setting defects discussed in our empirical study.
In Section III.B, we discuss six types of root causes of setting
defects. Although the root causes are diverse, SETDROID’s ora-
cle checking rules are generic to capture the inconsistent app
behaviors caused by setting defects when a given setting is
changed and later properly restored, or the expected differences
cannot be shown when the change is not restored. For example,
Section III.B.1 discusses the root cause of incorrect callback
implementations. Take AnkiDroid’s issue #4951 as an exam-
ple (discussed in Section III.B.1), AnkiDroid did not correctly
implement the callback method when the permission setting
is changed (i.e., forgetting to redraw the menu bar after the
permission setting changes). In this case, this setting defect can
be captured by SETDROID because it checks the GUI consistency
between the seed test and the mutant test (which revokes and later
restores the permission).

B. Generality of Our Approach

Since our oracle checking rules are generic, adding other pairs
of setting changes into SETDROID is feasible and only involves
one-time effort. Similarly, for SETCHECKER, we can also detect
other types of setting defects by adding new fault patterns. One
interesting direction is to explore whether our techniques can
be applied to finding app setting-related defects. According to
our experience, it might be doable but could be ad-hoc to define
oracle checking rules and fault patterns because different apps
have different app settings and their expected behaviors are
different and app-specific.

C. Threats to Validity

One main threat to validity is likely insufficient representative-
ness of app subjects used in our study. To alleviate this threat, for
our systematic study, we collect 180 apps from 1,728 Android
apps on GitHub. As shown in Section II.B, these 180 apps are
popular and cover diverse app categories. For the evaluation of

SETDROID, besides highly popular industrial apps, we use all the
non-obsolete app subjects from recent prior work [49]. Another
threat is likely incompleteness of setting keywords, causing
incomprehensiveness of the setting defects collected by us. To
alleviate this threat, we study the official Android documentation
and collect as many keywords as possible for each setting, and
we also consider different possible forms that users may use in
bug reports. The third threat is likely incorrectness of manual in-
spection. Our manual analysis may introduce errors. To alleviate
this threat, the four co-authors cross-check each other’s analysis
results to ensure correctness. The last threat is that due to the
fast evolution of Android systems and apps, the validity of the
presented results (e.g., the study findings, the performance of
the proposed two tools) may be affected. To alleviate this threat,
we studied all the reported issues of the subject apps which have
already involved different Android system versions. Therefore,
the classification and the findings we obtained could be still valid
for future Android system versions. For the dynamic testing tool
SETDROID, as long as the metamorphic relation is valid (e.g., the
app behaviors should keep consistent if a given setting is changed
and later properly restored, or show expected differences if not
restored), SETDROID should be still effective and applicable. For
the static analysis tool SETCHECKER, although the APIs used by
the fault patterns may change, its algorithmic detection strategy
based on control- and data-flow analysis should be still valid, and
only necessary update of APIs is needed. The main limitation
of SETDROID is that it cannot ensure that all the target codes (or
activities) are covered because it generates random seed tests.
However, we believe SETDROID can be enhanced by existing
powerful test generation techniques.

VII. RELATED WORK

Configuration Testing for Traditional Software. Prior work
investigates misconfiguration defects for traditional software.
Yin et al. [65] conduct a study on a commercial storage system
(COMP-A) and four widely used open-source systems (CentOS,
MySQL, Apache, and OpenLDAP) to study the main reasons of
configuration defects. Multiple studies [66], [67], [68] focus on
effective configuration combination strategies for testing and
show that simple algorithms such as most-enabled-disabled are
the most effective. Efforts [69], [70], [71] also exist to auto-
matically detect configuration defects in traditional software.
In contrast, our work is the first to systematically study setting
defects in Android apps.

Empirical Studies for Android App Defects. A number of
empirical studies investigate different types of Android app
defects [59], [72], [73]. For example, Hu et al. [59] study and
detect the WebView defects, while Fan et al. [72], [74] and
Su et al. [75] study the framework-specific crash defects, and
Kong et al. [76] locate framework-specific bugs which are
not captured in the stack traces. But they do not cover setting
defects addressed by our work. Some studies investigate Android
configurations [77], [78], [79], but these configurations denote
different Android SDK versions, device screen sizes, or con-
figuration files (e.g., AndroidManifest.xml) of Android
apps. These configurations are different from the system settings
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considered in our work. Some researchers study limited types of
setting defects. Wang et al. [7] conduct a large-scale empirical
study of runtime permission defects in the Android ecosystem.

Automated Android App GUI Testing. A number of automated
GUI testing techniques have been proposed [53], [56], [57],
[58], [80], [81], using different approaches, such as symbolic
execution [64], evolutionary algorithm [54], random [51] and
model-based testing [52], [55], [82]. However, these testing
techniques are limited to crash defects due to lack of strong
test oracles. In contrast, our testing technique, informed by our
study, leverages the idea of metamorphic testing to detect both
crash and non-crashing setting defects. Adamsen et al. [83]
also use specific metamorphic relations to enhance existing
test suites for Android, but they do not target setting defects.
Some previous work explores limited types of setting defects.
Sadeghi et al. [6] propose PATDROID, which uses combinatorial
testing to automatically detect permission defects. Similarly, Lu
et al. [49] propose PREFEST, which uses symbolic execution
and combinatorial testing to detect crashes induced by changing
app-specific preferences and some system settings. However,
our work has two significant differences from theirs. First,
we systematically explore different system settings (typically
provided by the system app Settings), while they explore
only limited types of settings. Second, SETDROID can detect
non-crashing setting defects, while PATDROID and PREFEST can
detect only crash ones. Our evaluation in Section V.D also shows
these differences. Riganelli et al. [60] use screen rotations to
detect data loss defects. However, they can detect only the setting
defects induced by screen rotations, while SETDROID can detect
many different setting defects.

Android App Static Analysis. There are various approaches
to doing static analysis of Android apps differing in precision,
runtime, scope, and focus [84], [85]. Some static analysis ap-
proaches focus on detecting defects caused by specific setting
categories. Since the release of Android 6.0, researchers have
proposed various approaches to help legacy apps automatically
migrate to the runtime permission model. Dilhara et al. [63]
present ARPDROID, an automated solution that detects and
repairs incompatible permission uses, adapting the app under
analysis to the new permission model. Fang et al. [62] build an
automatic tool, REVDROID, to analyze the potential side effects
of permission revocation. However, these approaches focus on
only specific types of setting defects, while SETCHECKER targets
more types of setting defects.

VIII. CONCLUSION

In this article, we have presented the first empirical analysis of
setting defects in Android apps and have shown that most apps
are affected by setting defects. We have identified five major root
causes and four types of consequences of these defects, and we
have also analyzed the correlation between setting categories
and their root causes and consequences. Guided by our study
findings, we have proposed a setting-wise metamorphic fuzzing
tool named SETDROID and a fault-pattern-based static analysis
tool named SETCHECKER to detect setting defects. SETDROID

and SETCHECKER find 123 previously-unknown setting defects

from 26 open-source and 5 industrial apps. These defects have
diverse root causes and consequences. We have also given an
in-depth comparison between our proposed tools and prior tools,
and shown the superiority of our bug finding techniques. We
have open-sourced our dataset and tools to facilitate replica-
tion and future research at https://github.com/setting-defect-
fuzzing/home.
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