Understanding the Effectiveness of Mutators in
Mutation-based Protocol Fuzzing

Xiyuan Zhang, Jiayi Jiang, Yiutak Choi, Ting Su*, Haiying Sun, Chengcheng Wan, Geguang Pu
Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, China
zxy6538 @gmail.com, jyjiangsunny @ gmail.com, jeremyarg9 @ gmail.com, tsu@sei.ecnu.edu.cn,
hysun@sei.ecnu.edu.cn, ccwan@sei.ecnu.edu.cn, ggpu@sei.ecnu.edu.cn

Abstract—Mutation-based protocol fuzzing is one of the most
widely adopted techniques for finding vulnerabilities in com-
munication protocol implementations. As a key component of
such fuzzers, mutators are critical for fuzzing performance,
which are mostly inherited from general-purpose greybox fuzzers
like AFL. However, protocols possess unique characteristics,
including taking sequences of structured messages as inputs and
requiring stateful interactions. The effectiveness of these mutators
in protocol fuzzing is under-explored.

To this end, this paper conducts the first empirical study on
13 real-world, diverse protocol implementations to understand
these mutators’ effectiveness. With respect to the protocol char-
acteristics, the study covers three important dimensions: mutation
granularity, mutation level, and interplay with splicing. The study
obtains several interesting findings, most of which are unknown
or unclear before. We find that the mutators’ effectiveness is
closely related to the characteristics of protocols. Based on these
findings, we propose a mutator selection strategy and apply it
to AFLNet, a state-of-the-art mutation-based protocol fuzzer.
Evaluated on 15 protocol implementations, this strategy improves
branch coverage up to 12.67% compared to AFLNet, and uncov-
ers 8 unique bugs which AFLNET fails to find. We believe that
this study sheds light on future work for selecting and designing
better mutators for improving protocol fuzzing effectiveness. All
the artifacts in our study have been made publicly available at
https://github.com/ecnusse/AFLNet_Mutators_Study.

Index Terms—Protocol fuzzing, mutator, network security

I. INTRODUCTION

Communication protocols are the foundation of many crit-
ical infrastructures (e.g., internet, industrial controls, medical
systems) [1]. Securing network protocols is thus important
(e.g., preventing denial-of-service attacks). To this end, proto-
col fuzzing is one of the widely-used approaches to help find
vulnerabilities in protocol implementations [2], [3], in addition
to formal verification [4].

In protocol fuzzing, mutation-based protocol fuzzing [5]-
[16] is one prominent fuzzing technique. Unlike generation-
based protocol fuzzing [17], [18], it does not require the
substantial manual efforts and expertise of writing protocol
state and data models. Its core idea is influenced by the well-
known coverage-guided greybox fuzzing like AFL [19]. It
repeatedly uses a number of mutation operators (mutators
for short), based on the feedback of coverage, to generate
new, interesting seeds. These seeds are used to find potential
bugs. Therefore, the mutators are critical for the fuzzing
effectiveness.

* Ting Su is the corresponding author.

Specifically, AFLNET [6], [20] is the first and state-of-
the-art mutation-based protocol fuzzer built on AFL [19]. It
was released in 2020 and has garnered over 950 stars on
GitHub. In practice, AFLNET has found many critical protocol
vulnerabilities [21]-[25] and has been extended by several
subsequent works [5], [7], [26]. Internally, AFLNET reuses the
common byte-level mutators (e.g., bit flips, arithmetic changes,
block duplication) from AFL and designs some region-level
mutators to perform protocol-aware mutations (e.g., replace-
ment, insertion, duplication, and deletion of messages).

However, unlike traditional program, communication pro-
tocols have their own unique characteristics. For example,
the input to be fuzzed in protocol fuzzing is a sequence
of protocol messages rather than raw file-based inputs. One
message usually contains multiple fields with different lengths,
and some fields might have correlations. Moreover, many
protocols are stateful — interpreting and handling some
messages may depend on the prior ones and the current
protocol states [27], [28]. Additionally, protocols are usually
implemented in different business logic. The aforementioned
unique characteristics of protocols lead to some important
questions, which are under-explored: How effective are the
mutators in existing mutation-based protocol fuzzers on fuzzing
protocol implementations? Which mutators are more effective?
Are there any differences between these mutators?

To this end, this paper takes the first step to study the ef-
fectiveness of the mutators in mutation-based protocol fuzzers.
This study could (1) deepen the understanding of these mu-
tators in protocol fuzzing for the community, and (2) shed
lights on selecting and designing better mutators for effective
protocol fuzzing. To perform this study, we select AFLNET
as the target fuzzer because it is the most representative
mutation-based protocol fuzzer. Specifically, we explore the
following three research questions from the perspective of the
characteristics of protocols:

« RQ1 (Mutation granularity). A protocol message usually
contains multiple fields with different lengths. Meanwhile,
the common byte-level mutators in AFLNET (inherited from
AFL) mutate the seeds at different granularities (stepovers),
e.g., bits, bytes or random-length bytes. Thus, we aim to
investigate how would the byte-level mutators with different
mutation granularities affect protocol fuzzing?

e RQ2 (Mutation level). Many protocols are stateful in
which the messages have dependency and affect the internal

https://github.com/ecnusse/AFLNet_Mutators_Study

states of the protocols. To this end, AFLNET designs
region-level mutators to perform protocol-aware mutations
(e.g., replacement, insertion, duplication, and deletion of
messages). Meanwhile, AFLNET uses the common byte-
level mutators to mutate the messages as raw bytes. Thus,
we aim to investigate how would the mutators of these
two different mutation levels (region-level and byte-level)
perform in protocol fuzzing (e.g., which mutation level is
more effective?)

« RQ3 (Interplay with Splicing). In mutation-based fuzzing,
splicing is a mutator of combining two parent inputs with
the goal of finding a new interesting input. It is usually ac-
tivated when other mutators cannot find any new interesting
inputs, and has already shown its effectiveness on traditional
program. However, splicing leads to drastic changes on the
inputs. Thus, we aim to investigate how would byte-level
mutators as well as region-level mutators interplay with
splicing on fuzzing protocols which are usually stateful.
How would splicing affect protocol fuzzing?

To investigate these RQs, we selected 13 different protocol
implementations (corresponding to ten protocols) as the sub-
jects from PROFUZZBENCH [29], a widely-used benchmark-
ing platform for evaluating protocol fuzzers [5], [7], [13], [30].
It comprises a suite of mature and open-source programs that
implement well-known network protocols. Our investigation
took substantial machine hours for fuzzing these protocol
implementations with different configurations of the mutators.

In response to RQI1, we find that aligning mutation gran-
ularity with the characteristics of a protocol’s field lengths
is crucial for effective fuzzing. Specifically, the mutators that
operate on random-length bytes are more aligned with text-
based protocols, while those that operate on bit and fixed-
length bytes are more aligned with binary protocols. This
alignment results in a 5%-13% increase in branch coverage
for the former (random-length bytes mutators) on text-based
protocols, and a 30%-40% increase for the latter (bit and
fixed-length byte mutators) on binary protocols. Moreover,
each achieves statistically significantly more branch coverage
than the other. Regarding RQ2, byte-level mutators outperform
region-level ones by an average of 23.3% in branch coverage.
However, each type demonstrates distinct strengths: byte-
level mutators are more effective at covering parser-related
branches, whereas region-level mutators are more effective at
exploring state-dependent branches. As for RQ3, we find that
splicing could lead to gains or losses on branch coverage for
region-level and byte-level mutators. However, splicing does
not lead to statistically significant change on overall fuzzing
performance in terms of branch coverage.

Informed by our findings, we introduce a mutator selec-
tion strategy for mutation-based protocol fuzzing based on
AFLNET. We evaluate this strategy on all the 13 protocols
from PROFUZZBENCH and two new protocols which have
not been studied in our RQs. The results show that this
strategy can improve branch coverage up to 12.67% compared
to AFLNET. This strategy also helps uncover 8 unique bugs

in the tested protocol implementations which fail to be found
by AFLNET. These results suggest that selecting appropriate
mutators based on the characteristics of protocols can improve
fuzzing performance. In summary, this paper has made the
following main contributions:

o To our knowledge, we conduct the first study to inves-
tigate the effectiveness of mutators in mutation-based
protocol fuzzing, which is under-explored.

« We study the effectiveness of mutators from three per-
spectives based on the characteristics of protocols. We
distill several interesting findings, most of which are
unknown or unclear before in the community.

« We design a mutation selection strategy based on our
findings. This strategy indicates that selecting an appro-
priate subset of mutators could outperform the original
AFLNET in branch coverage and bug finding.

II. BACKGROUND
A. Communication Protocols and Protocol Characteristics

This section briefly introduces the background of commu-
nication protocols and their characteristics. A communication
protocol typically involves a server and clients. It defines
the rules and regulations on how the data (represented as
messages, or named as packets) is transmitted between the
server and clients. The input of a server is thus a sequence of
messages from the clients. A client sends request messages to
the server, and the server gives responses.

Typically, a message m is composed of a number of fields.
Each field f is represented as a unit of data and serves a spe-
cific purpose. A field f could be of different lengths (defined
in either fixed or variable lengths in bits or bytes). Based on
how the data of the fields in a protocol are represented, a
protocol can be classified into (1) text-based protocols when
the fields are encoded in human-readable characters; (2) binary
protocols when the fields are encoded in raw binary form (0s
and 1s); and (3) mixed protocols when some fields are encoded
in human-readable characters and some are in raw binary form.

A protocol could be stateful or stateless. When a protocol is
stateful, the server may update its internal state to remember
the status of interaction with the clients upon receiving a
sequence of request messages M (M=[m, ..., my]). In such
cases, the messages m1, ..., m, in M may have dependency.
For a stateless protocol, the messages are independent. In
practice, a server usually implements a parser to read and
sanitize the request messages, and later uses handlers to
process and respond valid messages.

Example. DICOM (Digital Imaging and Communications in
Medicine) is a mixed, stateful protocol designed for the storage
and transmission of medical images and related data. Figure 1
presents one typical sequence of DICOM messages. Message
1 is an associate request. It contains a PDU header (including
1-byte PDU Type, 1-byte padding, and 4-byte PDU Length)
and a payload. The payload includes (1) several fixed-length,
binary fields, i.e., the Protocol Version (2-byte), the Called
and Calling Entity Title (16-byte each), and some paddings

@ A-ASSOCIATE

Called
Entity
Title

Calling
Entity
Title

PDU
Type
1

PDU
Length

Presentation
Context

User
Info

Protocol
Version

Application
Context

' 1byte 1byte 4 bytes Zbytes 2bytes 16 bytes 16 bytes 32 bytes
© P-DATA
PDU
Type

PDU

Length PDV Flags
)00000:

PDV Length PDV Context Items ‘

1byte 1byte 4 bytes 4 bytes 1byte 1 byte
1 © A-RELEASE

PDU PDU
Type Length

[| Fixed-Length Field
| Variable-Length Field

A Release Request

1byte 1byte 4bytes 4 bytes

Fig. 1. An example of a sequence of messages of DICOM.

TABLE I
MUTATION OPERATORS IN AFLNET

Mutator Description
M Flip a specific bit
Ma Set a specific byte to an interesting value
Ms Set a specific word to an interesting value
My Set a specific dword to an interesting value
Ms Decrease a specific byte value randomly
Mg Increase a specific byte value randomly
M~ Decrease a specific word value randomly
Mg Increase a specific word value randomly
Mo Decrease a specific dword value randomly
Mio Increase a specific dword value randomly
M1 Set a specific byte value to a random number
Mio Delete random-length bytes
M3 Insert random-length content (75% original, 25% random)
Mig Replace random-length content (75% original, 25% random)
Mis Replace a specific position with a random token
Mis Insert a random token at a specific position
Miz Randomly replace the region with the previous region
Mig Insert a region before the current region
Mg Insert a region after the current region
Moo Overwrite the current region

in between; and (2) three variable-length fields including the
Application Context (an object-identifier string), Presentation
Context, and User Info — each of these three fields is com-
posed of a mix of fixed-length and variable-length subfields.

In Figure 1, the three messages A-ASSOCIATE, P-DATA and
A-RELEASE have dependency. In the A-ASSOCIATE message,
the fields Called Entity Title, Calling Entity Title and Appli-
cation Context together setup the communication session and
some other fields define how the subsequent messages are in-
terpreted. For example, Presentation Context in A~ASSOCIATE
defines the command semantics and encoding rules that the
subsequent P-DATA messages should follow. The server ex-
pects a P-DATA message should carry specific items that
conform to the active presentation context. The A-RELEASE
message will only be processed after the A~ASSOCIATE and
P-DATA messages are successfully processed. If these three
messages arrive out of order or lack the necessary context, the
server may reject them.

B. Mutation-based Protocol Fuzzing

AFLNET [6], [20] is the state-of-the-art mutation-based
protocol fuzzer. Table I lists all the mutators in AFLNET.
AFLNET reuses the common byte-level mutators (Mg, ...,

TABLE II
DETAILED INFORMATION OF TARGET PROTOCOL IMPLEMENTATIONS

Implementation | Protocol State Content Commit
BFTPD FTP Stateful Text 5.7
Forked-daapd DAAP Stateless Text 2caled9
Dnsmasq DNS Stateless Mixed b8f1655
Exim SMTP Stateful Text 86e5b23
LightFTP FTP Stateful Text 5980eal
Live555 RTSP Stateful Text 31284aa
ProFTPD FTP Stateful Text 4017eff
PureFTPD FTP Stateful Text c21b45f
Kamailio SIP Stateful Text 2648eb3
DCMTK DICOM Stateful Mixed 7f8564c
TinyDTLS DTLS Stateful Binary 06995d4
OpenSSH SSH Stateful Mixed 7cfeab58
OpenSSL TLS Stateful Binary 0437435

M;¢ in Table I) from AFL, and designs four additional region-
level mutators (Mi7, ..., Mgy in Table I) to perform the
protocol-aware mutations.

AFLNET structures its mutation process around the idea
that a message sequence should be split into three parts in
order to preserve the protocol state being exercised. Given a
selected state s and an original sequence M, the sequence
is divided into a prefix M; that is necessary to reach s, a
candidate subsequence M that contains messages which may
be mutated while still remaining in state s, and a suffix M
that follows My so that (M1, Ms, M3) = M. AFLNet pro-
duces a mutated sequence M’ = (M, mutate(Ms), Ms).
By preserving M, the fuzzer ensures that M’ still arrives at
the intended state, and by executing M after the mutated
candidate M it observes how changes propagate to later
responses. More details can be found in Meng et al. [20].

When mutating the candidate subsequence M5, mutators
are operated in a stacked manner known as havoc: region-level
and byte-level mutators are applied in sequence to produce
a single mutated candidate for M. In addition, splicing
combines two different seeds to generate hybrid inputs when
other mutations fail to yield progress.

III. EXPERIMENTAL SETUP

To facilitate our experiment, we introduced some switches
into AFLNET to control the activation of different mutators.
We followed the default settings of AFLNET in our exper-
iment and used all the 13 protocol implementations from
PROFUZZBENCH [29] as our subjects. PROFUZZBENCH is
a widely-used benchmarking platform for evaluating protocol
fuzzers [5], [7], [13], [30]. It comprises a suite of mature and
open-source programs that implement well-known network
protocols (e.g., SSH and FTP). Table II lists the 13 protocol
implementations (corresponding to ten different protocols)
used in our experiment. We used the default seed corpus
from PROFUZZBENCH for fuzzing. We conducted a 24-hour
fuzzing campaign for each round of evaluation and repeated
each campaign five times to mitigate randomness.

IV. RQ1: MUTATION GRANULARITY

Setup. RQ1 aims to investigate the impact of mutation gran-
ularity of the byte-level mutators on the effectiveness of

TABLE III
AVERAGE NUMBERS OF BRANCHES COVERED BY THE FIVE GROUPS OF MUTATORS WITH DIFFERENT MUTATION GRANULARITIES.

Implementation ~ Protocol ~ Content ‘ Gpit Gpyte Gword Gpword Ggs
BFTPD FTP Text 423 (0.01) 430 (0.14) 438 (0.14) 436 (0.06) 447
Forked-daapd DAAP Text 2203 (1.00) 2167 (0.42) 2145 (0.15) 2225 (0.55) 2195
Dnsmasq DNS Mixed 784 (<0.01) 759 (<0.01) 819 (0.02) 811 (0.03) 869
Exim SMTP Text 3196 (<0.01) 3172 (0.01) 3199 (0.02) 3178 (<0.01) 3291
LightFTP FTP Text 334 (0.01) 344 (0.02) 346 (0.17) 341 (0.02) 352
Live555 RTSP Text 2739 (<0.01) 2789 (0.03) 2788 (0.04) 2778 (0.02) 2853
ProFTPD FTP Text 4466 (<0.01) 4646 (1.00) 4717 (0.70) 4732 (0.07) 4669
PureFTPD FTP Text 699 (<0.01) 734 (0.01) 880 (0.03) 808 (0.02) 1086
Kamailio SIP Text 7221 (0.04) 8369 (0.22) 8332 (0.15) 8327 (0.15) 8955
DCMTK DICOM Mixed | 7382 (<0.01) 7179 (<0.01) 7265 (<0.01) 7239 (<0.01) 6906
TinyDTLS DTLS Binary | 592 (0.01) 560 (0.01) 635 (0.01) 614 (0.01) 382
OpenSSH SSH Mixed | 3339 (<0.01) 3334 (<0.01) 3322 (<0.01) 3325 (<0.01) 3137
OpenSSL TLS Binary | 10055 (<0.01) 10056 (<0.01) 9971 (<0.01) 10146 (<0.01) 8805

* The numbers in parentheses denote the p-values between Gg and the other categories Ggit, GBytes Gword, and Gpword-
* Cells shaded in red indicate that G5 achieves statistically significantly more coverage than Ggit, GByte» GWord> O GDword, While cells shaded in blue indicate that Gg
achieves statistically significantly less coverage than Gpi¢, GBytes» GWord, OF Gpword. Cells with bold texts indicate a large effect size (A12 > 0.71).

TABLE IV
CATEGORIES OF BYTE-LEVEL MUTATORS BY MUTATION GRANULARITY

Mutation Granularity Mutators
Gpit M;

GByte Mz, M5, Mg, M11
Gword M3, M7, Mg
GDwo'rd My, My, Mio
Gs Mi2, Mi3, M1g

protocol fuzzing. To this end, we classified the byte-level
mutators into five groups based on their mutation granularity.
Table IV shows these five groups, i.e., Gp;; (one bit), Gy
(one byte), Gy org (two bytes), Gpyorq (four bytes) and Gg
(random-length bytes ranging from one byte to a calculated
maximal length). To independently evaluate the impact of each
granularity group, we enable the mutators in one granularity
group (e.g., enabling Gp;;) while disabling the mutators in the
others (e.g., disabling Gpyte, Gwords Gpword and Gg) during
the fuzzing campaign. We measure the number of branches
covered by each granularity group.

Results. Table III presents the average number of branches
covered by Gp;t, Gpyte> Gwords Gpword and Gg, respec-
tively. We pairwisely compared the covered branches of
the five granularity groups. We employed statistical analysis
(Mann-Whitney U-test) to assess whether the differences of
covered branches are statistically significant and quantified the
effect sizes (Vargha-Delaney’s Ays) of the differences.

According to the pairwise comparison results, we find that
the differences between Gg and the other four categories Gp¢,
Gpytes GwWord> Gpwora are the most significant (shaded in
Table III). Specifically, (1) on the text-based protocols (except
Forked-daapd), Gg achieves statistically significantly more
branch coverage than Gp;t, GBytes Gwords O Gpuwora (cells
shaded in red); (2) on the binary protocols, Gg achieves sta-
tistically significantly less branch coverage than Gpg;;, Gpyte,
Gword, O Gpwora (cells shaded in blue). Moreover, all these
shaded cells indicate a large effect (12112 > 0.71).

In detail, on all the text-based protocols, Gg covers 13%,

FTPA
RTSP{
SIP{
SMTP
LS
DTLS{
SSHA { . — ! .
DNS{ | e

DICOM | oo

FieldLength<t 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16 17 18 19 20 32 Var
Fig. 2. Distribution of field lengths of the studied text-based (orange), binary
(blue) and mixed (green) protocols. “Var” denotes the variable-length fields.

9%, 5%, 6% more branches than Gp;;, Gpyte, Gworqd and
Gpuword, respectively. Specifically, Gg always achieves sta-
tistically significant improvements over Gp;; (except Forked-
daapd). Meanwhile, on the binary protocols (TinyDTLS and
OpenSSL), Ggit, GByte> Gword and Gpyora outperform Gg
by covering 35%, 30%, 40% and 38% more branches, respec-
tively. On the binary protocol TinyDTLS, Gpyorq covers 61%
more branches than G, and also outperforms Gp;; and Gpyte
with statistically significance.

Analysis. Based on the preceding results, our intuition is that
fuzzing is more effective when the mutation granularity of the
mutators aligns with the characteristics of a protocol’s field
lengths. To verify our intuition, we referred to the RFCs of
these protocols, and collected the statistics of fields and their
lengths. Figure 2 presents the distributions of the field lengths
of the studied protocols by violin plots. The x-axis denotes
the field lengths including fixed-lengths (denoted by the scales
ranging from bits to the maximal 32 bytes) and variable-
lengths (denoted by “Var” at the far right). The width of

each violin plot indicates the density (proportion) of the fields
with that length (annotated by a dot) within the corresponding
protocol.

Figure 2 shows that, for the two binary protocols (TLS
and DTLS), most fields are fixed-length (1, 2 or 3 bytes).
It conforms to the characteristics of binary protocols which
feature short, fixed-length fields for ensuring communication
efficiency. Importantly, this distribution aligns well with the
mutation granularity (stepovers) of the mutators in Gpgj,
GByte» Gword and Gpyorq. A mutator is most effective when
its mutation granularity is aligned with a field length, as it can
efficiently explore the value space of this field. As a result,
GBgit, Gytes Gword and Gpayorq significantly outperform Gg
on the binary protocols in Table III.

Figure 2 shows that the text-based protocols (FTP, RTSP,
SIP, SMTP) have higher proportion of longer fixed-length
fields and variable-length fields than the binary protocols.
It conforms to the characteristic of text-based protocols: the
fields are encoded in human-readable characters and usually
occupy more bytes than raw binary. This characteristic aligns
well with the mutation granularity (stepovers) of the mutators
in (}s.

Figure 2 also shows the distributions of the mixed proto-
cols (SSH, DNS and DICOM) which incorporate both text-
based and binary fields. Our intuition also applies to SSH
and DICOM which have the similar characteristic of field
lengths with the two studied binary protocol. Thus, Gpg,
GByte» Gwora and Gpyorq outperform Gg on OpenSSH and
DCMTK. But the protocol DNS is an outlier although it
has the similar characteristic with the binary protocols. The
reason is that the field domain name in DNS supports the
most critical functionality of query processing and response
generation. This field is the only text-based, variable-length
field in DNS and ranges from 1 to 255 bytes. As a result, Gg
is most effective in mutating this field, leading to significantly
higher coverage on Dnsmasq than the other granularity groups.

Forked-daapd differs from other protocol implementations.
It processes HTTP requests via API endpoints rather than
message fields. As a result, its messages are mainly composed
of different API calls and parameters rather than fields. This
fundamental difference reduces the impact of mutation gran-
ularity of mutators, leading to similar fuzzing effectiveness
across different granularity groups.

Case Study. To illustrate the impact of mutation granular-
ity, we compare coverage results from two protocol imple-
mentations—one binary (OpenSSL [31]) and one text-based
(Live555 [32]). These examples demonstrate how mutators
with different granularity interact with protocol implementa-
tions, ultimately influencing the coverage.

OpenSSL implements the TLS protocol, where the Clien-
tHello message includes multiple structured fields, each be-
ginning with a fixed two-byte identifier followed by data.
Take Figure 3 and certificate authorities extension as
an example, whose identifier field is set to 0x002f. Since this
value not included in the initial seed corpus, mutators have to

2 VXX

2 VX

static int tls_parse_certificate_authorities(SSL x*s,
PACKET =pkt, ...) {
2 VX if (!parse_ca_names(s, pkt))
return 0;
if (PACKET_remaining(pkt)

-3

1= 0) {...}

static int tls_parse_certificate_authorities(SSL *s,
PACKET #*pkt, ...) {
if (!parse_ca_names(s, pkt))
return 0;
if (PACKET_remaining(pkt) != @) {...3}
.-}

Fig. 3. Coverage comparison of Gp;; (upper) and Gg (lower) in OpenSSL.

I X/V//V/X while (j < reqStrSize && (reqStr[j] == ' ' ||
reqStr[jl == '"\t')) ++j;

for (unsigned n = 0;
reqStrSize;
{...} // read everything up to the \r or \n as

n < resultCSegMaxSize-1 && j <
++n,++3j)
'CSeq’

1 XYYV while (j < reqStrSize && (reqStr[j] == ' ' ||
reqStr[j] == "\t')) ++j;

for (unsigned n = 0;
reqStrSize;
{...} // read everything up to the \r or \n as

n < resultCSegMaxSize-1 && j <
++n,++3j)
'CSeq’

Fig. 4. Coverage comparison of Gp;; (upper) and Gg (lower) in Live555.

generate the exact bytes to trigger the parser. Figure 3 shows
the code coverage of Gp;; and Gg, with the green/red for
covered/uncovered code lines, and v//X for covered/uncovered
branches. Gp;; consistently reach this function and even
partially traverse the internal parsing branches. In contrast,
Gg fail in all trials. This result demonstrates that for fixed-
length fields in OpenSSL, mutators that operate on bit and
fixed-length bytes are significantly more effective at precisely
modifying the required bytes to reach deep states.

In contrast, Live555, which implements the RTSP protocol,
handles variable-length fields such as the CSeq header using
delimiter-based parsing. As shown in Figure 4, the parsing
logic of this variable-length field differs significantly from
OpenSSL’s fixed-length extension identifier. Instead of expect-
ing an exact byte count, Live555 parses headers like CSeq by
iterating through the input buffer until it encounters a delimiter
(space or \t), without enforcing strict byte-length constraints.
Variable-length Gg outperform Gp;; in this case, achieving
higher coverage across all runs. These results reinforce our
earlier findings: aligning mutation granularity with message
field structure significantly enhances fuzzing effectiveness.

Findings of RQI: When the mutation granularity of the
mutators is more aligned with the characteristics of a proto-
col’s field lengths, the more effective fuzzing is. Specifically,
(1) Gg is more aligned with text-based protocols, while
GBits GByte» Gword, and Gpyorg are more aligned with
binary protocols, thus achieving statistically significantly
more branch coverage than each other respectively; (2) on
the mixed protocols, fuzzing effectiveness may depend on
the lengths of the critical message fields.

TABLE V
BRANCHES COVERED BY DIFFERENT MUTATION LEVELS AND THE
COMBINATION.

TABLE VI

AVERAGE BRANCHES COVERED OF SOURCE FILES CONTAINING PARSER
COMPONENTS UNDER DIFFERENT MUTATION LEVELS

. Region | Region Byte Region/Byte
Tmpl. Region Byte + §yte Al%)ne Alzne C%)mmo?l
BFTPD 426 457 477 5 55 427
Forked-daapd | 2157 2320 2243 62 345 2148
Dnsmasq 854 859 847 5 28 905
Exim 3310 3281 3461 84 141 3281
LightFTP 322 372 366 2 25 353
Live555 2663 2850 2889 11 64 2899
ProFTPD 4579 4744 4686 318 513 4562
PureFTPD 713 1141 1030 5 462 865
Kamailio 6714 8729 8753 57 950 8904
DCMTK 7086 7332 7579 831 1198 6517
TinyDTLS 237 553 564 0 51 510
OpenSSH 2759 3282 3347 40 85 3300
OpenSSL 8650 10026 10038 92 118 10065

* Bold texts indicate statistically significance compared to Region+Byte.

V. RQ2: MUTATION LEVEL

Setup. AFLNET offers two mutation levels: (1) byte-level
mutators (M;~M;jg in Table I), which mutate a seed as raw
bytes; and (2) region-level mutators (M;7~Mjyq in Table I),
which mutate a seed as a sequence of messages. RQ2 aims
to investigate how different these two mutation levels may
perform in protocol fuzzing. To independently evaluate the
impact of each mutation level, we enable one level while
disabling the other during the fuzzing campaign. We measure
the number of branches covered by the mutators of the level
under evaluation. We also additionally enable both levels of
mutators to observe the combination effect.

Results and Analysis. Table V shows the average number of
branches covered by (1) region-level mutators (“Region”), (2)
byte-level mutators (“Byte”) and (3) region-level and byte-
level both enabled (“Region+Byte”). We observe that byte-
level mutators is more effective than region-level mutators in
protocol fuzzing, achieving an average of 23.3% higher branch
coverage across all the protocol implementations. When both
mutation levels are enabled, 8 and 4 out of 13 protocol im-
plementations respectively achieved statistically significantly
more branch coverage, compared to region-level and byte-level
mutation alone. It indicates enabling both mutation levels is
better than single mutation level in protocol fuzzing.

To further analyze the differences between byte-level and
region-level mutations, we compute the branches commonly
covered by byte- and region-level (“Region/Byte Common”)
and covered by them alone (“Region Alone” and ‘“Byte
Alone”), based on the union of branches covered across all
the repeated fuzzing campaigns. The results show that on the
majority of protocol implementations (12 out of 13), byte-level
and region-level mutators have their own respective contri-
butions. But the coverage contribution of byte-level mutators
(“Byte Alone”) is substantially larger than that of region-level
mutators (“Region Alone”), achieving 12.1x more branch
coverage across all the studied protocol implementations.

Moreover, we analyze how different the byte-level and
region-level mutators perform on the parsers of protocol im-
plementations (which are the critical components in protocol

Implementation Parser Files ‘ Region Byte | P-value Alg
BFTPD commands. c 142 163 | 0.14 0.80
src/SMARTPLParser.c
Forked-daapd sre/SMARTPLLexer . c 214 312 | <0.01 1.00
Dnsmasq rfc1e35.c 114 127 1.00 0.50
Exim src/parse.c 89 98 | <0.01 1.00
LightFTP ftpserv.c 254 304 | 001 1.00
. RTSPServer.cpp
Live555 RTSPCommon . cpp 383 537 | 0.02 096
ProFTPD src/main.c 246 259 | <0.01 1.00
PureFTPD src/ftp_parser.c 174 216 | <0.01 1.00
Kamailio core/parser/msg_parser.c 198 319 | 0.02 0.96
dcmnet/libsrc/dimemd. cc
DCMTK dcmnet/libsrc/dulparse.cc 416 545 001 100
TinyDTLS dtls.c 136 342 | 0.02 096
OpenSSH packet.c 287 334 | 0.09 084
ssl/record/rec_layer_s3.c
OpenSSL ssl/record/ssl13_record.c 380 4341 006 0388

* Statistically significant differences are highlighted in bold.

implementations to read and sanitize inputs). To this end,
we identified the source files relevant to the parsers of each
protocol implementation and computed the average branches
covered by each mutation level. The results in Table VI
reveal that byte-level mutators exhibit superior coverage in
parser-related code, covering 34% more branches on average
than region-level mutators. It partially explains why byte-level
mutators could contribute more than region-level ones in terms
of overall branch coverage by stress-testing the parsers.

Case Study (Byte-level Mutations). To further understand
the impact of byte-level mutations on protocol parsers, we
selected Forked-daapd as a representative case, since this
implementation features a highly complex parsing compo-
nent. Unlike typical protocol parsers that handle only basic
message parsing, Forked-daapd processes both API requests
and their associated parameters while also parsing playlist
files through an ANTLR-generated parser and lexer. These
ANTLR-generated components rely on complex switch-case
structures to match tokens and construct parse trees. When
fuzzing this implementation using only byte-level mutators,
the achieved coverage even surpasses AFLNET, demonstrating
the effectiveness of byte-level mutators for such complex
parsers can enhance overall coverage.

Moreover, as Table V shows, region-level mutators can
cover branches that byte-level mutators fail to reach. It sug-
gests that although region-level mutators achieve lower overall
coverage, they are still capable of triggering complementary
branches that byte-level mutators miss. Region-level mutators
are particularly effective in exploring branches that depend on
message sequences, such as field correlations across messages
and state transitions. These branches occur in implementations
that enforce constraints or dependencies between messages,
requiring mutators that modify message structure while pre-
serving message sequence relationships.

Case Study (Region-level Mutations). We examined the
BFTPD branches that were exclusively covered by region-level
mutators presented in Table V. Two modes of data connection

3 VY

void command_port(char *params){
. // process port arguments

if (pasv) {
if(sock != 2) close(sock);

pasv = 0;} // Switch to active mode

%4

// Close passive socket

void command_port(char *params){
. // process port arguments

s X/ if (pasv) {
if(sock != 2) close(sock); // Close passive socket
pasv = 0;} // Switch to active mode

Fig. 5. Effect of region-level mutators (upper) and byte-level mutators (lower)
on state-dependent code in BFTPD.

TABLE VII

BRANCHES COVERED BY AFLNET AND MUTATOR COMBINATIONS OF
DIFFERENT MUTATION LEVELS WITH SPLICING ENABLED.

. Region Byte . Region+Byte
Implementation + Splicing + Splicing Region+Byte +Splicing
BFTPD 454 (7%) 487 (6%) 471 485
Forked-daapd 2205 (2%) 2406 (4%) 2243 2271
Dnsmasq 871 (2%) 851 (-1%) 847 862
Exim 3523 (6%) 3531 (8%) 3461 3559
LightFTP 344 (7%) 362 (-3%) 366 363
Live555 2781 (4%) 2928 (3%) 2889 2895
ProFTPD 4577 (0%) 5024 (6%) 4686 4976
PureFTPD 772 (8%) 1106 (-3%) 1030 1023
Kamailio 7438 (11%) 8617 (-1%) 8753 9193
DCMTK 7015 (-1%) 7382 (1%) 7579 7688
TinyDTLS 412 (74%) 550 (-1%) 564 537
OpenSSH 2729 (-1%) 3379 (3%) 3347 3355
OpenSSL 8396 (-3%) 10051 (0%) 10038 10047

* Percentages in parentheses denote the coverage changes w.rr. the cases without
splicing in Table V. Bold texts indicate statistically significance.

exist between the client and the server: active and passive.
In the active mode, the client issues a PORT command to
inform the server of its IP address and an open port number,
allowing the server to actively initiate the data connection.
Conversely, in the passive mode, the server responds a PASV
or EPRT command by sending its own ip address and an open
port number, enabling the client to establish the connection
instead. During a session, client may switch between these
modes by issuing PASV or PORT commands. As shown in
Figure 5, the highlighted code segment in BFTPD handles the
transition from passive to active mode when processing the
PORT command. This stateful logic is triggered only after the
server previously received a PASV or EPRT command (pasv is
set to 1). During our experiments, region-level mutators (up-
per) consistently covered all branches of the mode-switching
logic shown in the figure across all runs. In contrast, byte-level
mutators failed to explore these branches in any run.

Findings of RQ2: Region-level and byte-level mutators have
complementary contribution on branch coverage. On aver-
age, byte-level mutators have 23.3% higher branch coverage
than region-level mutations. Byte-level mutators are more
effective in covering parser branches, while region-level
mutators are more effective in exploring state-dependent
branches. Nevertheless, enabling both mutation levels is
better than single level in protocol fuzzing.

VI. RQ3: INTERPLAY WITH SPLICING

Setup. Splicing is a mutator by combining two parent inputs
with the goal of finding a new interesting input. It is activated
when the other mutators (including the byte-level and region-
level mutators) cannot find any new interesting inputs. RQ3
aims to investigate how the byte-level mutators and region-
level mutators would perform when splicing is enabled or
disabled, and how would splicing affect protocol fuzzing.

Results. In Table VII, “Region+Splicing” and “Byte+Splicing”
give the numbers of covered branches when splicing is enabled
for region-level mutators and byte-level mutators, respectively.
The numbers in parentheses characterize the impact on branch
coverage when splicing is enabled, compared to the case when
splicing is disabled (corresponding to “Region” and “Byte” in
Table V). We also calculated the number of covered branches
when the region- and byte-level mutators are both enabled
without and with splicing (denoted by “Region+Byte” and
“Region+Byte+Splicing”), respectively.

From Table VII, we observe that splicing can enhance
the mutator effectiveness in some cases (e.g., the region-
level mutators on TinyDTLS). But the impact of splicing
could lead to gains as well as losses on branch coverage for
region-level or byte-level mutators. In most cases, the gains
or losses do not have statistically significance. Moreover, the
differences of covered branches between “Region+Byte* and
“Region+Byte+Splicing” are not statistically significant on all
the studied protocol implementations. It indicates that enabling
splicing does not lead to statistically significantly more or less
branch coverage for protocol fuzzing.

Case study. Further analysis of the coverage reports reveals
that the large-scale mutations introduced by splicing are
particularly effective at exploring parser and error-handling
branches. Consequently, when region-level or byte-level mu-
tators demonstrate limited effectiveness in covering these
specific branches, splicing can enhance the overall fuzzing
performance. To illustrate this, we analyzed branches (Fig-
ure 6) in the Exim implementation that were covered by both
byte-level and region-level mutators with splicing enabled, but
were missed by both when it was disabled. These branches
correspond to the error-handling logic of email address ver-
ification. When an address is checked and determined to be
invalid, execution enters the “hard failure” branch where rc
== FAIL. Without splicing, neither the byte-level nor region-
level mutators triggered this branch in any run. Once splicing
was enabled, however, the same branch was triggered in
80% of runs, demonstrating that the large-scale recombination
introduced by splicing effectively enhances exploration of
these error-handling paths.

However, the benefit of splicing is not universal. In
validation-heavy protocols like DTLS and TLS, splicing often
reduces total branch coverage. We examined the branch cover-
age reports and identified that mutations introduced by splicing
often fail to pass through critical validation branches. Conse-
quently, this prevents further exploration of deeper branches,
thereby reducing overall coverage.

int varify_address(address_item * vaddr,
2> /v if (rc == FAIL) { ... // Hard
3 /v if (!full_info){ // Quick exit with error
addr, FAIL);

FILE * fp){...

failure

4 yield = copy_error (vaddr,
5 goto out;}}}

int varify_address(address_item * vaddr,
2 X/ if (rc == FAIL) { ... // Hard failure

if (!full_info){ // Quick exit with error
addr, FAIL);

FILE * fp){...

4 yield = copy_error(vaddr,
goto out;}}}

Fig. 6. Effect of splicing on error-handling code in Exim.

static int dtls_check_tls_extension(...) {
2 . // init and parse extension list length
3 /X if (data_length < j) goto error;
4 while (data_length) {
if (data_length < sizeof(uint16_t) * 2) goto error;
6 ... // update pointer and data_length
if (data_length < j) goto error;

8 switch (i) {...}}} // TLS extension type cases

static int dtls_check_tls_extension(...) {
2 . // init and parse extension list length
3 /v if (data_length < j) goto error;
v/v while (data_length) {
5 /v if (data_length < sizeof(uintl6_t) * 2) goto error;
6 ... // update pointer and data_length
7 /v if (data_length < j) goto error;
8 VVVVV/V switch (i) {...3}}} // TLS extension type cases

Fig. 7. Coverage comparison on the code in TinyDTLS with heavy validations
with and without splicing.

To illustrate this limitation, we present a case study on
TinyDTLS [33] (Figure 7), comparing branch coverage of an
extension validation function with splicing enabled (upper) and
disabled. This function contains a series of validation, each
leading to an error-handling path upon failure. Across multiple
runs, enabling splicing frequently produced inputs that failed
early validations, and even successful inputs typically triggered
only a single case in the final switch statement. In contrast,
disabling splicing allowed inputs to pass all validations and
cover all switch cases across every experimental rounds. These
findings indicate that large-scale mutations introduced by
splicing are not well-suited for strict, validation-heavy proto-
cols. Disabling splicing allows for more effective mutations
for these protocol implementations, thereby increasing the
likelihood of covering deeper branches, such as the switch
cases in Figure 7.

Findings of RQ3: Splicing could lead to gains or losses on
branch coverage for region-level and byte-level mutators. It
is effective in exploring error-handling and parser branches
but less effective on protocol implementations with heavy
validations. However, splicing does not lead to statistically
significant change on overall fuzzing performance in terms
of branch coverage.

VII. CHARACTERISTICS-AWARE MUTATOR SELECTION

In this section, we introduce a characteristics-aware mu-
tator selection strategy to apply our findings distilled from
RQ1~RQ3. It aims to select an appropriate (sub)set of muta-
tors from AFLNET based on the characteristics of a protocol
to improve fuzzing performance. We apply this strategy on
all the 13 protocol implementations from PROFUZZBENCH.
To mitigate the potential biases, we additionally include two
new protocols MQTT and IPP (and their implementations
Mosquitto and IPPsample).

Mutator Selection Strategy. The findings of RQI indicate
that aligning mutation granularity with the characteristics of a
protocol’s field lengths is crucial for effective fuzzing. Thus,
we select the mutators that operate on random-length bytes
(Gg) for fuzzing text-based protocols, and the mutators that
operate on bit and fixed-length bytes (Gp;¢, Gpyte, Gword and
Gpuword) for fuzzing binary protocols. For mixed protocols,
we additionally consider the lengths of the critical fields.
For example, MQTT is a binary protocol, we select Gp;,
GByte» Gword and Gpworq for fuzzing its implementation
Mosquitto; IPP is a mixed protocol whose critical field com-
mand is a small fixed-length field, we also select Gp;¢, GByte,
Gword and Gpqorg for fuzzing its implementation IPPsample.
Forked-daapd is an exceptional case as its messages are
composed of API calls rather than the message fields analyzed
in RQ1. Thus, we select all the byte-level mutators at different
granularities Gg;t, GBytes Gwords Gpwora and Gg.

The findings of RQ2 indicate that enabling both region-
level mutators with byte-level mutators is better than single
level because they have complementary contributions. Thus,
we enable both levels simultaneously, with byte-level mutators
configured according to RQ1. The findings of RQ3 indicate
that splicing does not lead to statistically significant change
on overall fuzzing performance in terms of branch coverage;
but splicing shows effectiveness in covering parser and error-
handling related code. Thus, we experiment with two setups,
one with splicing disabled and another with splicing enabled.

Table VIII shows the selected mutators for each protocol
implementation (denoted by “Selected Mutators”) according
to our strategy. Thus, in this experiment, we evaluated:

o AFLNET: the original AFLNET (all mutators and splicing
are enabled); (“AFLNET” in Table VIII)

e AFLNET-a: a variant of AFLNET that incorporates the
selected mutators with splicing disabled (“AFLNET-a” in
Table VIII);

e AFLNET-3: a variant of AFLNET that incorporates the
selected mutators with splicing enabled (“AFLNET-3” in
Table VIII);

We compare the fuzzing performance between AFLNET,
AFLNET-o« and AFLNET- to evaluate our characteristic-
aware mutator selection strategy. We follow the same experi-
mental setup in Section III.

Coverage. Table VIII gives the results of covered branches.
Both AFLNET-a and AFLNET-3 outperform AFLNET on

TABLE VIII
BRANCH COVERAGE OF CHARACTERISTIC-AWARE MUTATOR SELECTION STRATEGY.

Implementation Selected Mutators ‘ AFLNET ‘ AFLNET-a Imp. P-value A1 | AFLNET-3 Imp. P-value Ajo
BFTPD Gg. TRegion 485 481 -0.70% 0.34 0.30 484 -0.17% 0.92 0.46
Forked-daapd Gpgit: GBytes GWords GDword> Gs: TRegion 2271 2384 4.98% <0.01 1.00 2383 4.95% <0.01 1.00
Dnsmasq Gg, TRegion 862 898 4.25% 0.22 0.76 971 12.67% <0.01 1.00
Exim Ggs, TRegion 3559 3641 2.30% 0.21 0.76 3665 3.00% 0.02 0.96
LightFTP Gs, TRegion 363 371 2.15% <0.01 1.00 370 1.93% <0.01 1.00
Live555 Gg. TRegion 2895 2896 0.03% 0.69 0.60 2909 0.47% 0.46 0.66
ProFTPD Ggs, TRegion 4795 4869 1.56% 0.15 0.80 5032 4.95% 0.15 0.80
PureFTPD Gs, TRegion 1023 1060 3.62% 0.69 0.60 1034 1.08% 1.00 0.52
Kamailio Gg. TRegion 9193 9943 8.16% 1.00 0.48 9827 6.89% 0.69 0.40
DCMTK GBit, GBytes GWord> GDword> TRegion 7688 8118 5.60% 0.10 0.84 7691 0.04% 0.55 0.64
TinyDTLS GBit: GByter GWord» GDword> TRegion 537 562 4.77% 0.60 0.62 588 9.62% 0.10 0.84
OpenSSH Ggit» GByte» GWord> GDwords TRegion 3355 3364 0.27% 0.15 0.80 3372 0.50% 0.09 0.84
OpenSSL GBit, GBytes GWord> GDword> TRegion 10047 10196 1.48% 0.01 1.00 10182 1.35% <0.01 1.00
IPPsample GBit» GBytes GWord: GDword> TRegion 3056 3197 4.61% 0.01 1.00 3183 4.16% 0.01 1.00
Mosquitto GBit» GBytes GWord> GDword> TRegion 2176 2235 2.71% 0.01 1.00 2210 1.56% 0.06 0.88
Avg: 3.05% Avg: 3.53%
* TRegion denotes the region-level mutators (M17, ..., Mag in Table I).
TABLE IX TABLE X

BUG FINDING RESULTS

Unique Bug | AFLNET AFLNET-a AFLNET-3
DCMTK-1 515 515 515
Dnsmasq-1 2/5 2/5 4/5
TinyDTLS-1 - - 1/5
TinyDTLS-2 - - 1/5
TinyDTLS-3 4/5 5/5 5/5
TinyDTLS-4 - 3/5 3/5
TinyDTLS-5 515 515 515
TinyDTLS-6 - 1/5 3/5
TinyDTLS-7 515 515 515
TinyDTLS-8 2/5 - 1/5
TinyDTLS-9 - 2/5 2/5
TinyDTLS-10 - 1/5 -
Mosquitto-1 5/5 5/5 5/5
Mosquitto-2 - 2/5 2/5
IPPsample-1 - 1/5 1/5
IPPsample-2 5/5 - 5/5
#Found Bugs | 8 12 15

nearly all (14 out of 15) the tested protocol implementa-
tions. In detail, AFLNET-« and AFLNET- on average cover
3.05% and 3.53% more branches than AFLNET, respectively,
showing the effectiveness of selected mutators (with splicing
enabled or disabled). We use the same methods as in previous
sections to assess the statistical significance and effect size
of these coverage results. Among the 15 protocol imple-
mentations, AFLNET-a and AFLNET-{ achieved statistically
significantly more coverage on 5 and 6 subjects, respectively.

Furthermore, we conducted controlled experiments with
misaligned mutation granularity on the two new protocols
implementations IPPsample and Mosquitto. We replace the
selected mutators Gp;t, GBytes Gwora and Gpyworq (aligned)
by Gg (misaligned). The results are presented in Table X.
The results are negative: (1) the coverage in all cases drops
below the original AFLNET; (2) the coverage in all cases is
statistically significant less than AFLNET-a and AFLNET-
B, respectively. The results clearly suggest that misaligned
mutation granularity could substantially reduce fuzzing effec-
tiveness, supporting our findings of RQI.

NEGATIVE RESULTS OF USING MISALIGNED MUTATION GRANULARITY.

Implementation \ Gs, TRegion W/o Splicing Gg, Tregion W/ Splicing

| Branches P-value Branches P-value
IPPsample 2918 (-8.7%) <0.01 2901 (-8.9%) <0.01
Mosquitto 2097 (-6.2%) <0.01 2088 (-5.5%) <0.01

* The parenthesized percentages indicate the coverage decrease compared to
AFLNET-o and AFLNET-(in Table VIIL

Bug Finding. Table IX presents all the unique bugs found
by AFLNET, AFLNET-a and AFLNET-S during the five
repeated rounds of fuzzing campaign. We also give the number
of rounds in which a bug was found. For example, 5/5 indicates
a bug was found in each of the five rounds. Note that each
found bug has been manually verified and reproduced on the
corresponding protocol implementation. In total, AFLNET-«
found 12 unique bugs, AFLNET-3 found 15, and AFLNET
found only 8. Specifically, AFLNET failed to find 8 bugs,
which were successfully found by AFLNET-a or AFLNET-
5. By comparing AFLNET-« and AFLNET-/, we can see that
splicing is useful for finding additional bugs although it may
not be able to significantly improve coverage. By comparing
AFLNET and AFLNET-53, we can see that employing the
mutators with aligned mutation granularity is crucial.

To illustrate that aligned mutators significantly enhance
bug discovery capability, we investigated Mosquitto-2 and
IPPsample-1, which is only missed by AFLNET. These two
bugs share similar causes. When the fuzzer sends a malformed
CONNACK command (configured by MessageType field with 1-
byte length) to the server, a null pointer dereference occurs. A
similar null pointer dereference bug of IPPsample is triggered
when an IPP_OP_CANCEL JOBS command (configured by
operation_id field with 2-byte length) is sent to the server
without a corresponding local AuthType configuration. Neither
of these malformed command codes appears in the initial seed
corpus. Both bugs are triggered by the mutators that operate on
bit and fixed-length bytes, which are aligned with the lengths
of these command fields.

We further investigate IPPsample-2, the bug only missed
by AFLNET-«. It arises during HTTP header parsing, which
are used to encapsulate IPP messages. When an HTTP re-
quest contains multiple identical header fields (in the form of
variable-length texts), the server attempts to combine them,
leading to a stack-use-after-scope bug. AFLNET-« failed to
uncover this bug due to the absence of Gg mutators. However,
once splicing was enabled, AFLNET-/ successfully triggered
the bug in all runs, as the large-scale mutations introduced
by splicing effectively compensate its ability to discover
vulnerabilities triggered by these variable-length fields.

Conclusion: The characteristic-aware mutator selection
strategy inspired by our study’s findings improves fuzzing
performance. It increases branch coverage on average by
3.53% with splicing, and 3.05% without splicing, respec-
tively. It achieves coverage improvements in 14 out of 15
targets, with up to 12.67% of coverage improvement. It
also significantly enhances bug finding capability, finding
8 additional unique bugs that AFLNET fails to uncover.

VIII. DISCUSSION

Generability of Our Findings. Our study investigates the
effectiveness of the mutators in AFLNET. Many protocol
fuzzers, e.g., STATEAFL [30], CHATAFL [5] and NSFuzz [7]
are built on AFLNET without modifying the mutators. Thus,
our proposed mutator selection strategy is orthogonal to the
improvements made by these subsequent protocol fuzzers [5],
[7], [30]. Our findings and mutator selection strategy could be
directly applied to these fuzzers. Other mutation-based proto-
col fuzzers like SGFuzz [34] (built on LibFuzzer [35]) also
use similar mutators in AFLNET. Thus, our findings could
also benefit them. Generation-based fuzzers [17], [18], [28],
[36]-[42] provide mutators for fuzzing in state/data models.
While our findings may not directly apply to generation-
based fuzzers, the insights from our study — particularly
the relationship between protocol characteristics and mutator
performance — remain valuable. These findings can guide the
design of more effective mutators in generation-based fuzzers,
e.g., incorporating region-level mutators and splicing.

Suggestions for Mutation-based Protocol Fuzzing. When
fuzzing a new protocol implementation, our findings can guide
mutator selection from three dimensions. (1) We recommend
selecting Ggjt, GByte, Gword and Gpyorq for binary proto-
cols and Gg for text-based protocols; for mixed protocols, the
selection of mutators should also consider the field lengths of
critical message fields. (2) By default, enabling both byte-level
and region-level mutators to obtain complementary benefits. If
the goal is to stress-test the protocol parser, only enabling byte-
level mutators is preferred. If the goal is to explore protocol
state-dependent code, only enabling region-level mutators is
preferred. (3) Splicing can be enabled or disabled for protocol
fuzzing. If the goal is to test more error-handling and parser-
related code, enabling splicing is preferred. If a protocol
implementation includes strict validation checks, disabling

10

splicing is preferred to avoid generating inputs which are likely
to be rejected by the validation checks.

IX. THREATS TO VALIDITY

Internal Validity. Our results may be affected by the inherent
randomness of fuzzing. To mitigate this threat, we evaluate
all compared settings under identical environments and with
the same testing budgets, and we use repeated experiments to
reduce the influence of randomness.

External Validity. The findings of our work may not generalize
to all the protocol implementations. To mitigate this, we con-
ducted our experiments on PROFUZZBENCH, which includes
13 widely adopted and diverse protocol implementations.
Moreover, we further included two new protocols which are
not in PROFUZZBENCH to validate the generalizability of our
findings. Although our study is only conducted on AFLNET,
AFLNET is the most representative mutation-based protocol
fuzzer.

Construct Validity. Our evaluation uses commonly adopted
metrics in protocol fuzzing, such as branch coverage and
vulnerability exposure. However, these metrics may not fully
capture all aspects of fuzzing efficiency and effectiveness.
To mitigate this threat, we additionally conduct controlled
experiments as complementary evaluation (in Table X) and
keep the metrics consistent across all compared settings.

X. RELATED WORK

Empirical Studies on Mutators and Mutation Strategy.
Kukucka et al. [43] empirically evaluate the performance
of AFL++ [44] mutators, including havoc, splicing, and
RedQueen, across a diverse set of general-purpose targets.
Their key finding is that disabling certain mutators can
improve branch coverage and bug finding. They find no
statistically significant difference in branch coverage across
individual havoc mutators on Magma [45] benchmark. Our
work focuses on protocol fuzzing and reveals that mutator
effectiveness varies significantly across protocol implementa-
tions. We further explore how different protocol characteristics
influence mutator effectiveness. Wu et al. [46] focus on the
havoc mutation strategy commonly employed by the coverage-
guided fuzzers. They examine the overall efficacy of the
havoc strategy and found that pure havoc achieves superior
edge coverage and bug detection. We analyze mutators in
protocol fuzzer around three dimensions: mutation granularity,
mutation level, and their interplay with splicing. MOPT [47]
focuses on optimizing mutation scheduling to improve the
efficiency of vulnerability discovery. Our work examines how
the characteristics of protocol implementations influence the
effectiveness of mutators. Building on our findings, we design
a characteristic-aware mutator selection that further improves
protocol fuzzing performance.

Evaluating Protocol Fuzzers. Much work has been proposed
for protocol fuzzing [5]-[9], [12]-[14], [17], [18], [26], [30],
[34], [48]-[53]. However, there are relatively few studies focus
on evaluating such fuzzers. ProFuzzBench [29] is a compre-
hensive benchmark for evaluating protocol fuzzers, containing

13 representative protocol implementations. It evaluates the
performance of three representative fuzzers, AFLNWE [54],
AFLNET [6] and STATEAFL [30]. Liu et al. [55] sys-
tematically evaluate three state selection algorithms built on
AFLNET to study their effectiveness for stateful protocol
fuzzing. Meng et al. [20] empirically analyze the effectiveness
of state feedback in AFLNET and the impact of AFLNET’s
different seed selection strategies. Different from prior work,
our study focuses on studying the effectiveness of the mutators
in AFLNET from the perspective of protocol characteristics
to provide insights that could improve the efficacy of protocol
fuzzing.

XI. CONCLUSION

In this paper, we present the first study on the effective-
ness of mutators in protocol fuzzing. By examining mutation
granularity, mutation level, and their interplay with splicing,
we obtain new interesting findings, most of which are un-
known or unclear for the community before. Specifically, our
findings reveal how protocol characteristics influence mutator
effectiveness. Guided by findings of our study, we design
a mutator selection strategy. Evaluations confirm that this
strategy can improve both branch coverage and bug-finding
capability compared to the baseline tool AFLNET.

XII. DATA AVAILABILITY

We have made all the artifacts in our study publicly available
at https://github.com/ecnusse/AFLNet_Mutators_Study.

ACKNOWLEDGMENT

We thank the anonymous SANER reviewers for their
valuable feedback. This work was supported in part by
National Key Research and Development Program (Grant
2022YFB3104002), Shanghai Trusted Industry Internet Soft-
ware Collaborative Innovation Center, and the Chenguang
Program of Shanghai Education Development Foundation
and Shanghai Municipal Education Commission (Grant
23CGA33).

REFERENCES

[11 A. S. Tanenbaum, “Network protocols,” ACM Computing Surveys
(CSUR), vol. 13, no. 4, pp. 453-489, 1981.

Z. Hu and Z. Pan, “A systematic review of network protocol fuzzing
techniques,” in 2021 IEEE 4th Advanced Information Management,
Communicates, Electronic and Automation Control Conference (IM-
CEC), vol. 4. IEEE, 2021, pp. 1000-1005.

Z. Zhang, H. Zhang, J. Zhao, and Y. Yin, “A survey on the development
of network protocol fuzzing techniques,” Electronics, vol. 12, no. 13, p.
2904, 2023.

T. Ball and S. K. Rajamani, “Automatically validating temporal safety
properties of interfaces,” in Proceedings of the 8th International SPIN
Workshop on Model Checking of Software, ser. SPIN °01. Berlin,
Heidelberg: Springer-Verlag, 2001, p. 103-122.

R. Meng, M. Mirchev, M. Béhme, and A. Roychoudhury, “Large
language model guided protocol fuzzing,” in Proceedings of the 31st
Annual Network and Distributed System Security Symposium (NDSS),
2024.

V. Pham, M. Bohme, and A. Roychoudhury, “AFLNET: A greybox
fuzzer for network protocols,” in 2020 IEEE 13th International Con-
ference on Software Testing, Validation and Verification (ICST), 2020,
pp. 460—465.

[2]

[3]

[5]

[6]

11

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

S. Qin, F. Hu, Z. Ma, B. Zhao, T. Yin, and C. Zhang, “NSFuzz: Towards
efficient and state-aware network service fuzzing,” ACM Transactions on
Software Engineering and Methodology, vol. 32, no. 6, pp. 1-26, 2023.

P. C. Amusuo, R. A. C. Méndez, Z. Xu, A. Machiry, and J. C. Davis,
“Systematically detecting packet validation vulnerabilities in embedded
network stacks,” in 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE). 1EEE, 2023, pp. 926-938.

Z. Luo, F. Zuo, Y. Jiang, J. Gao, X. Jiao, and J. Sun, “Polar: Function
code aware fuzz testing of ics protocol,” ACM Transactions on Embed-
ded Computing Systems (TECS), vol. 18, no. 5s, pp. 1-22, 2019.

J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun,
R. Yang, and K. Zhang, “loTFuzzer: Discovering memory corruptions
in iot through app-based fuzzing.” in Proceedings of the 25th Annual
Network and Distributed System Security Symposium (NDSS), 2018, pp.
1-15.

N. Redini, A. Continella, D. Das, G. De Pasquale, N. Spahn, A. Machiry,
A. Bianchi, C. Kruegel, and G. Vigna, “Diane: Identifying fuzzing
triggers in apps to generate under-constrained inputs for iot devices,”
in 2021 IEEE Symposium on Security and Privacy (SP). 1EEE, 2021,
pp. 484-500.

X. Feng, R. Sun, X. Zhu, M. Xue, S. Wen, D. Liu, S. Nepal, and
Y. Xiang, “Snipuzz: Black-box fuzzing of iot firmware via message
snippet inference,” in Proceedings of the 2021 ACM SIGSAC conference
on computer and communications security, 2021, pp. 337-350.

S. Schumilo, C. Aschermann, A. Jemmett, A. Abbasi, and T. Holz,
“Nyx-Net: network fuzzing with incremental snapshots,” in Proceedings
of the Seventeenth European Conference on Computer Systems, 2022,
pp. 166-180.

J. Li, S. Li, G. Sun, T. Chen, and H. Yu, “Snpsfuzzer: A fast greybox
fuzzer for stateful network protocols using snapshots,” IEEE Transac-
tions on Information Forensics and Security, vol. 17, pp. 2673-2687,
2022.

J. Ruge, J. Classen, F. Gringoli, and M. Hollick, “Frankenstein: Ad-
vanced wireless fuzzing to exploit new bluetooth escalation targets,” in
29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 19-36.

F. He, W. Yang, B. Cui, and J. Cui, “Intelligent fuzzing algorithm
for 5g nas protocol based on predefined rules,” in 2022 International
Conference on Computer Communications and Networks (ICCCN),
2022, pp. 1-7.

(2025) Peach. A fuzzing framework which uses a DSL for building
fuzzers and an observer based architecture to execute and monitor them.
https://github.com/MozillaSecurity/peach.git.

(2025) Boofuzz. A fork and successor of the Sulley Fuzzing Framework.
https://github.com/jtpereyda/boofuzz.git.

(2025) American fuzzy lop (AFL) fuzzer. https://lcamtuf.coredump.cx/
afl/technical_details.txt.

R. Meng, V.-T. Pham, M. Bohme, and A. Roychoudhury, “AFLNet five
years later: On coverage-guided protocol fuzzing,” IEEE Trans. Softw.
Eng., vol. 51, no. 4, p. 960-974, Jan. 2025.

N. Group, “The challenges of fuzzing 5g protocols,” 5G Secur. Smart
Environ., 2021.

M. Nedyak, “How to hack medical imaging applications via dicom,” in
Hack In The Box Security Conference, 2020.

(2025) Webinar: Demystifying a current trend - security fuzz testing in
the context of iso/sae 21434. https://youtu.be/HDfkD67UUSwW.

(2025) A use-after-free vulnerability discovered by aflnet. https://github.
com/project-chip/connectedhomeip/pull/33148/.

(2025) A critical memory (heap) leak vulnerability discovered by aflnet.
https://github.com/project-chip/connectedhomeip/pull/32970/.

A. Andronidis and C. Cadar, “SnapFuzz: high-throughput fuzzing of
network applications,” in Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2022, pp.
340-351.

S. Jiang, Y. Zhang, J. Li, H. Yu, L. Luo, and G. Sun, “A survey
of network protocol fuzzing: Model, techniques and directions,” arXiv
preprint arXiv:2402.17394, 2024.

https://github.com/ecnusse/AFLNet_Mutators_Study
https://github.com/MozillaSecurity/peach.git
https://github.com/jtpereyda/boofuzz.git
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://youtu.be/HDfkD67UUSw
https://github.com/project-chip/connectedhomeip/pull/33148/
https://github.com/project-chip/connectedhomeip/pull/33148/
https://github.com/project-chip/connectedhomeip/pull/32970/

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

X. Zhang, C. Zhang, X. Li, Z. Du, B. Mao, Y. Li, Y. Zheng, Y. Li,
L. Pan, Y. Liu, and R. Deng, “A survey of protocol fuzzing,” ACM
Comput. Surv., vol. 57, no. 2, Oct. 2024.

R. Natella and V.-T. Pham, “ProFuzzBench: A benchmark for stateful
protocol fuzzing,” in Proceedings of the 30th ACM SIGSOFT interna-
tional symposium on software testing and analysis, 2021, pp. 662-665.

R. Natella, “StateAFL: Greybox fuzzing for stateful network servers,”
Empirical Software Engineering, vol. 27, no. 7, p. 191, 2022.

(2025) OpenSSL. A robust, commercial-grade, full-featured Open
Source Toolkit for the TLS (formerly SSL), DTLS and QUIC protocols.
https://github.com/openssl/openssl.

(2025) Live555. A complete RTSP server application. http://www.
live555.com/.

(2025) tinydtls. A library for Datagram Transport Layer Security (DTLS)
covering both the client and the server state machine. https://projects.
eclipse.org/projects/iot.tinydtls.

J. Ba, M. Bohme, Z. Mirzamomen, and A. Roychoudhury, “Stateful
greybox fuzzing,” in 31st USENIX Security Symposium (USENIX Secu-
rity 22), 2022, pp. 3255-3272.

(2025) libFuzzer. A library for coverage-guided fuzz testing. https:/
Ilvm.org/docs/LibFuzzer.html.

B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue, “A messy
state of the union: Taming the composite state machines of tls,” in 2015
IEEE Symposium on Security and Privacy, 2015, pp. 535-552.

G. S. Reen and C. Rossow, “DPIFuzz: A differential fuzzing framework
to detect dpi elusion strategies for quic,” in Proceedings of the 36th
Annual Computer Security Applications Conference, ser. ACSAC ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
332-344.

J. Somorovsky, “Systematic fuzzing and testing of tls libraries,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 1492-1504.

M. E. Garbelini, C. Wang, S. Chattopadhyay, S. Sumei, and E. Kurni-
awan, “SweynTooth: Unleashing mayhem over bluetooth low energy,”
in 2020 USENIX Annual Technical Conference (USENIX ATC 20).
USENIX Association, Jul. 2020, pp. 911-925.

M. E. Garbelini, C. Wang, and S. Chattopadhyay, “Greyhound: Directed
greybox wi-fi fuzzing,” IEEE Transactions on Dependable and Secure
Computing, vol. 19, no. 2, pp. 817-834, 2022.

M. E. Garbelini, V. Bedi, S. Chattopadhyay, S. Sun, and E. Kurniawan,
“BrakTooth: Causing havoc on bluetooth link manager via directed
fuzzing,” in 31st USENIX Security Symposium (USENIX Security 22).
Boston, MA: USENIX Association, Aug. 2022, pp. 1025-1042.

P. Fiterau-Brostean, B. Jonsson, K. Sagonas, and F. Taquist, “Automata-
based automated detection of state machine bugs in protocol implemen-
tations.” in NDSS, 2023.

J. Kukucka, L. Pina, P. Ammann, and J. Bell, “An empirical examination
of fuzzer mutator performance,” in Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA), 2024, pp. 1631-1642.

A. Fioraldi, D. Maier, H. Eiffeldt, and M. Heuse, “AFL++: Combining
incremental steps of fuzzing research,” in /4th USENIX Workshop on
Offensive Technologies (WOOT 20), 2020.

A. Hazimeh, A. Herrera, and M. Payer, “Magma: A ground-truth fuzzing
benchmark,” Proceedings of the ACM on Measurement and Analysis of
Computing Systems, vol. 4, no. 3, pp. 1-29, 2020.

M. Wu, L. Jiang, J. Xiang, Y. Huang, H. Cui, L. Zhang, and Y. Zhang,
“One fuzzing strategy to rule them all,” in Proceedings of the 44th
International Conference on Software Engineering (ICSE), 2022, pp.
1634-1645.

C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and R. Beyah,
“{MOPT}: Optimized mutation scheduling for fuzzers,” in 28th USENIX
security symposium (USENIX security 19), 2019, pp. 1949-1966.

12

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Z. Luo, J. Yu, F. Zuo, J. Liu, Y. Jiang, T. Chen, A. Roychoudhury, and
J. Sun, “Bleem: Packet sequence oriented fuzzing for protocol imple-
mentations,” in 32nd USENIX Security Symposium (USENIX Security
23), 2023, pp. 4481-4498.

D. Maier, O. Bittner, M. Munier, and J. Beier, “FitM: binary-only
coverage-guided fuzzing for stateful network protocols,” in Workshop
on Binary Analysis Research (BAR), vol. 2022, 2022.

F. Zvuo, Z. Luo, J. Yu, Z. Liu, and Y. Jiang, “PAVFuzz: State-
sensitive fuzz testing of protocols in autonomous vehicles,” in 2021
58th ACM/IEEE Design Automation Conference (DAC). IEEE, 2021,
pp- 823-828.

Z. Luo, F. Zuo, Y. Shen, X. Jiao, W. Chang, and Y. Jiang, “ICS protocol
fuzzing: Coverage guided packet crack and generation,” in 2020 57th
ACM/IEEE Design Automation Conference (DAC). 1EEE, 2020, pp.
1-6.

Y. Zhai, R. Ma, Z. Zhang, S. Zhao, and Y. Yang, “MSNFuzz: Multi-
criteria state-sensitive network protocols fuzzing,” Computers & Secu-
rity, p. 104621, 2025.

X. Song, Y. Zeng, J. Wu, H. Li, C. Zuo, Q. Zhao, and S. Guo,
“CSFuzzer: A grey-box fuzzer for network protocol using context-aware
state feedback,” Computers & Security, p. 104581, 2025.

AFLnwe. A stateless https://github.com/
thuanpv/afinwe.

D. Liu, V.-T. Pham, G. Ernst, T. Murray, and B. I. Rubinstein, “State
selection algorithms and their impact on the performance of stateful
network protocol fuzzing,” in 2022 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), 2022, pp.
720-730.

coverage-guided fuzzer.

https://github.com/openssl/openssl
http://www.live555.com/
http://www.live555.com/
https://projects.eclipse.org/projects/iot.tinydtls
https://projects.eclipse.org/projects/iot.tinydtls
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://github.com/thuanpv/aflnwe
https://github.com/thuanpv/aflnwe

	Introduction
	Background
	Communication Protocols and Protocol Characteristics
	Mutation-based Protocol Fuzzing

	Experimental Setup
	RQ1: Mutation granularity
	RQ2: Mutation level
	RQ3: Interplay with Splicing
	Characteristics-Aware Mutator Selection
	Discussion
	Threats to Validity
	Related Work
	Conclusion
	Data Availability
	References

