
Understanding the Reproducibility Issues of
Monkey for GUI Testing

Huiyu Liu1, Qichao Kong1, Jue Wang2 (�), Ting Su1, and Haiying Sun1 (�)

1 Shanghai Key Laboratory of Trustworthy Computing, East China Normal
University, China

hysun@sei.ecnu.edu.cn
2 Nanjing University, China

Abstract. Automated GUI testing is an essential activity in developing
Android apps. Monkey is a widely used representative automated input
generation (AIG) tool to efficiently and effectively detect crash bugs in
Android apps. However, it faces challenges in reproducing the crash bugs
it detects. To deeply understand the symptoms and root causes of these
challenges, we conducted a comprehensive study on the reproducibil-
ity issues of Monkey with Android apps. We focused on Monkey’s
capability to reproduce crash bugs using its built-in replay functional-
ity and explored the root causes of its failures. Specifically, we selected
six popular open-source apps and conducted automated instrumentation
on them to monitor the invocations of event handlers within the apps.
Subsequently, we performed GUI testing with Monkey on these instru-
mented apps for 6,000 test cases and collected 56 unique crash bugs. For
each bug, we replayed it 200 times using Monkey’s replay function and
calculated the success rate. Through manual analysis of screen record-
ing files, log files of event handlers, and the source code of the apps,
we pinpointed five root causes contributing to Monkey’s reproducibil-
ity issues: Injection Failure, Event Ambiguity, Data Loading, Widget
Loading, and Dynamic Content. Our research showed that only 36.6%
of the replays successfully reproduced the crash bugs, shedding light on
Monkey’s limitations in consistently reproducing detected crash bugs.
Additionally, we delved deep into the unsuccessfully reproduced replays
to discern the root causes behind the reproducibility issues and offered
insights for developing future AIG tools.

Keywords: Reproducibility, Empirical Study, Android GUI Testing

1 Introduction

The Android apps have become increasingly widespread [2]. In Android app de-
velopment, GUI (Graphical User Interface) testing is crucial for ensuring the
stability and reliability of Android apps. It aims to mitigate the risk of software
failures, data breaches, and other potentially expensive issues. To support ef-
ficient and robust GUI testing, numerous AIG (Automated Input Generation)

2 H. Liu et al.

tools have been developed [1,6,16,17,18,20,29,31,32,33]. By sending GUI events
automatically to the app under test and monitoring its performance, these AIG
tools effectively detect and report crash bugs in Android apps.

Despite the success of AIG tools in detecting crash bugs, the primary chal-
lenge in addressing these bugs is reproducing them. Most existing AIG tools lack
replay functionality. As a result, testers must manually attempt to reproduce any
reported crash bugs, which can be both challenging and labor-intensive. Even for
AIG tools that offer replay functionalities (e.g., Monkey [23], Ape [11], Droid-
Bot [16]), they cannot guarantee reliable reproduction due to varying runtime
contexts [30], which brings challenges for testers to diagnose and fix these crash
bugs. Flakiness in Android testing refers to the inconsistent results of automated
tests. Most of the existing studies about flakiness in Android testing primarily
focus on flaky tests in UI testing frameworks like Espresso. A few works have
also studied the reproducibility issues associated with AIG tools [28,30]. How-
ever, these studies reproduce the buggy trace only a few times, which might
not be comprehensive or systematic. We believe that a deep understanding of
the reproducibility issues of AIG tools is crucial. Such insight can pinpoint the
limitations of these tools and suggest directions for improvement.

Therefore, we conducted an in-depth study of the reproducibility issues of
AIG tools. Specifically, we focus on Monkey [23], a widely adopted AIG tool
for Android apps in industry [26,34]. Monkey provides the capability to sim-
ulate user interactions by generating random events such as clicks, touches, or
gestures, as well as some system-level events. Moreover, it has a built-in function-
ality to replay the event sequences it generated. Google has officially integrated
Monkey into the Android SDK (Software Development Kit) [24], highlighting
the representativeness and significance of Monkey for Android GUI testing. To
get insights on the reproducibility of Monkey, in this work, we primarily focus
on the following two research questions:

– RQ1: How reliably can Monkey reproduce the crash bugs it detects?
– RQ2: What are the root causes of the reproducibility issues of Monkey?

To answer the two research questions, we selected six real-world, open-source
Android apps, and conducted GUI testing on them with Monkey. When a
crash bug was detected, we replayed it with Monkey’s built-in functionality.
Specifically, to get further information about the execution status of each replay,
we implemented an instrumentation tool in the form of a Gradle Plugin using
a Java bytecode manipulation and analysis framework - ASM [5]. Applying the
plugin to our subject apps can help us observe how the app reacts to input events
from the event handler level. We recorded the execution information of each
replay, including the event sequence, screen recording, and the event handler
invocations recorded by our instrumentation. Finally, we conducted a manual
analysis of the unsuccessfully-reproduced replays and identified the root causes.

According to our experimental results, only 36.6% of the replays can success-
fully reproduce the crash bugs detected by Monkey on average. We categorized
the root causes of the reproducibility issues into five types, namely Injection
Failure, Event Ambiguity, Data Loading, Widget Loading and Dynamic Content.

Understanding the Reproducibility Issues of Monkey for GUI Testing 3

The most prevalent cause, Injection Failure, stems from Monkey’s event gener-
ation mechanism, accounting for 54.4% of the 7,100 unsuccessful replays. Event
Ambiguity, Data Loading, Widget Loading, and Dynamic Content account for
20.9%, 15.1%, 9.2%, and 0.4%, respectively. Our study reveals the limitation
of Monkey in reliably reproducing the crash bugs it detects, which can also
be generalized to AIG tools implemented based on the principles of Monkey.
For researchers, understanding these limitations can guide the enhancement of
existing AIG tools and the future development of the coming AIG tools. For de-
velopers, understanding these limitations can help to interpret the bug reports
and assess whether the AIG tool’s inputs truly represent the user interactions
that led to the crash. It also allows developers to distinguish between genuine
bugs and false positives (reporting a bug that doesn’t exist) or false negatives
(not detecting an actual bug) caused by the tool’s inaccuracies.

Overall, the main contributions of this paper can be summarized as follows:

– To our knowledge, we conducted the first systematic and in-depth study to
investigate Monkey’s reproducibility issues.

– To study the reproducibility issues of Monkey, we implemented an instru-
mentation tool that can help observe the runtime behavior of the apps from
the event handler level.

– We identified five root causes of Monkey’s reproducibility issues from dif-
ferent perspectives (e.g., Monkey’s self unreliability, app’s feature), and
some of these root causes (e.g., Injection Failure, Event Ambiguity) were not
identified previously.

– We have publicly released our tool and dataset at https: // github. com/
InstrumentDroid/ InstrumentDroid .

2 Empirical Study Methodology

This section presents our methodology for investigating the reproducibility rate
of crash bugs detected by Monkey and analyzing the root causes of the repro-
ducibility issues of Monkey. Fig.1 shows the methodology of our study.

2.1 Notations and Definitions

An Android app is a GUI-based event-driven program P . A crash bug r can be
described as a type of fault in P that triggers a runtime exception resulting in
an app crash or hang. A Monkey event e is an event generated by Monkey to
simulate various user interactions, such as touch events, key events, and system
events. Note that Monkey is coordinate-sensitive rather than widget-sensitive,
so not event Monkey event interacts with UI elements. We denote these Mon-
key events as blank events. When finished a Monkey testing, P responds to a
sequence of Monkey events E = [e1, e2, ..., en] and yields an execution trace
τ = ⟨E, I⟩, where E denotes the Monkey event sequence and I denotes the
event handler invocation sequence.

https://github.com/InstrumentDroid/InstrumentDroid
https://github.com/InstrumentDroid/InstrumentDroid

4 H. Liu et al.

Buggy App

Instrumented App

InstrumentDroid

(1) Instrumentation (2) Monkey Testing
until Detected Crash bug

(3) Replay using
the Same Seed

Monkey Seed (4) Compare and
Analyze

Root Causes

Original Key-Info
Package*

Replay Key-Info
Package

Step1:Instrumentation Phase Step2:Monkey Testing & Replaying Phase Step3:Comparing & Analyzing Phase

Key-Info Package*

Event Handler
LogFile

Crash Stack
LogFile

Screen Record
Video

Monkey Event
Sequence LogFile

Fig. 1: Overview of our methodology including three major phases

2.2 Experimental Method

Step 1: Instrumentation Phase. To monitor the real-time execution se-
quence of GUI events during Monkey testing, we crafted an instrumentation
tool, InstrumentDroid, which was capable of capturing the invocations of
event handlers in the app. Event handlers are responsible for responding to the
events generated by UI widgets when interacting with them. Therefore, Instru-
mentDroid hook into the event handlers corresponding to the UI widgets to
get the GUI event sequences. Specifically, we first used a bytecode manipulation
framework ASM to collect all the event handlers as an Event Handler List. Next,
we developed the Gradle plugin InstrumentDroid. When applying Instru-
mentDroid to the apps, it can automatically scan all the event handlers in
the app’s source code and insert a piece of code into these event handlers to get
runtime information about these event handlers. In this way, when users interact
with a specific UI widget, its corresponding event handler is invoked, then the
log information of this event handler is output to a designated file so that we
can know which UI widget users are interacting with. Fig.2 shows the workflow
of instrumentation.

Step 2: Monkey Testing & Replaying Phase. In this phase, we aim to
conduct automated random GUI testing with Monkey on the instrumented
apps until we get a series of unique crash bugs, and replay them with Monkey’s
built-in functionality.

Key-Info Package. To quantify app execution status, we recorded data
termed Key-Info Package. A Key-Info Package consists of four components:
Event Handler LogFile, Crash Stack LogFile, Monkey Event Sequence LogFile
and Screen Record Video. The Event Handler LogFile is the output from Instru-
mentDroid, which documents the invocation state of event handlers. When an
event handler is triggered, the Event Handler LogFile logs its invocation time,
the related UI widget information, and its fully qualified name. For example,
in Fig.3, lines 1-3 show the logs for onOptionsItemSelected invocation. Line 1
indicates the invocation time of onOptionsItemSelected. Line 2 indicates its UI
widget details (with the resourceId of this Option Menu as ’2131296485’ and
the Menu Option labeled ’History’). Line 3 gives its fully qualified name. The
Crash Stack LogFile and Monkey Event Sequence LogFile are both outputs from
Monkey. Crash Stack LogFile details crash events, including the crash location,

Understanding the Reproducibility Issues of Monkey for GUI Testing 5

exception information, etc. Monkey Event Sequence LogFile records events and
actions performed by Monkey, including action types, coordinates, etc. Finally,
Screen Record Video captures the real-time Android device display during the
Monkey test, showcasing all visual actions during the Monkey testing pro-
cess. It is obtained by the built-in screen recording functionality screenrecord
of Android ADB.

App Source Code

Manifest File

.class Files

Activity Set Modified .class Files

Parse

Current

Class in

Activity Set?

Yes

Method is

an Event

Handler?

Yes
Instrument Methods

Traversing Each

Method of Filtered

Classes

Instrumented APK

Packing

Fig. 2: Workflow of our instrumentation approach

Monkey Testing.We aim to useMonkey for random GUI testing to collect
unique crash bugs and their corresponding Key-Info Package. For each app, we
set up 1,000 test cases, and each test case is a single Monkey test. We customize
the command-line parameters for each test, including throttle and event count.
For off-line apps, half of the test cases have a throttle of 200ms and the other half
500ms. On-line apps have throttles set at 500ms and 1000ms, based on empirical
findings from other automated testing studies [4,22]. We set an event count limit
of 5,000 Monkey events per test. If a crash happens within this limit, Monkey
stops and outputs the test’s Key-Info Package. We use a shell script to manage
the processes, from starting the emulator to extracting the Key-Info Package.
Finally, we can get the execution traces and Key-Info Packages of these crash
bugs. We denote the execution trace of a crash bug as τO, representing the
original execution trace.

1 18:34:50.364/

2 131296485/History

3 com/amaze/filemanager/activities/MainActivity/onOptionsItemSelected

Fig. 3: Example of the output log of InstrumentDroid

Replaying. A key feature of Monkey is its capability to generate identical
pseudo-random event sequences using a Seed. Leveraging this, we replay each
τO 200 times with consistent seed and throttle settings, collecting the replay
execution traces and their Key-Info Packages. The replay execution trace is
denoted as τR.

Step 3: Comparing & Analyzing Phase. In this stage, our goals are (1)
comparing each pair of τO and τR, determining how many replays successfully
reproduced the crash bugs, and computing the reproducibility rate of each crash

6 H. Liu et al.

bug, and (2) for the failed replays, analyzing the possible reasons for the repro-
ducibility issues of these replays.

To achieve the first goal, given τO = ⟨EO, IO⟩ and τR = ⟨ER, IR⟩ with EO =
[e1, e2, ..., em] and ER = [e1, e2, ..., en], we use two metrics to evaluate whether
τR is successfully reproduced τO: (1) the index of Monkey event causing the
crash, and (2) exception information. The crash-causing event index refers to the
last Monkey event’s index when the crash bug occurs. Specifically, if m = n,
τO and τR crashed at the same event index. Exception information refers to the
runtime exception when the crash occurs. Specifically, if τO and τR have the same
exception type (e.g., NullPointerException) and description, they triggered the
same runtime exception. If τR matches the event index and runtime exception
of τO, we denote that τR successfully reproduced τO. Finally, for each crash bug,
we calculated the percentage of successfully-reproduced replays out of all 200
replays as the reproducibility rate of this crash bug.

To achieve the second goal, we analyzed the Event Handler LogFile and the
Screen Record Video of each pair of τO and τR. First, we preprocessed the Event
Handler LogFile, abstracting each event handler’s invocation as a GUI event,
forming a GUI event sequence. Next, we compared the GUI event sequences of
τO and τR, pinpointing differences. For the first divergent GUI event, we used the
event execution times from the Event Handler LogFile to locate positions in the
Screen Record Video. We compared frames around the divergence in both videos
and manually determined the discrepancy’s root causes. Specifically, for all the
unsuccessfully-reproduced replays, two co-authors independently analyzed the
root causes based on their knowledge and understanding. Then, the co-authors
conducted cross-validation and discussion, reaching a consensus on the discrep-
ancies. When they could not reach a consensus, the other three co-authors par-
ticipated and helped make the final decision together. Manual analysis of all the
unsuccessfully-reproduced replays was time-consuming, spanning about three
months to complete. This analysis extended beyond Key-Info Package’s infor-
mation to include specific bug lines in the source code. This makes the results
more accurate and convincing.

2.3 Experimental Setup

Selecting Subject Apps. We selected six Android apps as the test subjects
of our study. We focus on the open-source Android apps from GitHub so that
we can monitor their execution to identify and analyze the root causes of the
reproducibility issues. Our app selection was based on three criteria: popularity
as indicated by GitHub stars, diversity of app categories for experimental valid-
ity, and feature variety. Specifically, we included both on-line (internet-required)
and off-line apps, covering a wide range of app categories to enhance the validity
of our experiment. We sourced all apps from Themis [30] and the app subjects
of the recent empirical study conducted by Xiong et al. [35], because both of
these datasets are recent studies of real-world bugs, meaning they are suitable
for testing. From the intersection of these datasets, we initially picked three apps

Understanding the Reproducibility Issues of Monkey for GUI Testing 7

including two off-line and one on-line. Since Monkey lacks auto-login capabil-
ities, our subsequent selections were non-login apps, ensuring diverse category
representation. Ultimately, we selected four off-line and two on-line apps. The
specifics of these six apps are detailed in Table 1.

Table 1: Six popular open-source and representative Android apps used in
our study (K=1,000), ’#Stars’ indicates the number of GitHub Stars, ’#LOC’
indicates the number of lines of app source code.

App Name App Category #Stars #LOC Type

AmazeFileManager File Manager 4.6K 94,768 Off-Line
AnkiDroid Flashcard Learning 6.5K 218,558 Off-Line

ActivityDiary Personal Diary 68 2,011 Off-Line
Sunflower Gallery App 16.9K 1,687 Off-Line

AntennaPod Podcast Manager 5K 90,427 On-Line
NewPipe Video Player 24.2K 94,245 On-Line

Execution Environment. We conducted experiments on a physical machine
with 128 GB RAM and a 64-cores AMD 3995WX CPU, running a 64-bit Ubuntu
20.04 operating system. To run the apps, we used a set of Android x86 emulators,
where each emulator was configured with 4 CPU cores, 2 GB of RAM, 1 GB of
SD card, and the version of Android OS 8.0 (API level 26). For each test case,
the Android emulator is initialized to a fresh state at the beginning to provide
a clean testing environment.

3 Experimental Results Analysis

During automated GUI testing, we ran 6,000 test cases across the six apps, col-
lecting 56 unique crash bugs. After replaying each crash-triggering test case 200
times, we obtained 11,200 replays. Of these, 4,100 were successfully-reproduced
replays, while 7,100 were not. In this section, RQ1 studied Monkey’s repro-
ducibility rates, while RQ2 explores the root causes of its reproducibility issues.

3.1 RQ1: REPRODUCIBILITY RATE

Through a systematic analysis of 11,200 replays across six apps (four offline
and two online), only 36.6% successfully reproduced the crash bug, indicating
Monkey’s limitation in reliably reproducing the crash bugs it detected. Table
2 details the reproducibility rates for the 56 identified bugs, segmented into four
categories: (1) ”Same eid and Same Crash” where tauR and tauO have matching
Monkey event indexes leading to the crash and identical exception information,
indicating successfully-reproduced replays; (2) ”Different eid and Same Crash”
where tauR crash at differing event indexes but share tauO’s runtime exception;
(3) ”Different eid and Different Crash” where tauR have a distinct event index

8 H. Liu et al.

Table 2: List of the reproducibility rate of Monkey on the six subject apps.
’#Activities’ indicates the number of activities in this app.

App Name #Activities Type Throttle Crash Bug Id
Same Eid Different Eid Different Eid

No Crash
Same Crash Same Crash Different Crash

AmazeFileManager 10 Off-Line 200ms Crash#1 178 4 0 18

Crash#2 0 0 107 93

Crash#3 5 1 1 193

Crash#4 43 118 29 10

Crash#5 163 0 6 31

500ms Crash#1 143 45 10 2

Crash#2 161 14 21 4

Crash#3 8 0 10 182

Crash#4 1 1 12 186

Crash#5 11 0 0 189

AnkiDroid 21 Off-Line 200ms Crash#1 0 1 173 26

Crash#2 96 1 1 102

Crash#3 39 0 133 28

Crash#4 0 0 0 200

Crash#5 7 0 12 181

Crash#6 0 0 194 6

500ms Crash#1 39 1 3 157

Crash#2 0 64 134 2

Crash#3 108 4 38 50

Crash#4 98 0 90 12

Crash#5 110 0 0 90

Crash#6 91 0 71 38

Crash#7 59 0 55 86

Sunflower 1 Off-Line 200ms Crash#1 20 0 0 180

Crash#2 177 23 0 0

Crash#3 60 6 2 132

Crash#4 121 15 1 63

Crash#5 95 11 1 93

500ms Crash#1 0 0 0 200

Crash#2 200 0 0 0

Crash#3 196 0 0 4

Crash#4 132 0 0 68

Crash#5 134 0 0 66

ActivityDiary 7 Off-Line 200ms Crash#1 1 0 0 199

Crash#2 97 3 47 53

Crash#3 89 0 28 83

Crash#4 114 0 2 84

500ms Crash#1 45 0 0 155

Crash#2 65 0 0 135

Crash#3 0 0 5 195

Crash#4 0 0 2 198

Crash#5 180 0 13 7

AntennaPod 10 On-Line 500ms Crash#1 200 0 0 0

Crash#2 19 0 181 0

Crash#3 46 0 0 154

Crash#4 136 0 44 20

Crash#5 0 0 21 179

Crash#6 0 0 9 191

Crash#7 18 0 4 178

1000ms Crash#1 200 0 0 0

Crash#2 1 0 105 94

Crash#3 18 0 0 182

Crash#4 189 1 0 10

NewPipe 14 On-Line 500ms Crash#1 174 0 3 23

1000ms Crash#1 3 0 53 144

Crash#2 10 36 30 124

#Total 4100 349 1651 5100

#Proportion 36.6% 3.1% 14.7% 45.5%

Understanding the Reproducibility Issues of Monkey for GUI Testing 9

and trigger a different bug; and (4) ”No Crash” where no crash occurs within
the 5,000 Monkey events span.

Based on the experimental results, we have two interesting findings. First, the
reproducibility rate of Monkey is not significantly correlated with the runtime
exception type. We conducted a statistical one-way ANOVA [9] of variance
on the reproducibility rates of different exceptions using SPSS [13]. We first
categorized the runtime exceptions of the 56 crash bugs and excluded exception
types with sample sizes less than 3 due to their potential random occurrences
that could affect experimental results. In the end, we obtained eight groups of
exception types, including NullPointerException, ClassCastException, etc. Next,
we employed the homogeneity of variance test and set the null hypothesis (H0) as
follows: the reproducibility rates of crash bugs with different exception types are
equal, indicating that reproducibility rates are independent of exception types.
The results of the variance analysis showed a significance level (P-value) of 0.412,
which is greater than 0.05. This implies that there is no significant correlation
between the reproducibility rate and the exception types of crash bugs.

Second, the reproducibility rate of Monkey is not significantly correlated
with the app’s complexity. Generally, apps with more complex features usually
have more components in their activities, and different actions on these com-
ponents may correspond to different functionalities, increasing the likelihood of
executing error events. Apps with simpler features typically have simpler activ-
ity designs with more blank pages, resulting in a relatively higher probability of
executing blank events. We conducted a similar ANOVA analysis between app
features and the reproducibility rates, yielding a P-value of 0.441. This indicates
that there is no significant correlation between them.

3.2 RQ2: ROOT CAUSE

By manually analyzing 7,100 unsuccessfully-reproduced replays’ Key-Info Pack-
ages, we finally identified five root causes of the reproducibility issues in Mon-
key: Injection Failure, Event Ambiguity, Data Loading, Widget Loading and
Dynamic content. Table 3 shows the detailed proportion.

Injection Failure ”Injection failure” describes situations whereMonkey expe-
riences issues while inserting events into the InputManager, causing the event to
not be added. Ideally, with the same Seed, Monkey should generate consistent
event sequences. However, our experiments revealed occasional event execution
failures by the Android framework due to injection issues, denoted in theMonkey
Event Sequence LogFileby ”//Injection Failed”. This results in inconsistencies
between the original and replay execution traces, contributing to Monkey’s re-
producibility challenges. In our study, 3,864 of the 7,100 problematic replays (or
54.4%) suffered from injection failure.

To understand the reasons behind injection failure, we conducted an in-depth
analysis of Monkey’s source code. Monkey has two types of event: KeyEvent,
which corresponds to a physical button, and MotionEvent, such as click and long

10 H. Liu et al.

press. For KeyEvent, if the action code of the KeyEvent is not a valid key action
such as UP and DOWN, it will fail to be injected into the InputManager. For
MotionEvent, if the pointer count (the multitouch number on the screen) of the
MotionEvent is less than 1 or greater than 16, or any individual pointer ID in
the MotionEvent is less than 0 or greater than the maximum allowed pointer ID,
the MotionEvent will fail to be injected to the InputManager. A common case of
Injection Failure is that the pointer count equals 0 when injecting MotionEvents
due to the rapid event execution speed of Monkey.

Finding 1: Injection Failure affects 54.4% of the reproducibility issues,
which is the most common root causes.

Event Ambiguity When recognizing actions, Android framework typically uti-
lizes algorithms and rules to determine the type of action based on properties like
pointer speed, distance, direction, and so on. Event ambiguity refers to the situa-
tion where the Android framework identifies the sameMonkey event as different
UI events, leading to a disparity between the original execution trace and the
replay execution trace. This discrepancy contributes to the reproducibility issues
of Monkey. In our experiment, 1483 out of 7100 replays with reproducibility
issues (accounting for 20.9%) were attributed to event ambiguity.

For example, in the case of Anki-Android, the component deck has registered
two different event handlers, which is shown in Fig.4. When clicking on a certain
deck, onClick will be executed, while when long-clicking this deck, onLongClick
will be executed. During GUI testing with Monkey, for the same Monkey
event, the Android framework identified it in the original execution trace as a
click event, but in the replay execution trace as a long-click event. Then this
discrepancy led to the reproducibility issues. Fig.5 shows the real scenario of
this example.

Finding 2: Event Ambiguity affects 20.9% of the reproducibility issues,
which is an important factor affecting the reproducibility rate.

Data Loading Data loading refers to the situation where Monkey interacted
with a partially loaded page or component, resulting in an empty event execution.
Specifically, when switching to a new page, the app needs a period to fully load
the content, and there will be a loading icon or some skeleton images on the
page usually. Because Monkey is not widget-sensitive but coordinate-sensitive,
when Monkey generates a click event, it may hit an area where the data is not
yet available. That will possibly miss a pivot event. In our experiments, 1071
out of 7100 replays with reproducibility issues (accounting for 15.1%) are related
to data loading. The reproducibility issues in Monkey caused by data loading
can be fundamentally categorized into two types: database loading and network
loading. Database loading refers to the situation where loading a new page or
component requires retrieving information from a local or remote database. Such
query operations typically take some time to complete. Network loading refers

Understanding the Reproducibility Issues of Monkey for GUI Testing 11

holder.rl.setOnClickListener(
new View.OnClickListener() {

@Override
public void onClick(View v) {

//Handle events
}

});
(a)

holder.rl.setOnLongClickListener(
new View.OnLongClickListener() {

@Override
public boolean onLongClick(View p1) {

//Handle events
}

});
(b)

Fig. 4: Source Code of Event Ambiguity

to the situation where loading a new page or component requires some time
to retrieve information from a remote server or certain APIs. This can lead to
failures in reproducing actions accurately due to variations in network speed
or connectivity, causing discrepancies between the original and replayed events.
For instance, in AmazeFileManager, showcased in Fig.5(c) and (d), there’s a
noticeable difference in the file list display attributable to database loading speed.
In Fig.5(c), while the file list was still populating, Monkey clicked an empty
space, maintaining the app’s state. Conversely, in Fig.5(d), the app had efficiently
fetched and displayed file data, leading Monkey to click on the ’gr’ folder and
transition to a new page. Such inconsistencies, stemming from varied database
loading rates, amplify Monkey’s reproducibility challenges.

Widget Loading Widget loading refers to the situation where the widget with
animated effects is clicked before all the menu options have been fully displayed,
leading to clicking the incorrect menu option during the replay process. In our
experiments, 653 out of 7100 replays with reproducibility issues (accounting for
9.2%) are related to widget loading.

For example, in the case of AmazeFileManager illustrated in Fig.5(e) and (f),
in the original execution trace, the click event landed on the ’GridView’ option
within the Options Menu. However, in the replay execution trace, the dropdown
speed of the Options Menu was slower, causing Monkey not to click on any
option within the Options Menu. As a result, the original execution trace and
replay execution trace ended up on different pages.

Specifically, for further investigating widget loading, we manually analyzed
the Screen Record Video and found that specific widgets like Drawer Menu and
Options Menu typically require 60ms to 150ms (according to our video frame-
by-frame statistics) to load completely to respond accurately to click events.
In one particular experiment, we observed that when setting the throttle of
Monkey to 200ms, if a Monkey event ei triggered a pop-up of Options Menu,
ei+1 had a 63% probability of being unable to select the well-prepared menu
options. In addition, in a broader analysis encompassing four offline apps, when
setting the throttle of Monkey to 200ms, 58% of the pivot GUI events were
missed or affected due to clicking on partially loaded widgets. This highlights the
significance of timing and synchronization between click events and the loading
of interactive widgets.

12 H. Liu et al.

Table 3: List of the root causes of the reproducibility issues of Monkey that
we identified. A ’-’ in the ’Dynamic Content’ column indicates that the off-line
apps do not have this situation.

App Name Type Throttle
Injection Event Data Widget Dynamic Exception Type Of

Failure Ambiguity Loading Loading Content Crash Bug

AmazeFileManager Off-Line 200ms 20 0 2 0 - NullPointerException

79 68 48 5 - ClassCastException

161 13 13 8 - ClassCastException

123 24 9 1 - StringIndexOutOfBoundsException

22 5 8 2 - IllegalArgumentException

500ms 28 26 0 3 - NullPointerException

28 6 4 1 - StringIndexOutOfBoundsException

151 36 1 4 - ClassCastException

175 12 11 1 - StringIndexOutOfBoundsException

175 3 10 1 - NullPointerException

AnkiDroid Off-Line 200ms 68 9 123 0 - NullPointerException

69 34 1 0 - NullPointerException

38 95 28 0 - NullPointerException

102 90 4 4 - NullPointerException

182 8 2 1 - RuntimeException

39 158 2 1 - ArrayIndexOutOfBoundsException

500ms 126 30 5 0 - NullPointerException

4 193 3 0 - NullPointerException

51 41 0 0 - ActivityNotFoundException

70 4 28 0 - ArrayIndexOutOfBoundsException

53 13 24 0 - NullPointerException

96 13 0 0 - FileOutputStreamError

117 17 7 0 - IllegalArgumentException

Sunflower Off-Line 200ms 77 8 0 95 - IllegalArgumentException

19 0 0 4 - IllegalArgumentException

97 1 0 42 - IllegalArgumentException

47 2 0 30 - IllegalArgumentException

65 3 0 37 - IllegalArgumentException

500ms 0 20 0 180 - IllegalArgumentException

0 0 0 0 - IllegalArgumentException

0 0 0 4 - IllegalArgumentException

0 7 0 61 - IllegalArgumentException

0 46 0 20 - IllegalArgumentException

ActivityDiary Off-Line 200ms 199 0 0 0 - NullPointerException

101 0 2 0 - IndexOutOfBoundsException

85 1 23 2 - IndexOutOfBoundsException

59 7 9 11 - SQLException

500ms 131 6 17 1 - SQLException

121 4 10 0 - SQLException

14 12 173 1 - SQLException

198 0 2 0 - IndexOutOfBoundsException

6 0 13 1 - IndexOutOfBoundsException

AntennaPod On-Line 500ms 0 0 0 0 0 VerifyError

7 75 0 94 5 VerifyError

61 0 91 0 2 VerifyError

8 0 55 0 1 VerifyError

27 12 145 8 8 libcoreError

49 132 12 5 2 Ioexception

48 87 33 9 5 InterruptedIOException

1000ms 0 0 0 0 0 VerifyError

37 93 59 8 2 IllegalArgumentException

64 37 73 6 2 VerifyError

0 8 0 2 1 VerifyError

NewPipe On-Line 500ms 13 5 7 0 1 NullPointerException

1000ms 187 4 6 0 0 RemoteServiceException

167 15 8 0 0 NullPointerException

#Total 3864 1483 1071 653 29

#Proportion 54.4% 20.9% 15.1% 9.2% 0.4%

Understanding the Reproducibility Issues of Monkey for GUI Testing 13

Fig. 5: Illustrative examples of root causes. The red boxes indicate the click
area.

14 H. Liu et al.

Dynamic Content Dynamic content refers to the situation where some specific
app dynamic contents may change (e.g., recommended items, pop-up advertise-
ments), leading to the different execution traces in replays from those in the orig-
inal execution traces, thus resulting in the reproducibility issues of Monkey. In
our experiments, 29 out of 7100 replays with reproducibility issues (accounting
for 0.4%) are related to dynamic content.

In certain specific on-line apps, the presence of dynamic content introduces
significant challenges to reproducing crashes. For example, in the case of An-
tennaPod illustrated in Fig.5(g) and (h), the continuous changes in the recom-
mendation list primarily arise from the app’s reliance on fetching and updating
data from remote sources. User interactions and time-dependent factors trigger
these data updates, resulting in constant changes in the recommendation list.
Consequently, even though we use the read-only mode to ensure that the app
starts from the same state every time, for apps with recommendation lists, the
content of the recommendation list may change when run at different times. The
dynamic nature of the recommendation lists may lead to discrepancies between
the events executed in tauO and tauR.

4 Discussions and Implications

4.1 How does Throttle Affect Monkey’s Reproducibility Rate?

A recent study by Feng et al.[8] proposed a lightweight image-based approach
AdaT to dynamically adjust the inter-event time based on GUI rendering state.
AdaT can infer the rendering state and synchronize with the testing tool to
schedule the next event when the GUI is fully rendered, which can improve the
testing effectiveness. Another study by Behrang et al. [3] also indicated that for
UI-based flaky tests, the typical root causes behind flaky UI tests include issues
like async wait and resource rendering due to improper configuration of time
intervals between two events, leading to the flakiness of UI tests. According to
our experimental results, we are curious about the impact of throttle on the
reproducibility rate of Monkey. To investigate the relationship between the
throttle and the reproducibility rate, we randomly chose 19 τO, both increased
and decreased the throttle of each τO, and replayed them 200 times with the
new throttle to get their corresponding new τR, then computed the new re-
producibility rate. Then we similarly conducted the ANOVA analysis, and the
results revealed the P-value of 0.280. This indicates that altering the throttle,
whether increased or decreased, did not significantly improve the reproducibility
rate. When the throttle is increased, the app gets a longer GUI loading time,
but the reproducibility rate of the crash bug has not been significantly improved.
One potential explanation for this phenomenon is that triggering a crash bug
usually requires dozens of Monkey events to reach a specific state that leads
to a crash. Some of the pivot events need to be executed rapidly, while others
need to be executed after the app is fully rendered. So a uniform adjustment of
throttle (whether increase or decrease) may potentially miss out on some pivot

Understanding the Reproducibility Issues of Monkey for GUI Testing 15

events, making the app cannot reach the specific state to crash. Therefore, dur-
ing testing, if each event waits until the GUI is fully loaded before execution,
there’s a possibility of missing some bugs which are triggered only when user
events are executed during the partial rendering state of the GUI. Our experi-
mental results indicate that a larger throttle isn’t necessarily better. The better
selection of intervals between events in automated GUI testing remains a topic
worthy of discussion.

4.2 Can R&R Tools Improve Monkey’s Reproducibility Rate?

After discovering the reproducibility issues of Monkey, we wondered if the
R&R (Record and Replay) tools could improve Monkey’s reproducibility rate.
To validate this assumption, we initially selected three recent and representative
R&R tools - Reran[10], Rx[14] and SARA[12]. Then we use Monkey’s built-
in functionality to replay existing crash bugs, and record them with the R&R
tools at the same time. However, we found that Reran was unable to capture
the events executed by Monkey. This is because Reran records events from
the system file /dev/input/event. Only events captured by InputReader are
logged into /dev/input/event. Consequently, the events generated by Monkey
cannot be recorded by Reran. After that, we replayed the sequences recorded
by Rx and SARA and assessed their reproducibility rate. We conducted our
small-scale experiments on two off-line apps namely AmazeFileManager and
AnkiDroid, and selected two crash bugs with short τO and reproduced them
five times with the R&R tools. According to our experimental results, we found
that employing R&R tools to reproduce crash bugs yields a lower reproducibility
rate than that of Monkey. This is because Monkey generates events quickly,
and most of the R&R tools record events in the form of scripts, which is time-
consuming. Secondly, the R&R tools can only record certain event types, so
they cannot record all the events executed by Monkey, which leads to a failure
to reproduce the crash bug. This also highlights that for R&R tools, recording
speed and comprehensive recording of event types are crucial and important.

4.3 Threats to Validity

Our study may suffer from some threats to validity. First, our research focused
exclusively on Monkey without assessing the reproducibility capabilities of
other AIG tools. This is because Monkey is a widely used AIG tool in the
industry and is representative of commonly applied testing tools. Additionally,
Monkey itself provides self-replay capabilities, which eliminates the impact of
additional record and replay tools on the experimental results. Moreover, many
AIG tools (e.g., Ape, FastBot) are designed upon Monkey. Therefore, study-
ing the reproducibility issues of Monkey is a meaningful work and can provide
insights to other AIG tools. Specifically, Injection Failure may apply to AIG
tools that inject events into InputManager. Data Loading and Widget Loading
may apply to AIG tools that are coordinate-sensitive but not widget-sensitive.

16 H. Liu et al.

Event Ambiguity may not apply to widget-sensitive AIG tools, because they di-
rectly perform corresponding actions on the widgets. In the future, we plan to
expand our research to investigate the reproducibility capabilities of other AIG
tools as well. Second, our study involves some manual analysis, which may bring
some potential biases in the results. To mitigate this threat, two co-authors in-
dependently conducted the analysis and then reached a consensus to derive the
final results. When they could not reach a consensus, the other three co-authors
participated and helped make the final decision together. This approach helps
ensure a more objective and reliable assessment of the findings and minimizes
the influence of individual biases.

Additionally, we have introduced InstrumentDroid, which may cause some
potential problems. First, we detect bugs based on the instrumented app, which
makes τO and τR unified. Second, InstrumentDroid only inserts a snippet
of log code to the event handlers, which is a lightweight implant and will not
have a big impact on the performance of the program. Moreover, we’ve verified
InstrumentDroid’s accuracy in event recognition, ensuring that the same UI
controls don’t produce duplicate content in Event Handler LogFile. Nevertheless,
our tool does have its limitations. While it can cover most widgets, widgets
without corresponding event handlers require special actions. Yet, this limitation
minimally affects the reproducibility issues, as the behavior between the original
and replay traces remains consistent.

5 Related Work

Flakiness in Android GUI Testing. Flaky tests refer to software tests that
produce inconsistent or unreliable results. Different from the reproducibility is-
sues, in the literature, flakiness usually refers to the uncertainty of test results.
A flaky test does not necessarily trigger a crash bug. However, the reproducibil-
ity issues focus on a known bug and study whether the bug can be reliably
reproduced. There are many works about the flakiness in UI tests and unit
tests. Romano et al.[25] investigated flaky UI tests, identifying common causes
such as Async Wait, Environment, Test Runner API, and Test Script Logic
issues. SHAKER[27] offers a technique to improve test rerun effectiveness for
spotting flaky tests. Both our study and previous ones found that UI render-
ing and asynchronous data loading contribute to flakiness. Our work uniquely
introduces Injection Failure and Event Ambiguity as causes. Conversely, other
studies highlight concurrency and thread competition as sources of flakiness.

Some works also researched the topic of reproducibility. Su et al. conducted a
study about the reproducibility of exception bugs [28]. They chose two Android
GUI Testing tools, i.e., Stoat [29] and Sapienz [19], and utilized Monkey and
UIAutomator scripts for test recording and replay. If an app crashed, they
recorded the exception trace and the crash-triggering test, rerunning each test
five times to determine reproducibility. They identified three challenges for test-
ing tools in reliably reproducing exceptions: test dependency, timing of events,
and specific running environment. Our work differs in several respects. First, our

Understanding the Reproducibility Issues of Monkey for GUI Testing 17

tool choice was Monkey due to its widespread industry use and built-in replay
functionality, negating the need for extra scripts. Notably, Su et al. mentioned
the flakiness of Monkey tests so they didn’t choose it. Second, we replayed
crash bugs 200 times for reproducibility, as opposed to their five times. Third,
the 56 crash bugs in our work were discovered through random GUI testing
using Monkey in a unified environment. These bugs are all independent of
each other, so there is no correlation between them, and they are not affected
by the testing environment. We also addressed event timing via Data Loading
and Widget Loading. Compared to their work, our work is more systematic and
comprehensive.

Deterministic Replay in Other Systems. Deterministic replay, often re-
ferred to as reproducibility, is less studied in the Android field than in non-
smartphone platforms where it has been widely explored and implemented. In
hardware, FDR [36] offers a low-overhead solution for reproducible execution in
cache-coherent multiprocessors. Conversely, BugNet [21] is designed to record
information continuously for deterministic bug replay and resolution. In virtual
machines, ReVirt [7] enhances intrusion analysis by using logging and replay
techniques, minimizing interference from the target OS. LoRe [15] serves a sim-
ilar purpose, but is tailored for the popular full virtualization solution, KVM.

6 Conclusion and Future Work

In this paper, we conducted an in-depth empirical study on the reproducibility
issues of Monkey about how effectively can it reproduce the crash bugs it de-
tected and the root causes of its reproducibility issues. Specifically, we studied 56
unique crash bugs detected by Monkey from six popular open-source Android
apps to understand the reproducibility issues. Our results show that only 36.6%
of the crashes could be reproduced on average. Through the manual analysis, we
categorized five types of root causes of the reproducibility issues of Monkey:
Injection Failure, Event Ambiguity, Data Loading, Widget Loading and Dynamic
Content. The corresponding proportions of them are 54.4%, 20.9%, 15.1%, 9.2%,
and 0.4% on average. In the future, we plan to come up with some solutions to
improve the reproducibility issues of Monkey and research the reproducibility
issues of other AIG tools.

Acknowledgements. We thank the SETTA reviewers for their valuable feed-
back, Yiheng Xiong and Shan Huang from East China Normal University for
their insightful comments, and Cong Li from Nanjing University for the mecha-
nism of Rx. This work was supported in part by National Key Research and De-
velopment Program (Grant 2022YFB3104002), NSFC Grant 62072178, “Digital
Silk Road” Shanghai International Joint Lab of Trustworthy Intelligent Software
under Grant 22510750100, and the Shanghai Collaborative Innovation Center of
Trusted Industry Internet Software.

18 H. Liu et al.

References

1. Arnatovich, Y., Wang, L., Ngo, N., Soh, C.: Mobolic: An automated approach
to exercising mobile application guis using symbiosis of online testing tech-
nique and customated input generation: Mobolic: an automated approach to ex-
ercising mobile applications. Software: Practice and Experience 48 (02 2018).
https://doi.org/10.1002/spe.2564

2. Ash Turner: The Rise of Android: Why is Android Successful? (2023), https:
//www.bankmycell.com/blog/how-many-android-users-are-there

3. Behrang, F., Orso, A.: Seven reasons why: An in-depth study of the limita-
tions of random test input generation for android. In: Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering. pp.
1066–1077. ASE ’20, Association for Computing Machinery, New York, NY, USA
(2021). https://doi.org/10.1145/3324884.3416567

4. Bläsing, T., Batyuk, L., Schmidt, A.D., Camtepe, S.A., Albayrak, S.: An android
application sandbox system for suspicious software detection. In: 2010 5th In-
ternational Conference on Malicious and Unwanted Software. pp. 55–62 (2010).
https://doi.org/10.1109/MALWARE.2010.5665792

5. Bruneton, E., Lenglet, R., Coupaye, T.: Asm: a code manipulation tool to im-
plement adaptable systems. Adaptable and extensible component systems 30(19)
(2002)

6. Chen, S., Fan, L., Su, T., Ma, L., Liu, Y., Xu, L.: Automated cross-
platform gui code generation for mobile apps. In: 2019 IEEE 1st International
Workshop on Artificial Intelligence for Mobile (AI4Mobile). pp. 13–16 (2019).
https://doi.org/10.1109/AI4Mobile.2019.8672718

7. Dunlap, G.W., King, S.T., Cinar, S., Basrai, M.A., Chen, P.M.: Revirt: Enabling
intrusion analysis through virtual-machine logging and replay 36(SI), 211–224 (dec
2003). https://doi.org/10.1145/844128.844148

8. Feng, S., Xie, M., Chen, C.: Efficiency matters: Speeding up automated
testing with gui rendering inference. In: Proceedings of the 45th Interna-
tional Conference on Software Engineering. pp. 906–918. ICSE ’23 (2023).
https://doi.org/10.1109/ICSE48619.2023.00084

9. Girden, E.R.: ANOVA: Repeated measures. No. 84, Sage (1992)
10. Gomez, L., Neamtiu, I., Azim, T., Millstein, T.: Reran: Timing- and touch-sensitive

record and replay for android. In: 2013 35th International Conference on Software
Engineering (ICSE). pp. 72–81. IEEE Computer Society, Los Alamitos, CA, USA
(may 2013). https://doi.org/10.1109/ICSE.2013.6606553

11. Gu, T., Sun, C., Ma, X., Cao, C., Xu, C., Yao, Y., Zhang, Q., Lu, J., Su, Z.: Prac-
tical gui testing of android applications via model abstraction and refinement. In:
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
pp. 269–280 (2019). https://doi.org/10.1109/ICSE.2019.00042

12. Guo, J., Li, S., Lou, J.G., Yang, Z., Liu, T.: Sara: Self-replay augmented record
and replay for android in industrial cases. ISSTA 2019, Association for Computing
Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3293882.3330557

13. IBM Corp.: Ibm spss statistics for windows, https://hadoop.apache.org
14. Li, C., Jiang, Y., Xu, C.: Cross-device record and replay for android apps. pp.

395–407. ESEC/FSE 2022, Association for Computing Machinery, New York, NY,
USA (2022). https://doi.org/10.1145/3540250.3549083

15. Li, J., Si, S., Li, B., Cui, L., Zheng, J.: Lore: Supporting non-deterministic events
logging and replay for kvm virtual machines. In: 2013 IEEE 10th International

https://doi.org/10.1002/spe.2564
https://www.bankmycell.com/blog/how-many-android-users-are-there
https://www.bankmycell.com/blog/how-many-android-users-are-there
https://doi.org/10.1145/3324884.3416567
https://doi.org/10.1109/MALWARE.2010.5665792
https://doi.org/10.1109/AI4Mobile.2019.8672718
https://doi.org/10.1145/844128.844148
https://doi.org/10.1109/ICSE48619.2023.00084
https://doi.org/10.1109/ICSE.2013.6606553
https://doi.org/10.1109/ICSE.2019.00042
https://doi.org/10.1145/3293882.3330557
https://hadoop.apache.org
https://doi.org/10.1145/3540250.3549083

Understanding the Reproducibility Issues of Monkey for GUI Testing 19

Conference on High Performance Computing and Communications. vol. 1, pp.
442–449 (2013). https://doi.org/10.1109/HPCC.and.EUC.2013.70

16. Li, Y., Yang, Z., Guo, Y., Chen, X.: Droidbot: a lightweight ui-guided test
input generator for android. In: 2017 IEEE/ACM 39th International Con-
ference on Software Engineering Companion (ICSE-C). pp. 23–26 (2017).
https://doi.org/10.1109/ICSE-C.2017.8

17. Li, Y., Yang, Z., Guo, Y., Chen, X.: Humanoid: A deep learning-based approach
to automated black-box android app testing. In: 2019 34th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE). pp. 1070–1073
(2019). https://doi.org/10.1109/ASE.2019.00104

18. Lv, Z., Peng, C., Zhang, Z., Su, T., Liu, K., Yang, P.: Fastbot2: Reusable auto-
mated model-based gui testing for android enhanced by reinforcement learning. In:
Proceedings of the 37th IEEE/ACM International Conference on Automated Soft-
ware Engineering. ASE ’22 (2023), https://doi.org/10.1145/3551349.3559505

19. Mao, K., Harman, M., Jia, Y.: Sapienz: Multi-objective automated test-
ing for android applications. In: Proceedings of the 25th International
Symposium on Software Testing and Analysis. ISSTA 2016 (2016).
https://doi.org/10.1145/2931037.2931054

20. Moran, K., Linares-Vásquez, M., Bernal-Cárdenas, C., Vendome, C., Poshyvanyk,
D.: Automatically discovering, reporting and reproducing android application
crashes. In: 2016 IEEE International Conference on Software Testing, Verification
and Validation (ICST). pp. 33–44 (2016). https://doi.org/10.1109/ICST.2016.34

21. Narayanasamy, S., Pokam, G., Calder, B.: Bugnet: Continuously recording pro-
gram execution for deterministic replay debugging. pp. 284–295. ISCA ’05, IEEE
Computer Society, USA (2005). https://doi.org/10.1109/ISCA.2005.16

22. Patel, P., Srinivasan, G., Rahaman, S., Neamtiu, I.: On the effectiveness of random
testing for android: Or how i learned to stop worrying and love the monkey. In:
Proceedings of the 13th International Workshop on Automation of Software Test.
pp. 34–37 (2018). https://doi.org/10.1145/3194733.3194742

23. Project, A.O.S.: Monkey - android developers (2023), https://developer.

android.com/studio/test/other-testing-tools/monkey

24. Project, A.O.S.: Sdk platform tools release notes (2023), https://developer.

android.com/tools/releases/platform-tools

25. Romano, A., Song, Z., Grandhi, S., Yang, W., Wang, W.: An empiri-
cal analysis of ui-based flaky tests. In: 2021 IEEE/ACM 43rd Interna-
tional Conference on Software Engineering (ICSE). pp. 1585–1597 (2021).
https://doi.org/10.1109/ICSE43902.2021.00141

26. Roy Choudhary, S., Gorla, A., Orso, A.: Automated test input gen-
eration for android: Are we there yet? (e). pp. 429–440 (11 2015).
https://doi.org/10.1109/ASE.2015.89

27. Silva, D., Teixeira, L., d’Amorim, M.: Shake it! detecting flaky tests
caused by concurrency with shaker. In: 2020 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME). pp. 301–311 (2020).
https://doi.org/10.1109/ICSME46990.2020.00037

28. Su, T., Fan, L., Chen, S., Liu, Y., Xu, L., Pu, G., Su, Z.: Why my app
crashes? understanding and benchmarking framework-specific exceptions of an-
droid apps. IEEE Transactions on Software Engineering 48(4), 1115–1137 (2022).
https://doi.org/10.1109/TSE.2020.3013438

29. Su, T., Meng, G., Chen, Y., Wu, K., Yang, W., Yao, Y., Pu, G., Liu, Y., Su, Z.:
Guided, stochastic model-based gui testing of android apps. In: Proceedings of the

https://doi.org/10.1109/HPCC.and.EUC.2013.70
https://doi.org/10.1109/ICSE-C.2017.8
https://doi.org/10.1109/ASE.2019.00104
https://doi.org/10.1145/3551349.3559505
https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1109/ICST.2016.34
https://doi.org/10.1109/ISCA.2005.16
https://doi.org/10.1145/3194733.3194742
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/tools/releases/platform-tools
https://developer.android.com/tools/releases/platform-tools
https://doi.org/10.1109/ICSE43902.2021.00141
https://doi.org/10.1109/ASE.2015.89
https://doi.org/10.1109/ICSME46990.2020.00037
https://doi.org/10.1109/TSE.2020.3013438

20 H. Liu et al.

2017 11th Joint Meeting on Foundations of Software Engineering. pp. 245–256.
ESEC/FSE 2017 (2017). https://doi.org/10.1145/3106237.3106298

30. Su, T., Wang, J., Su, Z.: Benchmarking automated gui testing for android against
real-world bugs. In: Proceedings of 29th ACM Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). pp. 119–130 (2021). https://doi.org/10.1145/3468264.3468620

31. Su, T., Yan, Y., Wang, J., Sun, J., Xiong, Y., Pu, G., Wang, K., Su, Z.: Fully
automated functional fuzzing of android apps for detecting non-crashing logic bugs
5(OOPSLA) (2021), https://doi.org/10.1145/3485533

32. Sun, J., Su, T., Li, J., Dong, Z., Pu, G., Xie, T., Su, Z.: Understanding and finding
system setting-related defects in android apps. In: Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis. pp. 204–215
(2021), https://doi.org/10.1145/3460319.3464806

33. Wang, J., Jiang, Y., Xu, C., Cao, C., Ma, X., Lu, J.: Combodroid: Generating high-
quality test inputs for android apps via use case combinations. In: Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering. pp. 469–
480. ICSE ’20 (2020), https://doi.org/10.1145/3377811.3380382

34. Wang, W., Li, D., Yang, W., Cao, Y., Zhang, Z., Deng, Y., Xie, T.: An empirical
study of android test generation tools in industrial cases. In: Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering.
pp. 738–748. ASE ’18, Association for Computing Machinery, New York, NY, USA
(2018). https://doi.org/10.1145/3238147.3240465

35. Xiong, Y., Xu, M., Su, T., Sun, J., Wang, J., Wen, H., Pu, G., He, J., Su, Z.:
An empirical study of functional bugs in android apps. pp. 1319–1331 (2023).
https://doi.org/10.1145/3597926.3598138

36. Xu, M., Bodik, R., Hill, M.D.: A ”flight data recorder” for enabling full-system mul-
tiprocessor deterministic replay. pp. 122–135. ISCA ’03, Association for Computing
Machinery, New York, NY, USA (2003). https://doi.org/10.1145/859618.859633

https://doi.org/10.1145/3106237.3106298
https://doi.org/10.1145/3468264.3468620
https://doi.org/10.1145/3485533
https://doi.org/10.1145/3460319.3464806
https://doi.org/10.1145/3377811.3380382
https://doi.org/10.1145/3238147.3240465
https://doi.org/10.1145/3597926.3598138
https://doi.org/10.1145/859618.859633

	Understanding the Reproducibility Issues of Monkey for GUI Testing

