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Abstract—The large demand of mobile devices creates signif-
icant concerns about the quality of mobile applications (apps).
Developers heavily rely on bug reports in issue tracking systems
to reproduce failures (e.g., crashes). However, the process of
crash reproduction is often manually done by developers, making
the resolution of bugs inefficient, especially that bug reports are
often written in natural language. To improve the productivity of
developers in resolving bug reports, in this paper, we introduce
a novel approach, called ReCDroid, that can automatically
reproduce crashes from bug reports for Android apps. ReCDroid
uses a combination of natural language processing (NLP) and
dynamic GUI exploration to synthesize event sequences with
the goal of reproducing the reported crash. We have evaluated
ReCDroid on 51 original bug reports from 33 Android apps. The
results show that ReCDroid successfully reproduced 33 crashes
(63.5% success rate) directly from the textual description of bug
reports. A user study involving 12 participants demonstrates
that ReCDroid can improve the productivity of developers when
resolving crash bug reports.

I. INTRODUCTION

Mobile applications (apps) have become extremely popu-
lar – in 2017 there were over 2.2 million apps in Google
Play’s app store [5]. As developers add more features and
capabilities to their apps to make them more competitive, the
corresponding increase in app complexity has made testing and
maintenance activities more challenging. The competitive app
marketplace has also made these activities more important for
an app’s success. A recent study found that 88% of app users
would abandon an app if they were to repeatedly encounter
a functionality issue [1]. This motivates developers to rapidly
identify and resolve issues, or risk losing users.

To track and expedite the process of resolving app issues,
many modern software projects use bug-tracking systems (e.g.,
Bugzilla [17], Google Code Issue Tracker [3], and Github
Issue Tracker [2]). These systems allow testers and users to
report issues they have identified in an app. Reports involving
app crashes are of particular concern to developers because
it directly impacts an app’s usability [40]. Once developers
receive a crash/bug report, one of the first steps to debugging
the issue is to reproduce the issue in the app. However, this
step is challenging because the provided information is written
in natural language. Natural language is inherently imprecise
and incomplete [13]. Even assuming the developers can per-
fectly understand the bug report, the actual reproduction can
be challenging since apps can have complex event-driven and
GUI related behaviors, and there could be many GUI-based
actions required to reproduce the crash.

The goal of our approach is to help developers reproduce
issues reported for mobile apps. We propose a new technique,

ReCDroid, targeted at Android apps, that can automatically
analyze bug reports and generate test scripts that will repro-
duce app crashes. ReCDroid leverages several natural language
processing (NLP) techniques to analyze the text of the reports
and automatically identify GUI components and related infor-
mation (e.g., input values) that are necessary to reproduce the
crashes. ReCDroid then employs a novel dynamic exploration
guided by the information extracted from bug reports to fully
reproduce the crashes. ReCDroid takes as input a bug report
and an APK and outputs a script containing a sequence of GUI
events leading to the crash, which can be replayed directly on
an execution engine (e.g., UI Automator [8]).

ReCDroid differs from prior work for analyzing the re-
producibility of bug reports [18], [39] because most existing
techniques focus on improving the quality of bug reports.
None of them have considered using information from bug
reports to automatically guide bug reproduction. In contrast,
ReCDroid takes crash description of the report as input,
regardless of its quality, and extracts the information necessary
to reproduce crashes. ReCDroid also differs from techniques
on synthesizing information from bug reports [18], [23], [26],
[42] because they focus extracting useful information (e.g., test
cases [23]) without directly targeting at reproducing crashes.

ReCDroid has been implemented as a software tool on
top of two execution engines — Robotium [55] and UI
Automator [8]. To determine the effectiveness of our approach,
we ran ReCDroid on 51 bug reports from 33 popular Android
apps. ReCDroid was able to successfully reproduce 33 (63.5%)
of the crashes. Furthermore, 12 out of the 18 crashes could
have been reproduced by ReCDroid if limitations in the
implementation of the execution engines were to be removed.

To determine the usefulness of our tool, we conducted
a light-weighted user study that showed that ReCDroid can
reproduce 18 crashes not reproduced by at least one devel-
oper and was highly preferred by developers in comparison
to a manual process. We also found that ReCDroid was
highly robust in handling situations where reduced amounts
of information were provided in the reports. Overall, we
consider these results to be very strong and they indicate that
ReCDroid could be a useful approach for helping developers
to automatically reproduce bug crashes.

In summary, our paper makes the following contributions:
• The design and development of a novel approach to

automatically reproduce crash failures for Android apps
directly from the textual description of bug reports.

• An empirical study showing that ReCDroid is effective
at reproducing Android crashes and likely to improve the
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Fig. 1: The steps of reproducing the crash described in Fig. 2.

productivity of bug resolution.
• The implementation of our approach as a publicly avail-

able tool, ReCDroid, along with all experiment data (e.g.,
datasets, user study) [7].

II. OVERVIEW

A. Observations
As the first step, we spent a month studying a large number

of Android bug reports to understand their characteristics for
guiding the design and implementation of ReCDroid.

We collected Android apps from both Google Code
Archive [4] and GitHub [2]. We crawled the bug reports from
the first 50 pages in Google Code, resulting in 7666 bug
reports. We then searched Android apps from GitHub by using
the keyworld “Android”, resulting in 3233 bug reports. Among
all 10899 bug reports, we used keywords, such as “crash”
and “exception” to search for reports involving app crashes.
This yielded a total number of 1038 bug reports. The result
indicates that a non-negligible number (9.5%) of bug reports
involve app crashes.

ReCDroid focuses on reproducing app crashes from bug
reports containing textual description of reproducing steps,
so we analyze the 1038 crash bug reports and summarize
the following findings: 1) 813 bug reports (78.3%) contain
reproducing steps — the maximum is 11 steps, the minimum
is 1 step, and the average is 2.3 steps; 2) only 3 out of 813
crashes are related to rotate action — they all occur 1–2 steps
right after the rotate; 3) 398 of the 813 crash bug reports (49%)
require specific user inputs on the editable GUI components
to manifest the crashes — 29 (3.5%) of them involve special
symbols (e.g., apostrophe, hyphen); 4) 127 crashes (15.6%)
involve generic click actions, including OK (79), Done (9),
and Cancel (2).

B. Design Challenges
An example bug report is shown in Fig. 2. In this example,

the reporter describes the steps to reproduce the crash in
five sentences. The goal of ReCDroid is to translate this sort
of description to the event sequence shown in Fig. 1 for
triggering the crash. To achieve this goal, our approach must
address four main challenges. First, what types of information
need to be extracted from a bug report? Second, how can
such information be extracted from reports written in natural
language? Third, how can this information, which may vary

Fig. 2: Bug Report for LibreNews issue#22

in specificity and completeness, be used to reproduce the
crash? Fourth, how can this process be done efficiently in
terms of a minimal reproduction sequence and the time to
find this sequence? In the remainder of this section, we
provide an overview of how our approach’s design addresses
these challenges. Details and algorithms of our approach are
presented in Section III.

What type of information to extract? From the examination
of the 813 bug reports containing reproducing steps, our
insight was that events that trigger new activities, interact
with GUI controls, or provide values are the key parts of the
steps provided by bug reporters. More broadly, these actions
involve performing “a type of user action” on “a particular
GUI component” with “specific values” (if the component is
editable). Therefore, action, target GUI component, and input
values are the main elements to be extracted from bug reports.

To illustrate, consider the fourth step in Fig. 2. Here,
“change” is the user action, “Server” is the target GUI com-
ponent, and “xxyyzz” is the input value.

How to map bug report into semantic representations
of events? The second design challenge is the extraction
of the semantic representation of the reproducing steps from
the bug reports, defined by a tuple {action, GUI component,
input}. A seemingly straightforward solution to this challenge
is to use a simple keyword search to match each sentence
in the bug report against the name (i.e., the displayed text)
of the GUI components from the app. However, keyword
search cannot reliably detect input values or the multitude of
syntactical relationships that may exist among user actions,
GUI components, and inputs. For example, consider a sentence

https://github.com/milesmcc/LibreNews-Android/issues/22
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Fig. 3: Overview of the ReCDroid Framework.

“I click the help button to show the word.” If both help and
show happen to be the names of app buttons, a keyword
search could identify both help and show to be the target
GUI components, whereas only help has a relationship with
the action click. Moreover, reporters may use new words
that do not match the name of the GUI component of the app.
For example, a reporter may use “play the film” to describe
the “movie” button.

Our insight is that the extraction process can be formulated
as a slot filling problem [33], [38] in natural language process-
ing (NLP). With this formulation each element of the event
tuple is represented as a semantic slot and the goal of the
approach then becomes to fill the slots with concrete values
from the bug report. Our approach uses a mixture of NLP
techniques and heuristics to carry out the slot filling. Specif-
ically, we use the spaCy dependency parser [28] to identify
typical grammatical structures that were used in bug reports
to describe the relevant user action, target GUI component,
and input values. These were codified into 22 typical patterns,
which we summarize and describe in Section III. The patterns
are used to detect event tuples of a new bug report and fill
their slots with values.

To help bridge the lexical gap between the terminology in
the bug report and the actual GUI components, our approach
uses word embeddings computed from a word2vec model [34]
to determine whether two words are semantically related. For
example, the words “movie” and “film” have a fairly high
similarity.
How to create complete and correct sequences for bug
reproduction? A key challenge for our approach is that
even good bug reports may be incomplete or inaccurate. For
example, steps that are considered obvious may be omitted
or forgotten by the reporter. Therefore, our approach must be
able to fill in these missing steps. Ideally, information already
extracted from the report can be used to provide “hints” to
identify and fill in the missing actions.

Existing GUI crawling tools [12], [15], [27], [37], [52] are
not a good fit for this particular need. For example, many
existing tools (e.g., A3E [15]) use a depth-first search (DFS) to
systematically explore the GUI components of an app. That is,
the procedure executes the full sequence of events until there
are no more to click before searching for the next sequence.
In our experience, this is sub optimal because if an interaction
with an incorrect GUI component is chosen (due to a missing
step), then the subsequent exploration of sub-paths following
that step will be wasted.

For our problem domain, a guided DFS with backtracking

is more appropriate. Using this strategy, our approach can
check at each search level whether GUI components that
are more relevant (i.e., match the bug report) to the target
step are appearing and use this information to identify the
next component to explore. If none of the components are
relevant to the bug report, instead of deepening the explo-
ration, ReCDroid can backtrack to a relevant component in a
previous search level. This process continues until all relevant
components in previous levels are explored before navigating
to the subsequent levels.

How to make the reproduction efficient? Efficiency in the
reproduction process is important for developer acceptance.
An approach that takes too long may not seem worth the wait
to developers, and an approach that generates a needlessly
long sequence of actions may be overwhelming to developers.
These two goals represent a tradeoff for our approach: iden-
tifying the minimal set of actions necessary to reproduce a
crash can require more analysis time.

To achieve a reasonable balance between these two effi-
ciency goals, we designed a set of optimization strategies
and heuristics for our approach. For the guided crawl, we
utilized strategies that included checking the equivalence of
screens and detecting loops to avoid redundant backtracking,
and prioritizing GUI components to be explored based on
their likelihood of causing bugs. For minimizing the size
of the sequence of GUI actions, whenever a backtrack was
needed, our approach restarted the search from the home
screen of the app and reset the state of the app. This avoids a
common source of inefficiency present in other approaches
(e.g., [12], [15], [52]) that add backtracking steps to their
crawling sequence, which results in an overall much longer
sequence of reproducing actions.

III. RECDROID APPROACH

The architecture of ReCDroid is shown in Fig. 3. ReCDroid
consists of two major phases — bug report analysis and
dynamic exploration. To carry out the bug report analysis,
ReCDroid employs NLP techniques to extract GUI event
representations from bug reports. To complete the sequence
of extracted steps, the second phase employs a novel dynamic
exploration of an app’s GUI. This exploration is performed
based on a dynamic ordered event tree (DOET) representation
of the GUI’s events, and searches for sequences of events
that fill in missing steps and lead to the reported crash.
ReCDroid saves the event sequences into a script that can
be automatically replayed on the execution engine.



TABLE I: Summary of Grammar Patterns
Category ID Pct. Grammar Pattern Example Event Tuple

Click
CR1 12.5% action → dobj (→NP ) Click[action] {easy level[dobj]}[NP ] <click, (easy) level>
CR2 0.7% action → nsubjapss (→ NP) {Easy level[dobj]}[NP ] is clicked[action] <click, (easy) level>
CR3 8.6% action → pobj (→ NP) I made a click[action] on {easy level[pobj]}[NP ] <click, (easy) level>

Edit TR1 7.3% action→dobj|obj|attr→prep→pobj (→NP) Input[action] xxyyzz[dobj] to[prep] {server address[pobj]}[NP ] <input, (server) address, xxyyzz>
prep ∈ {on,in,to}

TR2 1.8% action→dobj|obj|attr(→NP)→prep→pobj Input[action] {server address[dobj]}NP with[prep] xxyyzz[pobj] <input, (server) address, xxyyzz>
prep ∈ {with, by}

TR3 0.7% action→dobj|obj|attr(→NP)→prep→pobj Change[action] {server address[dobj]}NP to[prep] xxyyzz[pobj] <change, (server) address, xxyyzz>
prep ∈ {to, with}, action ∈ {change}

TR4 0.6% TR1|TR2 + Input[action] a number[dobj] to kilometer[pobj], <input, kilometer|km, 10>
EG(NOUN → NUM → UNIT | STR) e.g., {10[NUM ] km[UNIT ]}EG

Gesture NR1 0.4% action Rotate[action] the screen <rotate>

(a) (b)

Fig. 4: Examples of Dependency Trees

A. Phase 1: Analyzing Bug Reports
ReCDroid uses 22 grammar patterns to extract the the

semantic representations of events (i.e., the tuple {action, GUI
component, input}) described in a bug report.

1) Grammar Patterns: The 22 grammar patterns were de-
rived from the corpus of 813 Android bug reports described
in Section II-A. These patterns are broadly applicable and
can be reused (e.g., by compiling them into a library) for
new Android bug reports. Specifically, for each bug report we
analyzed the dependencies among words and phrases in the
sentences describing reproducing steps. Specifically, we use
SpaCy’s grammar dependency analysis to identify the part-of-
speech (POS) tag (e.g., Noun, Verb) of each word within a
sentence, parse the sentence into clauses (e.g., noun phrase),
and label semantic roles, such as direct objects. Fig. 4 shows
an example of the results of the SpaCy dependency analysis
on two sentences with different structures.

Broadly, the grammar patterns could be grouped intro three
types of interactions with an app: click events (e.g., click
buttons, check checkboxes), edit events (e.g., enter a text box
with a number), and gesture events (e.g., rotate). Table I lists
the eight typical grammar patterns (The full list can be found
in our artifacts [7]). Column 3 shows the percentage of the
813 bug reports in which each grammar pattern applies. We
next describe these patterns.
Click Events. ReCDroid uses seven grammar patterns to
extract the click event tuple. The “input” element in the tuple is
not applicable to click events. In Table I, CR1 specifies that the
direct object (i.e., dobj) of the click action is the target GUI
component. Also, the noun phase (NP) of the direct object
corresponds to the target GUI component. The second pattern
(CR2) identifies the GUI component that has an nsubjpass (i.e.,
passive nominal subject) relation with the action word. The
third pattern (CR3) specifies that the object of a preposition
(pobj) of the click action is the target GUI component.

Edit Events. We identified 14 grammar patterns for extracting
edit events. In Table I, the first grammar pattern (TR1)
specifies that if the preposition is a word in {on,in,to},
the direct object (dobj) is the input value and the preposition
object (pobj) is the target GUI component. On the other hand,
in the second pattern (TR2), if the preposition is with or
by, the direct object (dobj) is the GUI component and the
preposition object (pobj) is the input value. The change action
requires a special grammar pattern to handle (TR3) because
the preposition object is often preceded by a target GUI
component and followed by an input value.

As for the fourth grammar pattern (TR4), we observe
that words happening after the phrase (EG) containing an
introducing example (e.g., e.g., example, say), especially
NOUN, often involve input values. Therefore, TR4 specifies
that if the sentence prior to EG contains a user action and a
GUI component detected by a grammar pattern (TR1, TR2,
or TR3), then EG contains an input value associated with the
GUI component. To extract the input value, ReCDroid first
extracts the NOUN from EG and if the NOUN is a number (NUM),
it is identified as an input value. ReCDroid then searches
for the word right after the number and if the word is a
unit (UNIT∈{kg, cm, litter}), it is added as a target GUI
component. Otherwise, if no numbers are found in EG, the
whole phrase EG is identified as a regular string input (STR).
Gesture Events. The grammar patterns for gesture events
involve only the “action” element in the event tuple. The cur-
rent implementation of ReCDroid supports only the rotate
event. Nevertheless, our grammar patterns can be extended by
incorporating other events, such as zoom and swipe.

2) Extracting Event Representations: Given a bug report,
ReCDroid uses the grammar patterns to extract event repre-
sentations (i.e., event tuples) relevant for reproducing bugs.
ReCDroid first splits the crash description into sentences,
where sentence boundaries are detected by syntactic depen-
dency parsing from spaCy [28]. It then applies stemming [32]1

to the words in each sentence with each word assigned a
sentence ID (used for the guided exploration).

Next, ReCDroid determines if a sentence describes a spe-
cific type of event. To do this, we construct a vocabulary
containing words that are commonly used to describe the
three types of actions (e.g., “click”, “enter”, “rotate”). This
vocabulary was manually constructed by manually analyzing
the corpus of 813 bug reports. The frequency distribution of
the words in the vocabulary can be found in our artifacts [7].

1Stemming is the process of removing the ending of a derived word to get
its root form. For example, “clicked” becomes “click”.



ReCDroid then matches each sentence (using the stemmed
words) against the vocabulary and if any match is found, the
grammar patterns associated with the event type are applied to
the sentence for extracting the target GUI components and/or
input values. For example, the 4th step in Fig. 2 contains a
word “change”, so the grammar pattern TR3 is applied.

3) Limitations of Using Grammar Patterns: The grammar
patterns can be used to extract event tuples from well-
structured sentences. However, in the case of complicated or
ambiguous sentences, NLP techniques are likely to render
incorrect part-of-speech (POS), dependency tags, or sentence
segmentation. While this problem can be mitigated by training
the tags [47], it comes with an additional cost. Moreover, the
extracted target GUI components from the bug report may
not match their actual names in the app. Such inaccuracy and
incompleteness may negatively impact the efficiency of the
dynamic exploration. Section III-B2 illustrates how ReCDroid
obtains additional information from unstructured texts to ad-
dress the mismatch between bug reports and target apps.

B. Phase 2: Guided Exploration for Reproducing Crashes

The goal of the second phase is to identify short sequences
of events that complete the sequence identified in the first
phase and allow it to fully and automatically reproduce the
reported crash. To do this, ReCDroid builds and uses a Dy-
namic Ordered Event Tree T = (V , E) to guide an exploration
of the app’s GUI. The set of nodes, V , represents the app’s
GUI components, and the set of edges, E, represents event
transitions (i.e., from one screen to another by exercising the
component) observed at runtime. The tree nodes of each level
(i.e., screen) are ordered (shown as left to right) according to
the descending order of their relevance to the bug report.

During the exploration, ReCDroid iteratively selects, for
each screen, the most relevant component to execute. If none
of the GUI components match the bug report, ReCDroid
traverses the tree leaves to select another matching but unex-
plored GUI component to execute. This process continues until
all matching components in previous levels (i.e., screens) are
explored before navigating to the subsequent screens to expand
tree levels. Compared to conventional DFS, our search strategy
can avoid potential traps. The advantage of using the DOET
is that by prioritizing the GUI components, the leaf traversal
would always select the leftmost relevant tree leaf to explore
without iterating through all components on the screen.

1) ReCDroid’ Guided Exploration Algorithm: Algorithm 1
outlines the algorithm of ReCDroid’s dynamic exploration.
The algorithm begins by launching the app (Line 1) and then
enters a loop to iteratively construct a dynamic ordered event
tree (DOET) (Lines 3 – 19). At each iteration, ReCDroid
uses the tree to compute an event sequence S (Line 19) to
be executed in the next iteration (Line 4). The algorithm ter-
minates when 1) the reported crash is successfully reproduced
(Lines 5–7), 2) all paths in the tree are executed (Lines 15–
16), or 3) a timeout occurs (Line 3). During the exploration,
ReCDroid may accidentally trigger crashes different from the
one described in the bug report. ReCDroid prompts the user
when a crash is detected and lets the user decide if it is the
correct crash for the purpose of terminating the search.

Algorithm 1 Guided Dynamic Exploration
Require: App, stemmed words from bug report: W , Eg
Ensure: Script R /*sequence of events leading to the reported crash*/
1: S ← <Launch>
2: T .root ← Launch
3: while time < LIMIT do
4: P ← Execute(S, App)
5: if P triggers BR’s crash then
6: R ← Save (S)
7: return
8: if IsAddLeafNodes (T , S.last) is true then
9: U ← GetAllElem (P )

10: for each GUI element u ∈ U do /*current screen*/
11: if IsMatch(u, Eg, W) is true then
12: u.status ← ready /*can be explored*/
13: end for
14: T ← AddOrderedNodes (U , OrderCriteria)
15: if for all LeafNodes ∈ T is explored then
16: return
17: if for all LeafNodes ∈ T is not ready then
18: LeafNodes ← ready /*need backtrack*/
19: S ← FindSequence(T ) /*select a GUI component to explore*/

After exercising the last GUI component from the event
sequence S, ReCDroid determines whether the DOET should
be expanded (Line 8). If a loop or an equivalent screen is
detected (discussed in Section III-B4), ReCDroid stops ex-
ploring the GUI components in the current screen. Otherwise,
ReCDroid obtains all GUI components from the current screen
and matches them against the bug report (Algorithm 2). It then
orders these components and adds them as the leaf nodes of
the last exercised GUI component (Lines 9–14).

A GUI component is considered to be relevant to the bug
report and ordered on the left of the tree level when the
following conditions are met: 1) it matches the bug report
and was not explored in previous levels; 2) upon meeting the
first condition, it appears earlier in the bug report according
to its associated sentence ID; 3) it is a clickable component
and does not meet the first condition, but its associated editable
component matches the bug report (because only by exercising
the clickable component can the exploration bring the app to
a new screen); 4) upon meeting any of the above conditions, it
is naturally more dangerous. Our current implementation con-
siders OK and Done as naturally more dangerous components
(Finding 4), because the former component is more likely to
bring the app to a new screen.

The routine FindSequence (Line 19) determines which
GUI component to explore next to find an event sequence to
execute in the next iteration. If any components in the current
tree level are relevant to the bug report, it selects the leftmost
leaf and appends it to S. If none of these components are
relevant, ReCDroid traverses the tree leaves from left to right
until finding a leaf node that is relevant to the bug report.
Instead of adding backtracking steps to S, ReCDroid finds
the suffix path from the leaf to root to be executed in the
next iteration. The goal of this is to minimize the size of the
event sequence. If the algorithm detects that none of the leaf
nodes are relevant to the bug report, it means that we may
need to deepen the exploration to discover more matching
GUI components. Therefore, ReCDroid resets all leaf nodes
to ready in order to continue the search (Line 19–20).

DOET does not capture the rotate action because it is
not a GUI component. Therefore, we need to find the right
locations in an event sequence to insert the rotate action
(Line 4). We use a threshold R to specify the maximum



Algorithm 2 IsMatch

Require: GUI component in app: u, Events detected by grammar patterns: Eg , A set
of bug report sentences: S

Ensure: A boolean value
20: for each event g ∈ Eg do
21: if u.similar (g.u) > 0.8 then /*use word2vec*/
22: if e.action is edit then
23: u.setText (g.input)
24: return true
25: end for
26: Wb ← GenerateNGram (S - Eg .S)
27: Wu ← GenerateNGram (u)
28: for each wu ∈ Wu do
29: for each wb ∈ Wb do
30: if wu.similar (wb) > 0.8 then
31: if e.action is edit then
32: u.setText (D)
33: return true
34: end for
35: end for
36: return false

number of steps to the last event at which rotate was
exercised. Finding 2 shows that a crash often occurs 1–2 steps
after the rotate. Therefore, by default, R = 2.

2) Dynamic Matching: To determine whether a GUI com-
ponent matches a bug report (Line 11), ReCDroid utilizes
Word2Vec [34], a word embedding technique, to check if
the name (i.e., the displayed text) of a GUI component is
semantically similar with any of the GUI components from
the extracted event representations or the words from sentences
in which grammar patterns cannot be used. The Word2Vec
model is trained from a public dataset text8 containing 16
million words and is provided along with the source code of
Word2Vec [10]. The model uses a score in the range of [0,
1] to indicate the degree of semantic similarity between words
(1 indicates an exact match). ReCDroid uses a relatively high
score, 0.8, as the threshold. We observed that using a low
threshold may misguide the search toward an incorrect GUI
component. For example, the similarity score of “start” and
“stop” is 0.51 but the two words are not synonymous.

Algorithm 2 outlines the process of matching a GUI com-
ponent observed at runtime. ReCDroid first compares the
observed GUI component (u) with the event tuples (Eg) to
detect if there is a match. If u is an editable component, the
corresponding input values from e are filled into the text field
(Lines 21–24). If no matches are found from the previous step,
ReCDroid analyzes the sentences in which grammar patterns
do not apply (Lines 26 – 35). It generates n-grams2, from both
the bug report description and the GUI component u (Lines
26 – 27). ReCDroid then compares the content of the GUI
component against the bug report based their generated grams
(Lines 28 – 30). We consider unigrams (single word tokens)
and bigrams (two consecutive word tokens) that are commonly
used in existing work [14], [41], [46].

If an editable GUI component does not match any events
extracted from grammar patterns, ReCDroid associates the
component with the following values (D in Line 32): 1) input
values for other editable components extracted by grammar
patterns that match the data type (e.g., digit, string) of the
editable component, and 2) special symbols appearing in the
bug report, such as “apostrophe”, “comma”, “quote” because

2An n-gram is a contiguous sequence of n items from a given sequence
of text, which has been widely used in information retrieval [48] and natural
language processing [16].

Fig. 5: Dynamic Ordered Event Tree (DOET) for Figure 1

we observed that such symbols are likely to cause problems
(Finding 3). If neither of the two types of values can be found
in the bug report, ReCDroid randomly generates one.

3) A Running Example: Fig. 5 shows a partial DOET
for the example in Fig. 1. The shaded nodes indicate the
GUI components leading to the reported crash. ReCDroid
first launches the app and brings the app to the screen in
Fig. 1a. There is one clickable GUI component G in the
screen, which is not relevant to the bug report. Since by
traversing the leaf nodes (only G) ReCDroid does not find
any relevant component, it sets the status of component G
to ready and continues the search (Lines 17–18). In the 2nd
iteration, ReCDroid clicks component G and brings the app to
Fig. 1b. ReCDroid ranks the GUI components in the current
screen and adds them to the tree (Lines 8–16). Specifically,
the first four components (i.e., A, S, R, RR) match the bug
report description and are ordered on the left of the tree level.
Internally, the four components are ranked in terms of the
orders of their appearance in the bug report. ReCDroid then
checks all nodes in the current level (Fig. 1b) and selects
the leftmost leaf (A) to execute, which brings the app to
the screen of Fig. 1c. At this tree level, A is placed on the
right because it has been explored before. In the 4th iteration,
exercising the leftmost leaf node S brings the app to Fig. 1d,
since the editable component Server matches the bug report
description, its corresponding input value is filled in and the
associated clickable components are considered to be relevant.
Because OK is more likely to bring the app to a new screen,
it is ordered before Cancel. In the last iteration (Fig. 1d),
both A and S are placed on the right because they have been
explored. Lastly, R is executed and the crash is triggered.

We next illustrate how ReCDroid backtracks. Suppose in
Fig. 1c, none of the components are relevant to the bug report,
ReCDroid would traverse the leaf nodes of the whole DOET
from left to right until finding a matching and unexplored GUI
component. Therefore, component S in the screen of Fig. 1b
would be selected. So in the next iteration, ReCDroid restarts
the search and executes the sequence L→ G→ S.

4) Optimization Strategies: ReCDroid employs several op-
timization strategies to improve the efficiency of the algorithm
by avoiding exploring irrelevant GUI components (Line 8). For
example, ReCDroid checks if the current screen is the same



as the previous screen. A same screen may suggest either an
invalid GUI component was clicked (e.g., a broken button) or
the component always brings the app to the same screen (e.g.,
refresh). In this case, creating children nodes for the current
screen can potentially cause the algorithm to explore the same
screen again and again. To address this problem, ReCDroid
sets the status of the last exercised GUI component G to dead
to avoid expanding the tree level from G. We also develop an
algorithm to detect loops in each tree path. For example, in
a path DABCABCABC, the subsequence ABC is visited
three times in a row. In this case, ReCDroid keeps only one
subsequence and the leaf node is set to dead, so the loop will
not be explored in the future. We omit the details of the loop
detection algorithm due to space limitations.

IV. EMPIRICAL STUDY

To evaluate ReCDroid, we consider four research questions:
RQ1: How effective and efficient is ReCDroid at reproducing
crashes in bug reports?
RQ2: To what extent do the NLP techniques in ReCDroid
affect its effectiveness and efficiency?
RQ3: Does ReCDroid benefit developers compared to manual
reproduction?
RQ4: Can ReCDroid reproduce crashes from different levels
of low-quality bug reports?

A. Datasets

We need to prepare datasets for evaluating our approach.
To avoid overfitting, we do not consider the 813 Android bug
reports that we used to identify the grammar patterns. Instead,
we randomly crawled an additional 330 bug reports containing
the keywords “crash” and “exception” from GitHub. We next
included all 15 bug reports from the FUSION paper [39] and
25 bug reports from a recent paper on translating Android
bug reports into test cases [23]. FUSION considers the quality
of these bug reports as low, so we aim to evaluate whether
ReCDroid is capable of handling low-quality bug reports.

We then manually filtered the 370 collected bug reports
to get the final set that can be used in our experiments.
This filtering was performed independently by three graduate
students, who have 2-4 years of industrial software develop-
ment experience. We first filtered bug reports involving actual
app crashes, because ReCDroid focuses on crash failures.
This yielded 298 bug reports. We then filtered bug reports
that could be reproduced manually by at least one inspector,
because some bugs could not be reproduced due to lack of
apks, failed-to-compile apks, environment issues, and other
unknown issues. These bug reports cannot assess RecDroid
itself and thus was excluded from the dataset.

In total, we evaluated ReCDroid on 51 bug reports from
33 apks. The cost of the manual process is quite high:
the preparation of the dataset required around 400 hours of
researcher time.

B. Implementation

We conducted our experiment on a physical x86 machine
running with Ubuntu 14.04. The NLP techniques of ReCDroid

was implemented based on the spaCy dependency parser [28].
The dynamic exploration component was implemented on top
of two execution engines, Robotium [55] and UI Automa-
tor [8], for handling apps compiled by a wide range of Android
SDK versions. An apk compiled by a lower version Android
SDK (< 6.0) can be handled by Robotium and that by a higher
version SDK (> 5.0) can be handled by UI Automator.

C. Experiment Design

1) RQ1: Effectiveness and Efficiency of ReCDroid: We
measure the effectiveness and efficiency of ReCDroid in terms
of whether it can successfully reproduce crashes described
in the bug reports within a time limit (i.e., two hours) and
efficiency in terms of the time it took to reproduce each crash.

2) RQ2: The Role of NLP in ReCDroid: Within ReCDroid,
we assess whether the use of the NLP techniques can affect
ReCDroid’s effectiveness and efficiency. We consider two
“vanilla” versions of ReCDroid. The first version, ReCDroidN ,
is used to evaluate the effects of using grammar patterns.
ReCDroidN does not apply grammar patterns, but only enables
the second phase on dynamic matching. The second version
is ReCDroidD, which evaluates the effects of applying both
grammar patterns and dynamic matching. The comparison
between ReCDroidD and ReCDroidN can assess the effects
of using dynamic matching. ReCDroidD is a non-guided sys-
tematic GUI exploration technique (discussed in Section VI).
The time limits for running ReCDroidN and ReCDroidD were
also set to two hours.

3) RQ3: Usefulness of ReCDroid: The goal of RQ3 is
to evaluate the experience developer had using ReCDroid
to reproduce bugs compared to using manual reproduction.
We recruited 12 graduate students as the participants. All
had at least 6-month Android development experience and
three were real Android developers working in companies
for 3 years before entering graduate school. Each participant
read the 39 bug reports and tried to manually reproduce the
crashes. All apps were preinstalled. For each bug report, the
12 participants timed how long it took for them to understand
the bug report and reproduce the bug. If a participant was
not able to reproduce a bug after 30 minutes, that bug was
marked as not reproduced. After the participants attempted
to reproduce all bugs, they were asked to use ReCDroid on
the 39 bug reports. This was followed by a survey question:
would you prefer to use ReCDroid to reproduce bugs from bug
reports over manual reproduction? Note that to avoid bias, the
participants were not aware of the purpose of this user study.

4) RQ4: Handling Low-Quality Bug Reports: The goal of
RQ4 is to assess the ability of ReCDroid to handle different
levels of low-quality bug reports. Since judging the quality
of a bug report is often subjective, we created low-quality
bug reports by randomly removing a set of words from the
original bug reports. We focused on removing words from texts
containing reproducing steps. Specifically, we considered three
variations for each of the 33 bug report reports reproduced
by ReCDroid in order to mimic different levels of quality: 1)
removing 10% of the words in the report, 2) removing 20% of
the words in the report, and 3) removing 50% of the words in
the report. Due to the randomization of removing words from



TABLE II: RQ1 — RQ3: Different Techniques and User Study
#BR. # steps # ptn Reproduce Success # Events in Sequence Time (Seconds) User

RD RDN RDD RD RDN RDD RD RDN RDD (12)
newsblur-1053 5 7 (3, 2) X X X 7 7 7 157.6 133.5 132.3 12
markor-194 3 1 (0, 1) X N N 4 - - 1180.8 > > 12
birthdroid-13 1 5 (3, 0) X X X 5 8 8 106.5 483.7 1088.5 9
car-report-43? 4 4 (0, 0) X X X 16 16 16 309.5 299.4 101 8
opensudoku-173 8 10 (0, 2) X N N 9 - - 576.4 > > 10
acv-11? 5 8 (1, 2) X X X 8 8 5 500.5 489.3 2060.1 7
anymemo-18 1 2 (0, 0) X X X 3 3 3 67.1 60.9 797.7 11
anymemo-440 4 6 (0, 1) X X N 8 8 - 933.9 889.4 - 12
notepad-23? 3 3 (0, 1) X X X 6 6 6 216.2 292 1731.1 11
olam-2? 1 2 (0, 0) X N N 2 - - 56.7 > > 7
olam-1 1 1 (0, 1) X N N 2 - - 35.2 > > 11
FastAdapter-394 1 0 (0, 1) X X X 1 1 1 47.6 27.6 445.1 9
LibreNews-22 4 6 (2, 1) X X X 6 6 5 113.2 138.2 728.5 12
LibreNews-23 6 4 (2, 1) X N N 3 - - 47.7 > > 12
LibreNews-27 4 4 (2, 1) X X X 5 5 5 70.2 67.6 1074.7 11
SMSSync-464 2 0 (0, 2) X X X 4 4 4 751 703.3 5193.8 10
transistor-63 5 8 (6, 2) X X X 3 3 3 41.1 36.6 65.1 12
zom-271 5 1 (0, 1) X X X 5 5 5 125.5 115.8 507.7 11
PixART-125 3 5 (0, 1) X X X 5 5 5 576.9 649.6 1031.6 12
PixART-127∗ 3 5 (1, 0) X X X 5 5 5 137.6 147.1 991.9 12
ScreenCam-25∗ 3 2 (1, 1) X X N 6 6 - 721.7 833.3 > 11
ventriloid-1 3 3 (1, 2) X N N 9 - - 66.8 > > 11
Nextcloud-487 1 2 (3, 1) X X X 2 2 2 63.3 72 943.8 11
obdreader-22 4 0 (0, 4) X X N 8 8 - 891.7 939.7 > 12
dagger-46∗ 1 3 (2, 0) X X X 1 1 1 31.1 26.2 20.6 12
ODK-2086 2 3 (0, 0) X X X 3 3 3 89.6 91.2 2982 12
k9-3255 2 5 (1, 1) X N N 4 - - 177.6 > > 12
k9-2612∗ 4 3 (0, 0) X X X 2 3 2 103 134.6 5730.6 10
k9-2019∗ 1 0 (0, 1) X X X 3 3 3 59.5 58.1 1352.4 11
Anki-4586∗ 5 3 (1, 0) X X N 7 7 - 96.6 100 > 12
TagMo-12∗ 1 2 (0, 0) X X X 2 2 2 14.8 15.7 29.6 12
openMF-734∗ 2 2 (0, 1) X X X 2 2 2 81.9 83.6 440.5 11
FlashCards-13∗ 4 3 (2, 0) X X X 3 3 3 63.5 93.9 93.7 12
FastAdaptor-113 2 3 (1, 1) N N N - - - > > > 7
Memento-169 3 7 (3, 0) N N N - - - > > > 2
ScreenCam-32 1 0 (0, 1) N N N - - - > > > 10
ODK-1796 2 1 (0, 1) N N N - - - > > > 4
AIMSICD-816 3 2 (0, 1) N N N - - - > > > 1
materialistic-76 6 7 (2, 1) N N N - - - > > > 5
Total - - 33 26 22 - - - - - - -

RD.= ReCDroid. “X”=Crash reproduced. “N”=Crash not reproduced. “-”=Not
applicable. “>”=exceeded time limit (2 hours).

bug reports, we repeated the removal operation five times for
each bug report across the three quality levels. We evaluate
the effectiveness and efficiency of ReCDroid in reproducing
crashes in the 495 (33 × 3 × 5) bug reports. Again, the time
limit was set to 2 hours.

V. RESULTS AND ANALYSIS

Table II summarizes the results of applying ReCDroid,
ReCDroidN , and ReCDroidD in 39 out of the 51 bug reports.
We did not include the remaining 12 crashes because they
failed to be reproduced due to the technical limitations of the
two execution engines rather than ReCDroid. For example,
Robotium failed to click certain buttons (e.g., [6]). Columns 2–
3 show the number of reproducing steps in each bug report and
the number of unique grammar patterns applicable to each bug
report. The numbers in the parenthesis of Column 3 indicate
the number of false positives (left) and false negatives (right)
when applied the grammar patterns. A false positive means
that a grammar pattern is applied but the identified text is
irrelevant to bug reproduction. A false negative means that a
relevant reproducing step is not identified by any grammar pat-
terns. Columns 4–12 show whether the technique successfully
reproduced the crash, the size of the event sequence, and the
time each technique took.

1) RQ1: Effectiveness and Efficiency of ReCDroid: As
Table II shows, ReCDroid reproduced 33 out of 39 crashes;
a success rate of 84.6%. The time required to reproduce the
crashes ranged from 14 to 1,180 seconds with an average time
of 257.9 seconds. All four crash bug reports (marked with ?)
from the FUSION paper [39] and nine bug reports (marked
with ∗) from Yakusu [23] were successfully reproduced. The

results indicate that ReCDroid is effective in reproducing
crashes from bug reports. The six cases where ReCDroid failed
will be discussed in Section VI.

2) RQ2: The Role of NLP in ReCDroid: When com-
pared ReCDroid to ReCDroidN and ReCDroidD, ReCDroid
successfully reproduced 26.9% and 50% more crashes than
ReCDroidN and ReCDroidD. For the crashes successfully
reproduced by all three techniques, the size of event sequence
generated by ReCDroid was 4% smaller than ReCDroidN
and 1% bigger than ReCDroidD. Both ReCDroidN and
ReCDroidD generated short event sequences because like
ReCDroid, they do not backtrack. Instead, whenever a back-
track was needed, they restarted the search from the home
screen of the app (Algorithm 1). With regards to efficiency,
ReCDroid required 62.6% less time than ReCDroidN and
86.4% less than ReCDroidD. Overall, these results indicate
that the use of NLP techniques, including both the grammar
patterns and the dynamic word matching, contributed to
enhancing the effectiveness and efficiency of ReCDroid.

We also examined the effects of false positives and false
negatives reported when applying the 22 grammar patterns
to each bug report (Column 3), since false positives may
misguide the search and false negatives may jeopardize the
search efficiency (certain useful information is missing). In the
33 crashes successfully reproduced by ReCDroid, we found
that all false positives were discarded during the dynamic
exploration because the identified false GUI components did
not match with the actual GUI components of the apps. With
regards to false negatives, we found that they were all captured
by the dynamic word matching. Therefore, the false negatives
and false positives of the grammar patterns did not negatively
affect the performance of ReCDroid, although our results may
not generalize to other apps.

3) RQ3: Usefulness of ReCDroid: The last column of
Table II shows the number of participants (out of 12) that
successfully reproduced the crashes. While all crashes were re-
produced by the participants, among all 33 crashes reproduced
by ReCDroid, 18 of them failed to be reproduced by at least
one participant. For the seven bug reports that ReCDroid failed
to reproduce, the success rate of human reproduction is also
low. These results suggest that ReCDroid is able to reproduce
crashes that cannot be reproduced by the developers. One
reason for the failures was that developers need to manually
search for the missing steps, which can be difficult due to the
large number of GUI components. As columns 3 and 8 in
Table II indicate, in 25 bug reports, the number of described
steps is smaller than the number of events actually needed for
reproducing the crashes. Another reason was because of the
misunderstanding of reproducing steps.

We also compute the time required for each participant to
successfully reproduce all 39 bug reports. The results show
that the time for successful manual reproduction ranged from
9 seconds to 1,640 seconds, with an average 248.1 seconds
— 3.7% less than the time required for ReCDroid on the
successfully reproduced crashes. Such results are expected as
ReCDroid needs to explore a number of events during the
reproduction. However, ReCDroid is fully automated and can
thus reduce the painstaking effort of developers in reproduc-
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ing crashes. Among all 33 crashes successfully reproduced
by ReCDroid, the reproduction time required by individual
participants ranged from 9 to 1,640 seconds. In fact, two out
of the 12 participants spent a little more time (2% on average)
than ReCDroid.

It is worth noting that while it is possible the actual
app developers could reproduce bugs faster than ReCDroid,
ReCDroid can still be useful in many cases. First, ReCDroid
is fully automated, so developers can simply push a button
and work on other tasks instead of waiting for the results or
manually reproducing crashes. Second, ReCDroid can be used
with a continuous integration server [24] to enable automated
and fast feedback, such that whenever a new issue is submitted,
ReCDroid will automatically provide a reproducing sequence
for developers. Third, users can use ReCDroid to assess the
quality of bug reports — a bug report may need improvement
if the crash cannot be reproduced by ReCDroid.

The 12 participants were then asked to use ReCDroid
and indicate their preferences for the manual vs tool-based
approach. We used the scale very useful, useful, and not
useful. Our results indicated that 7 out of 12 participants found
ReCDroid very useful and would always prefer ReCDroid
to manual reproduction, 4 participants indicated ReCDroid
is useful, and one participant indicated that ReCDroid is not
useful. The participant who thought ReCDroid is not useful
explained that, for some simple crashes, manual reproduction
is more convenient. On the other hand, the participate agreed
that ReCDroid is useful for handling complex apps (e.g., K-9).
The 12 participants also suggested that ReCDroid is useful in
the following cases: 1) bugs that require many steps to repro-
duce, 2) bugs that require entering specific inputs to reproduce,
and 3) bug reports that contain too much information. The
above results suggest that developers generally feel ReCDroid
is useful for reproducing crashes from bug reports and they
prefer to use ReCDroid over manual reproduction.

4) RQ4: Handling Low-Quality Bug Reports: Columns 2–
7 of Table III reports the reproducibility of ReCDroid for the
bug reports at the three different quality levels. The column
success indicates the number of mutated bug reports (out of
5) that were successfully reproduced at each quality level.
The column time indicates the average time (and the standard
deviation) required for reproducing the crash. The results show
that among all 495 mutated bug reports for the three quality
levels, ReCDroid was able to reproduce 94%, 92%, and 81%
of the bug crashes, respectively. Even when 50% of the words
were removed, ReCDroid could still successfully reproduce
25 crashes. The slowdowns caused by the missing information
with respect to the original bug reports were only 1.7x, 2.2x,
and 2.9x, respectively. These results suggest that ReCDroid
can be used to effectively handle low-quality bug reports with
different levels of missing information.

VI. DISCUSSION

Limitations. The current implementation in ReCDroid does
not support item-list, swipe, or scroll actions. In our exper-
iment, three fail-to-be-reproduced bug reports (FastAdaptor-
113, materialistic-1067, AIMSICD-816) were due to the lack
of support on these actions. We believe that ReCDroid can be

TABLE III: RQ4: Different Quality Levels

#BR. QL-10% (5) QL-20% (5) QL-50% (5)
Success Time (sec) Success Time (sec) Success Time (sec)

newsblur-1053 5 196(102) 5 94(50) 5 136(88)
markor-194 5 1601(24) 4 1564(85) 4 1608(30)
birthdroid-13 5 159(128) 5 383(205) 5 659(185)
car-report-43 5 280(3) 5 288(6) 5 286(1)
opensudoku-173 5 770(458) 3 2267(1153) 3 2325(1636)
acv-11 5 1077(1299) 5 1844(1448) 5 1911(1321)
anymemo-18 5 90(49) 5 62(9) 5 1527(1009)
anymemo-440 3 1570(85) 3 1488(85) 0 >(-)
notepad-23 5 333(167) 5 683(544) 5 920(671)
olam-2 5 52(2) 4 50(1) 3 50(1)
olam-1 5 27(1) 5 27(1) 3 27(1)
FastAdapter-394 5 48(1) 5 455(374) 5 740(8)
LibreNews-22 5 123(33) 5 176(77) 5 287(239)
LibreNews-23 2 56(12) 2 62(4) 3 108(54)
LibreNews-27 5 93(3) 5 88(1) 5 426(460)
SMSSync-464 4 984(88) 4 1137(82) 3 1181(81)
transistor-63 5 52(21) 5 44(15) 5 52(20)
zom-271 5 277(283) 5 202(74) 5 245(201)
PixART-125 5 924(86) 5 1167(7) 5 1719(253)
PixART-127 5 435(337) 5 338(97) 5 803(536)
ScreenCam-25 5 1545(943) 5 1261(42) 5 1265(37)
ventriloid-1 4 150(103) 4 108(83) 0 >(-)
Nextcloud-487 5 310(461) 5 509(556) 5 1092(2)
obdreader-22 5 1884(1717) 5 1862(1714) 3 1216(142)
dagger-46 5 25(3) 5 24(1) 5 23(1)
ODK-2086 4 644(757) 5 534(672) 5 812(989)
k9-3255 4 255(30) 3 487(463) 1 1022(-)
k9-2612 5 152(20) 5 102(17) 5 1221(2550)
k9-2019 5 56(1) 5 55(0) 5 950(1214)
Anki-4586 5 205(277) 5 275(324) 1 987(-)
TagMo-12 5 14(0) 5 17(5) 5 14(0)
openMF-734 5 82(1) 5 155(162) 5 82(1)
FlashCards-13 5 140(11) 5 135(9) 5 137(10)

extended to incorporate these actions with additional engineer-
ing effort. Second, ReCDroid cannot handle concurrency bugs
or nondeterministic bugs [21], [22]. In our experiment, three
fail-to-be-reproduced bug reports (Memento-169, ScreenCam-
32) were due to non-determinism and one (ODK-1796) was
due to a concurrency bug. For example, to trigger the crash
in ODK-1796, it requires waiting on one screen for seconds
and then clicking the next screen at a very fast speed. In some
cases, heuristics can be added to handle timing issues, such
as allowing specific actions to wait for a certain time period
before exploration.

Third, ReCDroid focuses on reproducing crashes. It does not
generate automated test oracles from bug reports, so it is not
able to reproduce non-crash bugs. Nevertheless, ReCDroid can
still be useful in this case with certain human interventions.
For example, during the automated dynamic exploration, a
developer can observe if a non-crashed bug (e.g., an error
message) is reproduced. Fourth, ReCDroid does not support
highly specialized text inputs if the input is not specified in
the bug report. Recent approaches in symbolic executions may
prove useful in overcoming this limitation [29]. Finally, ReC-
Droid is targeted at bug reports containing natural language
description of reproducing steps. In the absence of reproducing
steps, ReCDroid would act as a generic GUI exploration and
testing tool (i.e., RDD in the experiment).

Android Testing Tools. As a generic GUI exploration and
testing tool, ReCDroidD is similar to existing Android testing
tools [9], [11], [15], [37], [44], [45], which detect crashes in an
unguided manner. ReCDroidD was shown to be competitive
with Monkey [9], Sapienz [37], and the recent work Stoat [45]
on our experiment subjects. Specifically, ReCDroidD repro-
duced 7 more crashes than Stoat, 7 more crashes than Sapienz,



and 9 more crashes than Monkey. For the crashes successfully
reproduced by all three techniques, the size of event sequence
generated by ReCDroidD was 98.8% smaller than Stoat,
98.8% smaller than Sapienz, and 99.9% smaller than Monkey.
With regards to efficiency, ReCDroidD required 6.2% more
time than Stoat, 27.6% less time than Sapienz, and 37.7% less
time than Monkey. The details can be found in our released
artifacts [7].

Threats to Validity. The primary threat to external validity for
this study involves the representativeness of our apps and bug
reports. However, we do reduce this threat to some extent by
crawling bug reports from open source apps to avoid introduc-
ing biases. We cannot claim that our results can be generalized
to all bug reports of all domains though. The primary threat
to internal validity involves the confounding effects of par-
ticipants. We assumed that the students participating in the
study (for RQ3) were substitutes for developers. We believe
the assumption is reasonable given that all 12 participants
indicated that they had experience in Android programming.
Recent work [43] has also shown that students can represent
professionals in software engineering experiments.

VII. RELATED WORK

Related work has focused on augmenting bug reports for
Android apps [39], [40]. Specifically, FUSION [39] leverages
dynamic analysis to obtain GUI events of Android apps, and
uses these events to help users auto-complete reproduction
steps in bug reports. This approach helps end users to produce
more comprehensive reports that will ease bug reproduction.
However, this technique does not reproduce crashes from the
original bug reports. We see our approach and FUSION as
complementary, if users were to utilize FUSION, this would
improve the overall quality of the bug reports and increase the
success rate of our technique even further.

A tool called Yakusu [23] on translating executable test
cases from bug reports presented in a recent paper is probably
most related to our approach. However, the goal of Yakusu is
translating test cases from bug reports instead of reproducing
bugs (e.g., crashes) described in the bug report. Therefore,
event sequences generated by Yakusu may not reproduce all
relevant crashes. In addition, Yakusu does not extract input
values for editable events. Instead, it will randomly send an
input. In contrast, ReCDroid defines a family of grammar
rules that can systematically extract the relevant inputs from
bug reports. As our study (Finding 3) shows, a non-trivial
portion of crashes involve specific user inputs. Moreover, we
conducted a more thorough empirical study to show how
NLP uncovered bugs that would not be discovered otherwise.
Moreover, we conducted a user study, although light-weighted,
to show usefulness of ReCDroid. Furthermore, in terms of
generality, the family of grammar rules derived by ReCDroid
is from a large number of bug reports. We also provided
empirical evidence to explain the assumption and the heuristics
employed in ReCDroid.

There has been considerable work on using NLP to summa-
rize and classify bug reports [25], [42]. For example, Chaparro
et al. [18] use several techniques to detect missing information

from bug reports. PerfLearner [26] extracts execution com-
mands and input parameters from descriptions of performance
bug reports and use them to generate test frames for guiding
actual performance test case generation. Zhang et al. [57]
employ NLP to process bug reports and use search-based
algorithm to infer models, which can be used to generate new
test cases. While these techniques apply NLP techniques to
analyze bug reports, they cannot synthesize GUI events from
bug reports to help bug reproduction.

There are several techniques on using NLP to facilitate
dynamic analysis [30], [51]. For example, DASE [51] to
extract input constraints from user manuals and uses the
constraints to guide symbolic execution to avoid generating
too many invalid inputs. However, these techniques make
assumptions on the format of the textual description and none
of them automatically reproduces bugs from bug reports.

There are tools for automatically reproducing in-field fail-
ures from various sources, including core dumps [49], [56],
function call sequences [31], call stack [50], and runtime
logs [53], [54]. However, none of these techniques can repro-
duce bugs from bug descriptions written in natural language.
On the other hand, these techniques are orthogonal to ReC-
Droid and developers may decide which technique to use based
on the information available in the bug report.

There has been a great deal of work on detecting bugs
or achieving high coverage for Android applications using
GUI testing [11], [15], [19], [20], [35], [36], [45]. These
techniques systematically explore the GUI events of the target
app, guided by various advanced algorithms. However, none
of these techniques reproduce issues directly from bug reports.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented ReCDroid, an automated approach to
reproducing crashes from bug reports for Android applications.
ReCDroid leverages natural language processing techniques
and heuristics to analyze bug reports and identify GUI events
that are necessary for crash reproduction. It then directs the
exploration of the corresponding app toward the extracted
events to reproduce the crash. We have evaluated ReCDroid
on 51 bug reports from 33 Android apps and showed that it
successfully reproduced 33 crashes; 12 fail-to-be-reproduced
bug reports were due to the limitations of the execution engines
rather than ReCDroid. A user study suggests that ReCDroid
reproduced 18 crashes not reproduced by at least one developer
and was preferred by developers over manual reproduction.
Additional evaluation also indicates that ReCDroid is robust
in handling low-quality bug reports.

As future work we intend to leverage the user reviews
from App store to extract additional information for helping
bug reproduction. We also intend to develop techniques to
automatically extract grammar patterns from bug reports.
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[38] Grégoire Mesnil, Yann Dauphin, Kaisheng Yao, Yoshua Bengio,
Li Deng, Dilek Hakkani-Tur, Xiaodong He, Larry Heck, Gokhan Tur,
Dong Yu, et al. Using recurrent neural networks for slot filling in
spoken language understanding. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 23(3):530–539, 2015.

[39] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, and
Denys Poshyvanyk. Auto-completing bug reports for android
applications. In Proceedings of the Joint Meeting on Foundations of
Software Engineering, pages 673–686, 2015.

[40] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas,
Christopher Vendome, and Denys Poshyvanyk. Automatically
discovering, reporting and reproducing android application crashes. In
Proceedings of the IEEE International Conference on Software
Testing, Verification and Validation, pages 33–44, 2016.

[41] Frank Padberg, Philip Pfaffe, and Martin Blersch. On mining
concurrency defect-related reports from bug repositories. 10, 2013.

[42] Sarah Rastkar, Gail C Murphy, and Gabriel Murray. Automatic
summarization of bug reports. IEEE Transactions on Software
Engineering, 40(4):366–380, 2014.

[43] Iflaah Salman, Ayse Tosun Misirli, and Natalia Juristo. Are students
representatives of professionals in software engineering experiments?
In Proceedings of the International Conference on Software
Engineering-Volume 1, pages 666–676, 2015.

[44] Ting Su. Fsmdroid: Guided gui testing of android apps. In
Proceedings of the International Conference on Software Engineering
Companion, pages 689–691, 2016.

[45] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao
Yao, Geguang Pu, Yang Liu, and Zhendong Su. Guided, stochastic
model-based gui testing of android apps. In Proceedings of the Joint
Meeting on Foundations of Software Engineering, pages 245–256,
2017.

[46] Chengnian Sun, David Lo, Siau-Cheng Khoo, and Jing Jiang. Towards
more accurate retrieval of duplicate bug reports. In Proceedings of the
International Conference on Automated Software Engineering, pages
253–262, 2011.

[47] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. /*
icomment: Bugs or bad comments?*. In ACM SIGOPS Operating
Systems Review, volume 41, pages 145–158, 2007.

[48] Xuerui Wang, Andrew McCallum, and Xing Wei. Topical n-grams:
Phrase and topic discovery, with an application to information
retrieval. In Proceedings of the International Conference on Data
Mining, pages 697–702, 2007.

https://github.com/moezbhatti/qksms/issues/241
https://github.com/AndroidTestBugReport/ReCDroid


[49] Dasarath Weeratunge, Xiangyu Zhang, and Suresh Jagannathan.
Analyzing multicore dumps to facilitate concurrency bug reproduction.
In ACM Sigplan Notices, volume 45, pages 155–166, 2010.

[50] Martin White, Mario Linares-Vásquez, Peter Johnson, Carlos
Bernal-Cárdenas, and Denys Poshyvanyk. Generating reproducible and
replayable bug reports from android application crashes. In
Proceedings of the International Conference on Program
Comprehension, pages 48–59, 2015.

[51] Edmund Wong, Lei Zhang, Song Wang, Taiyue Liu, and Lin Tan.
Dase: Document-assisted symbolic execution for improving automated
software testing. In Proceedings of the International Conference on
Software Engineering, pages 620–631, 2015.

[52] Wei Yang, Mukul R Prasad, and Tao Xie. A grey-box approach for
automated gui-model generation of mobile applications. In
International Conference on Fundamental Approaches to Software
Engineering, pages 250–265, 2013.

[53] Tingting Yu, Tarannum S Zaman, and Chao Wang. Descry:
reproducing system-level concurrency failures. In Proceedings of the
Joint Meeting on Foundations of Software Engineering, pages
694–704, 2017.

[54] Ding Yuan, Soyeon Park, and Yuanyuan Zhou. Characterizing logging
practices in open-source software. In Proceedings of the International
Conference on Software Engineering, pages 102–112, 2012.

[55] Hrushikesh Zadgaonkar. Robotium Automated Testing for Android.
Packt Publishing Ltd, 2013.

[56] Cristian Zamfir and George Candea. Execution synthesis: A technique
for automated software debugging. In Proceedings of the European
Conference on Computer Systems, pages 321–334, 2010.

[57] Yuanyuan Zhang, Mark Harman, Yue Jia, and Federica Sarro.
Inferring test models from kate’s bug reports using multi-objective
search. In Proceedings of the International Symposium on Search
Based Software Engineering, pages 301–307, 2015.


