
An Empirical Study of Functional Bugs in Android Apps
Yiheng Xiong

Shanghai Key Laboratory of
Trustworthy Computing, East China

Normal University
China

xyh@stu.ecnu.edu.cn

Mengqian Xu
Shanghai Key Laboratory of

Trustworthy Computing, East China
Normal University

China
xmq@stu.ecnu.edu.cn

Ting Su∗
Shanghai Key Laboratory of

Trustworthy Computing, East China
Normal University

China
tsu@sei.ecnu.edu.cn

Jingling Sun
Shanghai Key Laboratory of

Trustworthy Computing, East China
Normal University

China
jingling.sun910@gmail.com

Jue Wang
State Key Lab for Novel Software

Tech. and Dept. of Computer Sci. and
Tech., Nanjing University

China
juewang591@gmail.com

He Wen
Shanghai Key Laboratory of

Trustworthy Computing, East China
Normal University

China
paigewen07@gmail.com

Geguang Pu∗
Shanghai Key Laboratory of

Trustworthy Computing, East China
Normal University

China
ggpu@sei.ecnu.edu.cn

Jifeng He
Shanghai Key Laboratory of

Trustworthy Computing, East China
Normal University

China
jifeng@sei.ecnu.edu.cn

Zhendong Su
ETH Zurich
Switzerland

zhendong.su@inf.ethz.ch

ABSTRACT

Android apps are ubiquitous and serve many aspects of our daily
lives. Ensuring their functional correctness is crucial for their suc-
cess. To date, we still lack a general and in-depth understanding of
functional bugs, which hinders the development of practices and
techniques to tackle functional bugs. To fill this gap, we conduct
the first systematic study on 399 functional bugs from 8 popu-
lar open-source and representative Android apps to investigate
the root causes, bug symptoms, test oracles, and the capabilities
and limitations of existing testing techniques. This study took us
substantial effort. It reveals several new interesting findings and
implications which help shed light on future research on tackling
functional bugs. Furthermore, findings from our study guided the
design of a proof-of-concept differential testing tool, RegDroid,
to automatically find functional bugs in Android apps. We applied
RegDroid on 5 real-world popular apps, and successfully discov-
ered 14 functional bugs, 10 of which were previously unknown
and affected the latest released versions—all these 10 bugs have
been confirmed and fixed by the app developers. Specifically, 10
out of these 14 found bugs cannot be found by existing testing
techniques. We have made all the artifacts (including the dataset of

∗Ting Su and Geguang Pu are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07. . . $15.00
https://doi.org/10.1145/3597926.3598138

399 functional bugs and RegDroid) in our work publicly available
at https://github.com/Android-Functional-bugs-study/home.

CCS CONCEPTS

• Software and its engineering→ Software testing and debugging.

KEYWORDS

Empirical study, Testing, Android, Non-crashing functional bugs
ACM Reference Format:

Yiheng Xiong, Mengqian Xu, Ting Su, Jingling Sun, Jue Wang, He Wen,
Geguang Pu, Jifeng He, and Zhendong Su. 2023. An Empirical Study of
Functional Bugs in Android Apps. In Proceedings of the 32nd ACM SIGSOFT

International Symposium on Software Testing and Analysis (ISSTA ’23), July

17–21, 2023, Seattle, WA, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3597926.3598138

1 INTRODUCTION

Android apps are GUI-based interactive applications. They are ubiq-
uitous and serve many different aspects of our daily lives [53].
Recent reports show that app users highly value the user experi-
ence — only 16% of the users will try a function-failing app more
than twice [10, 37]. Indeed, those function-failing apps could se-
verely affect the users in real life [22, 41, 44, 51]. Thus, ensuring
the functional correctness of an app is crucial for its success.

However, effectively finding non-crashing functional failures1
(functional bugs for short) in Android apps remains a significant
challenge [48, 64]. One important gap is that we still lack a general
and in-depth understanding of functional bugs. For example, we
are unclear how functional bugs are induced (i.e., root causes), how
these bugs affect the apps (i.e., bug symptoms), and how these bugs
1In our context, the non-crashing functional failures denote those errors which fail
the expected functionalities of an app but do not manifest themselves as app crashes.

https://doi.org/10.1145/3597926.3598138
https://github.com/Android-Functional-bugs-study/home
https://doi.org/10.1145/3597926.3598138
https://doi.org/10.1145/3597926.3598138

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yiheng Xiong, Mengqian Xu, Ting Su, Jingling Sun, Jue Wang, He Wen, Geguang Pu, Jifeng He, and Zhendong Su

Table 1: Summary of the prior relevant studies involving

functional bugs (“✓”,“✗”,“?” denote that the study does, does
not or only partially does the investigation, respectively).

#Bugs denotes the number of functional bugs in the dataset.

Relevant

Work

#Bugs

Dataset

Available?

Root

causes

Symptoms Oracles

Assessing

Tools

Lessons

Hu et al. [23] 147 No ✗ ✗ ✗ ✗ ✗

Zaeem et al. [69] 91 No ✗ ✗ ? ✗ ✗

Johnson et al. [28] 130 Yes ✗ ? ✗ ✗ ✗

Our work 399 Yes ✓ ✓ ✓ ✓ ✓

can be found (i.e., test oracles). In contrast, crashing bugs in the
apps have been extensively investigated [8, 14, 26, 54–56, 66].

To clearly show the gap, Table 1 summarizes the prior relevant
bug studies involving functional bugs in Android apps. Hu et al. [23]
are the first to classify the common bug types in Android apps, but
they did not analyze the functional bugs in their dataset. Zaeem
et al. [69] only analyzed some (limited) app agnostic oracles from
a small set of bugs (15 bugs) in their dataset, and did not give de-
tailed analysis on other oracle types. Johnson et al. [28] focused on
investigating the reproducibility of bug reports, and only partially
inspected the symptoms of the functional bugs in their dataset.
None of these studies gives a systematic examination of functional
bugs. As a result, it is difficult to fairly assess existing testing tech-
niques and distill lessons on tackling functional bugs.

To fill the gap, this paper aims to complement the prior work by
conducting a systematic empirical study to analyze functional bugs
in Android apps. We studied a broad range of 399 functional bugs
from 8 representative open-source Android apps. These apps are
popular, actively-maintained and have different features. Specifi-
cally, we investigate the following research questions:

• RQ1 (Root causes): What are the common root causes of these
functional bugs? How these bugs are induced?

• RQ2 (Bug symptoms): What are the symptoms of these func-
tional bugs? How these bugs affect the apps?

• RQ3 (Test oracles): What kinds of test oracles are needed to
detect these functional bugs? How these bugs can be found?

• RQ4 (Tool Evaluation): How is the status of existing testing
techniques in finding these functional bugs? Are they effective?

Answering these questions is practically beneficial to both devel-
opers and researchers. RQ1 characterizes the common faults which
can help developers avoid functional bugs at the early stage of app
development. RQ2∼RQ3 investigates the bug symptoms and ora-
cles which can provide guidance for researchers to design effective
bug finding techniques. RQ4 examines the capabilities and limita-
tions of existing testing techniques which can help better under-
stand their effectiveness. Moreover, by analyzing the correlations
between the results of RQ1∼RQ4, we can findmore insights. Specif-
ically, to validate the representativeness of our study (RQ1∼RQ3), we
also analyzed a third-party bug dataset, AndroR2 [28, 68], which
contains 130 functional bugs from 42 different apps. It shows that
our analysis results based on our own bug dataset are representative
and consistent with those based on AndroR2 (see Section 7).

Through our study, we have obtained several new interesting
findings and implications which help shed light on tackling func-
tional bugs (see Section 3, 4, 5, 6, 8). For example, developers should
pay more attention to avoiding missing cases and Android resource

related error, the two most common faults of functional bugs; re-
searchers should choose appropriate types of oracles in finding
different functional bugs, in addition to generating effective inputs.

Furthermore, findings from our study guided the design of a
proof-of-concept differential testing tool, RegDroid, to automati-
cally find functional bugs in Android apps. We applied RegDroid
on 5 popular open-source apps, and successfully discovered 14 func-
tional bugs, 10 of which are previously unknown bugs affecting the
latest released versions—all these 10 bugs have been confirmed and
fixed by the app developers. Specifically, among these 14 bugs, 10
bugs cannot be found by existing testing tools.

In summary, this paper has made the following contributions:
• To our knowledge, we conduct the first systematic study to
investigate functional bugs in Android apps. We construct the
largest dataset of 399 functional bugs, which serve as the basis
of our study as well as future research in this direction.

• We study the functional bugs from different perspectives (root
causes, bug symptoms, test oracles and the capabilities and limi-
tations of existing testing techniques), and distill several findings.

• We enumerate the implications of our findings which help shed
light on tackling functional bugs, and also demonstrate the use-
fulness of our implications via a proof-of-concept testing tool.

2 EMPIRICAL STUDY METHODOLOGY

This section presents our methodology for collecting and analyzing
functional bugs in Android apps. Figure 1 shows the overview of
our study including (a) bug collection and (b) bug analysis.
Table 2: Eight popular open-source and representative An-

droid apps used in our study (K=1,000, M=1,000,000)

App Name App Feature First Release #Installations #Stars #LOC

#Bugs

Selected

Simplenote Notebook Nov. 2013 1M∼5M 1.5K 37,649 35
AnkiDroid Flashcard Learning Jun. 2009 10M∼50M 5.4K 218,558 82
Amaze File Manager Nov. 2014 1M∼5M 4.0K 94,768 30
K-9 Mail Email Client Jan. 2014 5M∼10M 7.1K 173,753 36
NewPipe Video Player Sep. 2015 5M∼10M 20.7K 94,245 65
AntennaPod Podcast Manager Feb. 2014 500k∼1M 4.4K 90,427 41
WordPress Blog Manager Dec. 2015 10M∼50M 2.7K 457,891 67
Firefox Web Browser Jun. 2017 10M∼50M 2.1K 68,249 43

2.1 Collection of Functional Bugs

Step 1: selecting app subjects. This step aims to select representa-

tive app subjects for our study. Specifically, we focus on open-source
Android apps from GitHub because we can access their public is-
sues. Specifically, we first obtained a set of candidate apps by using
these two rules: (1) the app should be released on Google Play
[20] to represent real-world apps, and (2) the app should contain
enough closed issues for bug analysis (we require at least 200 closed
issues). In this way, we got 182 candidate apps from GitHub. To
select representative apps, we used the two metrics, i.e., the app
popularity and the app features, to narrow the scope. Specifically,
(1) we first ranked the candidate apps according to their popularity
from the most to least in terms of both the installations on Google
Play and the stars on GitHub, and then (2) we manually examined
them from the top to bottom to annotate the app features. Note that
we decided the app feature based on the suggested app category
on Google Play and the feature description on GitHub. Finally, we
selected 8 most popular apps with different features. These apps

An Empirical Study of Functional Bugs in Android Apps ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

 Android Apps Bug Reports

Bug Dataset

Buggy Apps (APKs)

Bug-reproducing
Videos/Images

Bug Fix/Patch

Constructing
Bug Dataset

Root Causes

Symptoms

Test Oracles

RQ1

RQ2

RQ3

Iterate per n bugs

(a) Bug Collection (b) Bug Analysis

Collecting
Bug Reports

Selecting
App Subjects

Bug Analysis Categorization

Cross Validation

Tool EvaluationRQ4Manual Analysis Running Tools+

Figure 1: Overview of our study including two major steps: (a) bug collection and (b) bug analysis.

Table 3: The taxonomy of root causes.

Category Subcategory Description Example #Bugs Ratio

Missing features The app functionality is supposed to be implemented but was not implemented. Figure 2(a) 29 7.4%
Missing cases Some specific usage cases of the app functionality were not implemented. Figure 2(b) 62 15.8%
Wrong control flow Some conditions in the control flow were incorrectly implemented. Figure 2(c) 26 6.6%

Lack of data synchronization The content on the UI page was not properly synchronized with the changed app
data (or the app data itself was not synchronized). Figure 2(d) 34 8.7%

Improper exception handling The app failed to properly handle exceptional cases, thus breaking the normal
execution of app functionality. Figure 2(e) 10 2.5%

Third-party library usage issue The third-party libraries were incorrectly used. - 10 2.5%
Incorrect variable assignment Some wrong values were assigned to specific program variables. - 19 4.8%
Other wrong functionality
implementations

Any other bug which did not correctly implement the design requirement of the
app functionality. - 33 8.4%

General programming
error

Subtotal - - 223 56.7%

Android mechanism related error Improper handling of Android development framework mechanisms
(e.g., lifecycle management, event callbacks).

Figure 2(f)
Figure 2(g) 45 11.5%

Android resource related error Errors in defining or manipulating Android app resources
(e.g., layout files, icons, resource ids of UI elements). Figure 2(h) 62 15.8%

Android framework API misuse The APIs of Android development framework were incorrectly used
(e.g., violating API constraints or selecting inappropriate APIs). Figure 2(i) 14 3.6%

Android compatiblity issue The app fails to be compatible with different SDK versions or device configurations. - 27 6.8%
Android framework bugs/limitations The errors were caused by the bugs or limitations in the Android framework itself. - 16 4.1%

Android related error

Subtotal - - 164 41.7%

Third-party library
bugs/limitations Third-party library bugs/limitations The errors were caused by the bugs or limitations in the third-party libraries used

by the apps. - 6 1.5%

cover the most popular app categories on Google Play [4], e.g., Ed-
ucation, Business, Tools, Music&Audio, Entertainment. Table 2 gives
the details of these 8 apps, where App Feature denotes the major
app feature, First Release gives the dates of their first releases on
GitHub, #Installations and #Stars characterize the app popularity
in terms of their installations on Google Play and stars on GitHub
respectively, #LOC indicates the app complexity in terms of code
lines (in Java, Kotlin and XML). We can see that these apps are
diverse, popular, long-maintained and non-trivial.
Step 2: collecting bug reports. This step aims to collect a broad

range of representative functional bugs from the selected app subjects.
Specifically, we crawled all the issues which were reported within
the recent three years (from August 2018 to July 2021) at the time
of our study. Then, we filtered the issues which were explicitly
labeled as bugs (e.g., “Bug”, “Issue”) and were already closed by app
developers. We focus on the closed issues because they have been
resolved by developers and likely contain adequate information
for bug analysis. In this way, we got 3,186 bug reports. Based on
these 3,186 bug reports, we manually examined each of them to
exclude invalid ones (e.g., duplicated, mislabeled, feature requests),
we got 2,482 valid bug reports. Among these 2,482 bug reports,
we identified that 1,623 bug reports (65.4% ≈1,623/2,482) lead to
functional bugs, 767 bug reports (30.9%) lead to crashing bugs and 91
bug reports (3.7%) lead to non-functional bugs (e.g., performance or
energy issues). We can see that functional bugs are indeed prevalent.
Step 3: constructing the bug dataset. This step aims to rigorously

construct a bug dataset of valid functional bugs. Specifically, among
the 1,623 functional bug reports, we only retained a bug report if
it satisfies all the following three criteria. First, the corresponding
functional bug is reproducible on the buggy app version at the

time of our study, or the bug report contains clear bug-reproducing
videos/images even if we failed to reproduce the bug by ourselves.
Second, the corresponding bug is explicitly linked with the patch.
Because the patch facilitates analyzing the bug’s root cause. Third,
the corresponding bug happens on common Android phone de-
vices. We excluded those bugs which depend on specific devices
(e.g., tablets) or other platforms (e.g., web clients) as they could be
device or platform specific issues. In this way, we obtained 399
valid functional bugs, 265 of which are reproducible at the time of
our study, and the remaining 134 bugs have clear bug-reproducing
videos/images (although they are not reproducible at the time of our
study). For each valid functional bug, we prepared (1) the buggy app
(the APK file), (2) the bug-reproducing videos/images, and (3) the as-
sociated bug patch. Note that the other bugs were excluded because
the reproducing information is unclear (e.g., missing clear reproduc-
ing steps, faulty app versions, or bug-reproducing videos/images).
This process took us considerable manual effort (nearly four person
months) as reproducing bugs for mobile apps is notoriously diffi-
cult [17, 56, 68, 70]. In Table 2, #Bugs Selected gives the numbers of
valid functional bugs of these apps, respectively.

2.2 Analysis Methods of Functional Bugs

To answer RQ1, RQ2 and RQ3, we focused on the 399 valid func-
tional bugs. We analyzed (1) the root causes by inspecting the bug
patches (and reproducing the bugs if necessary), and (2) the symp-
toms and test oracles by reproducing the corresponding bug (or
reviewing the bug-reproducing videos/images in the bug report).
To build the taxonomies, we adopted the open card sorting ap-
proach [52]. Specifically, the preceding analysis was done by an
iterative process. In each iteration, 40 bugs were randomly selected,

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yiheng Xiong, Mengqian Xu, Ting Su, Jingling Sun, Jue Wang, He Wen, Geguang Pu, Jifeng He, and Zhendong Su

and the two co-authors independently studied each of them. Ac-
cording to their own understanding, they independently labelled
each bug with the categories of root causes, symptoms and oracles.
Afterwards, these two co-authors cross-validated and discussed
the labels until they reached consensus on the categorized results.
When they could not reach consensus, the other two co-authors
participated in the discussion to help make the final decision. Such
an iteration was repeated ten times until all the 399 bugs were
analyzed. We observed that this iterative process converged on
the categories after the 2∼3 rounds. This manual analysis process
requires considerable domain-specific knowledge of both Android
and the app logic, which took us around six person months.

To answer RQ4, we studied whether existing automated testing
tools can find the 399 functional bugs in our dataset. First, we
manually analyzed how many bugs are within a tool’s capability
scope based on its testing technique. Second, we ran the tool to
analyze its actual capability in finding the bugs within scope.
Representativeness of our study. To validate the representativeness
of the analysis results in RQ1, RQ2 and RQ3, we also investigated
the functional bugs contained in a third-party dataset,AndroR2 [28,
68]. We aim to validate whether the analysis results on our own
bug dataset are representative and consistent with those based on
AndroR2. Note that AndroR2 does not investigate functional bugs.
Section 7 will discuss our analysis on AndroR2.

3 RQ1: ROOT CAUSES

In this section, we focus on the 399 functional bugs in our dataset to
study the root causes. We successfully identified the root causes of
393 functional bugs (we failed to analyze 6 bugs due to limited de-
bugging information and high complexity), and classified them into
three major categories: (1) General Programming Error (Section 3.1),
(2) Android Related Error (Section 3.2), and (3) Third-party library
Bugs/Limitations (Section 3.3). These three categories include 15
subcategories. Table 3 lists these root causes: Category gives the
three major categories, Subcategory gives the subcategories and
Description describes the root cause. To be concise, we put the
descriptions of root causes in table 3 and explain them as follows.

3.1 General Programming Error

General programming error denotes the errors that frequently occur
in classic software development. We find that 223 out of 393 (56.7%)
functional bugs were induced by general programming error, which
we classified into seven subcategories of root causes (see Table 3).
Specifically, we followed the operational bug classification strat-
egy [32, 60] to achieve disjoint classification: a bug that is classified
into the higher subcategory will not be considered in the lower one,
and the higher subcategory indicates the wider scope (e.g., feature-
level errors) and the lower one indicates the narrower scope (e.g.,
code- or variable-level errors). In the following, we illustrate these
subcategories described in Table 3 one by one.
Missing Features (Example: Amaze’s Issue #2518). In this bug,
clicking the Exit button on the app’s main page does not exit. The
reason is that this feature was not implemented. Figure 2(a) shows
the patch, in which the function code for the Exit button (denoted
by R.id.exit) is added (Lines 3-5).

Missing Cases (Example: K-9 Mail’s Issue #4984). In this bug, if
a user sends an email with an empty text body, this mail cannot
be found in the directory of the sent emails. The expected feature
is that all the sent emails should be in that directory. The reason
is that the usage case of any email with an empty text body was
not implemented, and thus the app failed to show such emails.
Figure 2(b) shows the patch, in which an additional checking is
added to implement this usage case (Line 2).

Finding 1: Missing cases affects 15.8% of the 393 functional
bugs, which is one of the most common root causes.

Wrong Control Flow (Example: K-9 Mail’s Issue #4374). In this
bug, a user reports that the subject of a sent email is unexpectedly
encrypted. The root cause is that the condition of deciding whether
an email’s subject should be encrypted was incorrect. Figure 2(c)
shows the patch, in which a flag variable shouldEncrypt is added to
decide whether the subject should be encrypted (Line 4).
Lack of Data Synchronization (Example: NewPipe’s Issue #6419).
In this bug, the app failed to update the text showing the playback
speed of videos on the screen after the speed value was changed by a
user. Figure 2(d) shows the patch, in which the text on the UI page is
synchronized with the playback speed data (onPlaybackChanged())
after the speed value (stored in playbackTempo) is changed (Line 5).
Improper ExceptionHandling (Example:AnkiDroid’s Issue #7023).
In this bug, when a user exports a deck whose images were deleted,
AnkiDroid displays an error message “Error exporting apkg file”.
Figure 2(e) shows the patch, in which a condition is added to han-
dle the exception of file inexistence (i.e., checking the existence of
images) before exporting (Lines 1-4).
Third-party LibraryUsage Issue (Example:NewPipe’s Issue #5895).
In this bug, users cannot load videos on the trending page. The
reason is that NewPipe used a third-party library API from Youtube
to access the title of the trending page. But the API was upgraded
by storing the title in a raw String rather than in a Json object. As
a result, NewPipe failed to load the video information by using the
outdated API. The bug was fixed by updating the API usage.
Incorrect Variable Assignment (Example: Amaze’s Issue #1872).
In this bug, the app failed to open a directory because it mistakenly
treated the directory as a file. The root cause is that a boolean
variable isDirectory of the directory was erroneously assigned as
false, which caused the directory to be recognized as a file.
Other Wrong Functionality Implementations (Example: Fire-
fox’s Issue #3563). In this bug, Firefox implements a fingerprint lock
feature to hide the private tabs created by a user from being ac-
cessed by others. However, when a user uses this feature to hide
the created private tabs, other users can still view these private tabs
if they create their own new tabs. However, the app design require-
ment is that the locked private tabs should not be accessed unless
the user himself/herself unlocks the private tabs. The root cause is
that the implementation did not meet the design requirement.

3.2 Android Related Error

Android related error denotes the errors which are related to An-
droid’s specific features and induced by inadequate understanding
and/or incorrect enforcement. We find that 164 out of 393 (41.7%)

An Empirical Study of Functional Bugs in Android Apps ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

1 + public boolean onOptionsItemSelected() {
2 + ...
3 + case R.id.exit:
4 + ((MainActivity) requireActivity()).goToMain();
5 + return true;

(a) Missing features:
Amaze’s Issue #2518

1 private fun extract(text: String) {
2 + if (text.isEmpty()) return ""
3 ... // extract the text
4 }

(b) Missing cases:
K-9 Mail’s Issue #4984

1 private void startOrContinueBuildMessage() {
2 ...
3 - if (isEncryptSubject()) {
4 + if (isEncryptSubject() && shouldEncrypt) {
5 moveSubjectIntoEncrypted();

(c) Wrong control flow:
 K-9 Mail’s Issue #4374

1 public void onPlaybackChanged(final float playbackTempo,
2 final float pitch, final boolean skipSilence) {
3 if (player != null) {
4 player.setPlayback(playbackTempo, pitch, skipSilence);
5 + onPlaybackChanged(player.getPlayback());

(d) Lack of data synchronization:
NewPipe’s Issue #6419

1 + if (!file.exists()) {
2 + Timber.d("Skipping missing file %s", file);
3 + continue;
4 + }

(e) Improper exception handling:
AnkiDroid’s Issue #7023

 1 + override fun onSaveInstanceState(outState: Bundle) {
 2 + super.onSaveInstanceState(outState)
 3 + outState.putString(ACCOUNT, accountUuid)
 4 + outState.putLongIfPresent(FOLDER, folderId)
 5 + outState.putString(NAME, folderDisplayName)
 6 + }
 7 +
 8 + private fun restoreInstanceState(savedInstanceState: Bundle) {
 9 + val accountUuid = savedInstanceState.getString(ACCOUNT)
10 + if (accountUuid != null) {
11 + val folderId = savedInstanceState.getLongOrNull(FOLDER)
12 + val folderDisplayName= savedInstanceState.getString(NAME)
 (f) Android mechanism related error:

 K-9 Mail’s Issue #4936
1 private onTouchEvent(MotionEvent event) {
2 ...
3 HiTestResult hr = getHitTestResult();
4 - return onImageClick();
5 + if (isValidInstagramImageClick(hr)){
6 + return super.onTouchEvent(event);
7 + else {
8 + return onImageClick();
9 + }

(g) Android mechanism related error:
WordPress’s Issue #12767

1 public void rename() {
2 ...
3 getMainActivity().mainActivityHelper
4 .rename(
5 - Uri.parse(PATH).buildUpon().
6 - appendPath(name1).build().toString(),
7 + Uri.parse(PATH).buildUpon().
8 + appendEncodedPath(name1).build().toString());

(i) Android framework API Misuse：
Amaze’s Issue #2113

1 public boolean onOptionsItemSelected() {
2 ...
3 - case R.id.clear_history:
4 + case R.id.clear_logs_item:
5 DBWriter.clearDownloadLog()
6 return true;
7 ...

(h) Android resource related error：
AntennaPod’s Issue #4656

Figure 2: Illustrative examples for explaining root causes (the code snippets are simplified).

functional bugs belong to Android related error, which we classi-
fied into five disjoint subcategories of root causes according to the
involved Android features.
Android Mechanism Related Error Specifically, we observe that
the functional bugs in this subcategory share some common root
causes: mishandling lifecycle, input events or back stack.
Mishandling lifecycle (Example: K-9 Mail Issue #4936). Mishan-
dling the lifecycle of Android components (e.g., Activity, Fragment)
when specific events happen (e.g., rotating screens, putting the app
into background and returning back, the app is killed by the sys-
tem) could lead to functional bugs. In this bug, the user account
got lost if the screen is rotated. The reason is that K-9 Mail did not
save and restore the important variables (accountUuid, folderId,
folderDisplayName) which record the account information. Fig-
ure 2(f) shows the patch, in which these variables are saved in
callback onSaveInstanceState() (Lines 3-5) and restored in callback
restoreInstanceState() (Lines 9-12) to handle the change of life-
cycle states due to screen rotation.
Mishandling input events (Example:WordPress’s Issue #12767).
In Android, handling user or system events is achieved by overrid-
ing event callbacks [3]. However, improper handling may lead to
functional bugs. In this bug, when a user clicks a thumbnail of an
Instagram image, the app fails to preview the image and prompts
an error message “Unable to view image”. The reason is that the
image cannot be previewed by the default photo viewer (Line 4).
Figure 2(g) shows the patch, in which the user event (click) is routed

to super.onTouchEvent(), which later will be handled by WebView, if
the thumbnail denotes an Instagram image (Lines 5-6).

Finding 2: 11.5% of the 393 functional bugs are induced by

Android mechanism related error due to the lack of good under-

standing of Android mechanisms.

Android Resource Related Error (Example: AntennaPod’s Issue
#4656). In this bug, clicking the Trash button on the Log page cannot
clear the download logs. The reason is that the resource id of the
Trash button was incorrect. Figure 2(h) shows the patch, in which
the resource id of the Trash button is corrected (Lines 3-4).

Finding 3: Android resource related error is also one of the
most common root causes affecting 15.8% of the 393 bugs.

Android Framework API Misuse (Example: Amaze’s Issue #2113).
In this case, the file renaming function is broken if the new file
name contains space characters. The root cause is that the used API
appendPath() converts any space character to “%20” in ASCII encod-
ing [61]. Figure 2(i) shows the patch, in which appendEncodePath()

is used instead, which converts a space character into plain text.
AndroidCompatibility Issue (Example:AntennaPod’s Issue #3986).
In this bug, some texts overlap the statistics chart on the UI page
when they use the app on a small-screen phone under some specific
language (e.g., German). The root cause is that the app fails to adapt
its UIs to different languages with longer texts.

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yiheng Xiong, Mengqian Xu, Ting Su, Jingling Sun, Jue Wang, He Wen, Geguang Pu, Jifeng He, and Zhendong Su

(a) Expected Behavior (c) Expected Behavior (e) Expected Behavior

Bug Symptom:
Missing UI elements

Bug Symptom:
Redundant UI elements

Bug Symptom:
UI distortion

AnkiDroid
0 cards due（0 min）

Bug Symptom:
Incorrect interaction logic

FTP Server

Status：Not Running
URL：

Settings

Account
Sign out a@com

Privacy
Share analytics

Bug Symptom:
Functionality does not take effect

(b) Buggy Behavior (d) Buggy Behavior (f) Buggy Behavior

FTP Server

Status：Not Running
URL： Sign out

Settings

Account
a@com

Privacy
Share analytics

Amaze
/storage/emulated/0

Files
Download
xx.xx

Amaze
/storage/emulated/0

Files
Download
xx.xx
Open As
Text
Image
Video
Other

Amaze
/storage/emulated/0/Dow..

No Files

Choose search..

Amazon.com

DuckDuckGo

+ Add another search engine

Amaze
/storage/emulated/0

Files
Download
xx.xx

Remove search..

Google

Amazon.com

DuckDuckGo

Remove search..

Google

Amazon.com

DuckDuckGo

Choose search..

Google

Amazon.com

DuckDuckGo

+ Add another search engine

(g) Expected Behavior (i) Expected Behavior

(j) Buggy Behavior(h) Buggy Behavior

AnkiDroid
0 cards due（0 min）

Figure 3: Illustrative examples of bug symptoms. The red boxes indicate the clues of bug symptoms.

Android Framework Bugs/Limitations (Example: Simplenote’s
Issue 702). In this bug, when a user sets the dark theme, the app’s
toolbar did not follow the dark theme. A bug in Android library
AppCompat [19] makes WebView fail under the dark theme.

3.3 Third-Party Library Bugs/Limitations

It is the least common type of root cause which is responsible for
only 6 out of the studied 393 functional bugs.

Finding 4: Functional bugs in Android apps have diverse
root causes, which include 15 subcategories from the 3 major
categories, i.e., general programming error, Android related

error and third-party library bugs/limitations.

4 RQ2: BUG SYMPTOMS

In this section, we focus on the 399 functional bugs in our dataset
to study their symptoms. Considering Android apps are UI-based,
interactive software, we group the symptoms of functional bugs
into two major types: (1) UI Display Issue (Section 4.1), and (2) UI
Interaction Issue (Section 4.2), in addition to other specific symptoms
(Section 4.3). Figure 4 gives the taxonomy of bug symptoms.

4.1 UI Display Issue

Since a UI page of an app is composed of two major components,
i.e., the UI structure (i.e., the UI layout in the form of a tree) and the
content (e.g., texts), UI display issue contain two groups of issues,
i.e., UI Structure related Issue and Content related Issue.
UI structure related issue. We find that 161 out of the 399 bugs
(accounting for 40.4%) belong to UI structure related issue. Specifi-
cally, this symptom includes three different subgroups: (1) Missing

UI Elements, (2) Redundant UI Elements and (3) UI Distortion.

• Missing UI elements (18.0%≈72/399 bugs). The impact of a bug
with this symptom is that some UI element (e.g., widgets) unex-
pectedly disappears on a UI page. For example, in AnkiDroid’s
Issue #4951 (see Figure 3(a) and (b)), the “sync” and “menu” but-
tons disappear (but should be there).

• Redundant UI elements (8.5%≈34/399 bugs). The impact of a
bug with this symptom is that some UI element unexpectedly

Incorrect interaction
logic (76, 19.0%)

UI element does not
react (18, 4.5%)

Functionality does not
take effect (47, 11.8%)

UI Display Issue
(246, 61.7%)

Missing UI elements
(72, 18.0%)

UI distortion
(55, 13.8%)

Redundant UI
elements (34, 8.5%)

Symptom

Content related issue
(85, 21.3%)

Structure related issue
(161, 40.4%)

UI Interaction Issue
(141, 35.3%)

Figure 4: The taxonomy of bug symptoms. The numbers (X,

Y) underneath the category name give #functional bugs in

this category and the percentage among all the 399 bugs.

appears on a UI page. For example, in Amaze’s Issue #1933 (see
Figure 3(c) and (d)), when a user rotates the device screen from
portrait to landscape and rotates back, a floating action button
appears (but should not be there).

• UI distortion (13.8%≈55/399 bugs). UI distortion denotes those
minor displaying issues of UI elements, e.g., misaligned UI ele-
ments or asymmetric shapes [18], which affect the usability of
app functionalities. For example, in Simplenote’s Issue #728 (see
Figure 3(e) and (f)), the option “Sign out” is not aligned with the
other UI elements.

Content related issue. 85 out of the 399 bugs (accounting for
21.3%) belong to this symptom. The impact of a bug with this
symptom is that the content is not displayed as expected. For
example, in K-9 Mail’s Issue #4872, when a user writes a URL
“http://example.com” in a draft, closes and reopens the draft, the
content becomes “http://example.com <http://example.com>”. The
expected behavior is that the draft’s content should not be changed.

4.2 UI Interaction Issue

UI interaction issue is another major bug symptom, in addition to UI
display issue. Typically, UI display issue can be identified on a single
UI page, while identifying UI Interaction issue requires examining
some consecutive UI pages. As shown in Figure 4, UI interaction
issue includes the following three subgroups: (1) Incorrect Interaction
Logic, (2) Functionality Does Not Take Effect, and (3) UI Element Does

Not React.

An Empirical Study of Functional Bugs in Android Apps ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Table 4: Distributions of 399 functional bugs in terms of three

oracle types.

App #Bugs

Oracle Types

#AFA

#AFR

#AIF #ASF

Simplenote 35 16 11 8
AnkiDroid 82 22 20 40
Amaze 30 14 8 8
K-9 Mail 36 14 8 14
NewPipe 65 22 14 29
AntennaPod 41 15 8 18
WordPress 67 19 14 34
Firefox 43 11 17 15
Total 399 133 100 166

Incorrect interaction logic (19.0%≈76/399 bugs). The impact of
a bug with this symptom is that the app performs incorrect UI
page transitions or state reactions, which violates the original func-
tional logic. For example, in Amaze’s Issue #1872 (see Figure 3(g)
and (h)), when a user clicks the directory Download, the app erro-
neously shows a file opening dialog (intended for a normal file). The
expected behavior is that the app should directly open Download.
Functionality does not take effect (11.8%≈47/399 bugs). The
impact of a bug with this symptom is that the app disrespects the
user intended functionality. For example, in K-9 Mail’s Issue #3866,
after a user turns off the background synchronization option in the
app preference, the app disrespects this configuration and still does
background synchronization. Another example is in Firefox’s Issue
#4739 (see Figure 3(i) and (j)), when a user selects the item Google

and tries to delete it by clicking the trash button, the app fails to
delete Google (which is still there).
UI element does not react (4.5%≈18/399 bugs). The impact of a
bug with this symptom is that the app does not react when some
executable UI element is exercised. For example, in Amaze’s Issue
#2518, when a user clicks the Exit button on the app’s main page,
the Exit button does not react.

4.3 Other Symptoms

The remaining 12 functional bugs show other specific symptoms,
e.g., infinite loading, UI element flashing and failed animations.

Finding 5: Functional bugs have 7 major symptoms of two
major types, i.e., UI display issue and UI interaction issue.
Specifically, Content related issue (21.3%) and Incorrect inter-

action logic (19%) are the two most common symptoms.

5 RQ3: TEST ORACLES

In this section, we investigate what kinds of test oracles are needed
to find these functional bugs. Because test oracles are crucial for bug
manifestation, in addition to test inputs. Specifically, we examined
the bug-reproducing videos/images (including the executed events
and UI pages) of all the 399 functional bugs to identify the oracles.
We classified the oracles into two major groups from the view of the

required knowledge on app features: (1) app feature agnostic oracle
(AFA for short) and (2) app feature related oracle (AFR for short),
which contains two subgroups, i.e., app independent feature oracle
(AIF for short) and app specific feature oracle (ASF for short). Table 4
gives the disjoint classifications of all the 399 functional bugs based
on these three oracle types. We explain these oracles as follows.

74

28

17
12

2

51

23
20

4 2
0

10

20

30

40

50

60

70

80

N
um

be
r

of
 b

ug
s

Abnormal
Display

Data
Loss

Freeze Error
Message

Failed
Animation

CRUD Navigation General
Setting

Auth Icon
Consistency

(a) App feature agnostic oracle (b) App independent feature oracle

Figure 5: Distributions of the oracles in AFA and AIF.

App feature agnostic oracle (AFA). This type of oracles is defined
based on the implicit knowledge of correct app behaviors without

knowing app features. Thus, this type of oracle is most general
(and could be automatically generated) for finding functional bugs.
Figure 5 (a) shows the distributions of different oracles in this
oracle group. Abnormal Display checks common abnormal display
issues (e.g., overlapped texts, misaligned UI elements), which is the
dominant case (74 out of 133 bugs) in this group. Data Loss checks
whether the user data is properly preserved after specific user
actions (e.g., rotating screens, putting the app to the background
and returning back). Freeze checks any executable UI element should
react to user actions (e.g., a clickable button should always react
to a click action). Error Message checks typical error messages (e.g.,
“Network error”) which indicate something went wrong. Failed
Animation checks the failures of some animation effects.
App feature related oracle (AFR). This type of oracles requires
some knowledge of app features. Specifically, this oracle type con-
tains two subgroups:

• App independent feature oracle (AIF). This type of oracles
is related to app independent features, which are implemented
similarly across different apps and thus we have the common
knowledge of the expected behaviors. The typical examples of
this oracle type are those common UI design patterns [2, 39, 43,
62]. Figure 5(b) shows the distributions of different oracles in
the oracle group. CRUD [38] checks the functionality of create,
read, update and delete (e.g., the number of items should increase
or decrease after a creation or deletion operation is executed).
Navigation checks the functionality of specific navigation (e.g.,
the app should be navigated to the previous UI page after pressing
Back). General Setting checks the functionality of specific setting
(e.g., the texts of an app should respect the selected language
setting). Auth checks the functionality of user authentication
(e.g., the login operation should succeed when the credential is
correct). Icon Consistency checks the consistency between the
icon and the corresponding functionality (e.g., a deletion icon
should do the deletion operation).

• App specific feature oracle (ASF). This type of oracles is related
to the app specific logic and requires the knowledge on an app’s
own functionalities. It is hard to be automatically generated. For
example, in AnkiDroid, if a user suspends a learning card, the
color behind the card should be changed.

In Table 4, we find that 33.3% (133/399) of functional bugs can
be observed by app feature agnostic oracle (see #AFA), while 66.7%

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yiheng Xiong, Mengqian Xu, Ting Su, Jingling Sun, Jue Wang, He Wen, Geguang Pu, Jifeng He, and Zhendong Su

Table 5: Results of existing testing tools on finding the 399

functional bugs. “-” denotes the tool is not available.

Tool Testing Technique Target Bugs

#Bugs

in Scope

#Tested

Bugs

#Found

Bugs

DiffDroid Differential testing Compatibility 27 - -
OwlEye Deep learning UI display 14 - -
iFixDataloss Implicit knowledge Data loss 8 6 0
ITDroid Differential testing I18n-related 1 1 1
SetDroid Metamorphic testing Setting-related 18 13 1
Genie Metamorphic testing Functional 2 2 0
ODIN Implicit knowledge Functional 20 14 0
#Total 84 33 2

(266/399) of the bugs require app feature related oracle (see #AFR).
Specifically, 25.1% (100/399) of the bugs can be captured by app

independent feature oracle (see #AIF), while 41.6% (166/399) of the
bugs require app specific feature oracle (see #ASF).
Limitations of prior studies. Zaeem et al. [69] (listed in Table 1)
only identified the oracle of Data Loss in app feature agnostic ora-

cle and missed some major oracles (e.g., Abnormal Display, Freeze,
Error Message). They also missed some major oracles (e.g., CRUD,
Navigation) in app independent feature oracle.

Finding 6: Among all the studied 399 functional bugs, 33.3%
(133/399) of the bugs can be observed by app feature agnostic

oracle, while 66.7% (266/399) require app feature related oracle.

6 RQ4: STATUS OF EXISTING TECHNIQUES

This section examines the status of existing automated testing
techniques in finding functional bugs. We analyze how many of the
399 functional bugs in our dataset could be found by existing tools.
Analysis Method. We surveyed the relevant work which targets
functional bugs in Android apps in the literature. Specifically, we
focus on those testing tools which can automatically generate in-
puts and oracles. Table 5 lists the selected representative testing
tools: “Tool” gives the tool name, “Testing Technique” gives the main
testing technique used by the tool, “Target Bugs” gives the type
of functional bugs the tool targets. DiffDroid [16] compares the
GUI pages of an app on two different devices to find compatibility
issues. OwlEye [36] uses deep learning to detect UI display issues,
especially UI distortions (e.g., overlapping texts, component occlu-
sion). iFixdataloss [21] is the most recent work of finding data loss
issues among the others [45, 46, 69]. ITDroid [13] compares the
GUI pages of an app under two different language settings to find
internationalization (i18n) issues. SetDroid [58, 59] uses metamor-
phic testing to find system setting-related functional bugs. Genie
uses the metamorphic relation of independent view property [57]
to find bugs, while Odin [65] uses the implicit knowledge of “bugs
as deviant behavior” [12] to find bugs. Genie [57] and Odin [65]
are the only two tools that target generic functional bugs, while
the others target specific types of functional bugs.

To investigate these tools, we conducted a two-step analysis
method. In the first step, we manually analyzed which functional
bugs in our dataset are within the tool’s capability scope. To do this
analysis, we (1) read the corresponding paper and examine the tool
(if available) to understand its technique; and (2) check whether
the oracle generated by the tool can capture a bug according to its
symptom and/or root cause (assuming the tool can always generate
the necessary inputs reaching the bug). Thus, the analysis results

can be interpreted as the optimistic upper bound of the tool’s capa-
bility (without considering the effect of other factors, e.g., allocated
testing time and specific device types, which may affect the tool’s
practical effectiveness). It also allows us to analyze those unavail-
able tools (DiffDroid and OwlEye). Before the analysis, we talked
with Genie’s and Odin’s authors to validate our understanding on
their techniques which are more sophisticated than the other tools.

In the second step, we ran each tool on the bugs within its scope
to validate its actual capability. We did not run DiffDroid and
OwlEye because they are not publicly available. We followed the
default setup (e.g., allocated testing time, running parameters) of
each tool in our experiment. If an app requires some initial setup
(e.g., user login), we provided the tool with a script to complete the
setup. After the testing, we inspected the running results of each
tool to examine whether the tool found the bugs.
Analysis Results. In Table 5, “#Bugs in scope” gives the numbers
of bugs within the scope of the tool based on our manual analysis,
“#Tested Bugs” gives the number of bugs tested by the tool (recall
that our bug dataset contains 134 bugs which are not reproducible
but have clear reproducing videos/images for bug analysis in Sec-
tion 2; such bugs are excluded in this step) and “#Found bugs” gives
the number of bugs found by the tool. We can see that only 21%
(≈84/399) of the 399 functional bugs are within the capability scope
of all these tools. It indicates that the oracles of these tools are
limited in finding functional bugs. Moreover, only 2 out of 33 tested
bugs are found by these tools. By analyzing the testing results of
these tools, we find that the major reason is that their generated
inputs are of low quality and hard to reach the buggy scenarios. In
practice, Genie and Odin report many false positives.

Finding 7: Most existing tools only target specific types of
functional bugs. Only 21% of the 399 functional bugs are
within the capability scope of existing automated testing tools
due to the limited oracles. Moreover, these tools can only find
2 bugs due to the low quality of the generated inputs.

7 REPRESENTATIVENESS OF OUR STUDY

In this section, we validate the representativeness of our study by
analyzing another bug dataset of Android apps, AndroR2 [28, 68].
This dataset was not constructed by the authors of this paper. It
contains 180 manually-reproduced bug reports (corresponding to
50 crashing and 130 non-crashing functional bugs). Prior to our
work, it was the largest publicly available bug dataset for Android
apps. It was systematically constructed based on the issues from
GitHub. Specifically, to avoid overfitting to a specific app, AndroR2
only includes at most 10 randomly-selected, reproducible bugs per
app. For example, the 130 functional bugs in AndroR2 come from
42 different apps (on average 3 bugs per app). Thus, AndroR2
complements our dataset because we focus on selecting a broad
range of bugs (spanning three years) from eight representative apps.
Note that AndroR2 focuses on studying the reproducibility of bug

reports rather than analyzing functional bugs.

We inspected the 130 functional bugs in AndroR2 by following
the similar analysis methods of RQ1∼RQ3. Among these 130 bugs,
109 bugs have fixing patches and only 6 bugs overlap with our
dataset. Our goal is to validate (1) whether the root causes, symp-
toms and oracles of these 130 bugs are covered by our dataset, and

An Empirical Study of Functional Bugs in Android Apps ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

(2) whether the analysis results are consistent with ours. Specifically,
we manually reproduced the 130 bugs to analyze their symptoms,
oracles, and analyzed the root causes of 109 bugs by inspecting the
patches. We find that (1) these bugs’ root causes, symptoms and
oracles are all covered by our results, and (2) the analysis results are
consistent with ours. For example, for the root causes,missing cases

and Android resource related error are the two most common faults,
affecting 14.7% (16/109) and 15.6% (17/109) of these bugs. For the
bug symptoms, content related issue (18.5%≈24/130) and incorrect

interaction logic (24.6%≈32/130 bugs) are the two most common
symptoms. For the test oracles, 30% (39/130) of these bugs can be
observed by app feature agnostic oracle, while 70% (91/130) of these
bugs require app feature related oracle. To sum up, our analysis
results based on our own dataset of 399 bugs are representative.

8 IMPLICATIONS AND DISCUSSIONS

In this section, we discuss the implications obtained from our study
(RQ1∼RQ4) and shed light on what developers and researchers
could do to tackle functional bugs in Android apps.

8.1 Avoiding and Diagnosing Functional Bugs

Missing cases is one of the most common root causes affecting
many (15.8%) functional bugs (Finding 1, RQ1). It indicates that, in
addition to the main usage cases, developers should pay attention
to the alternative usage cases from the view of app users when
developing or testing some app functionality. For example, for a
notebook app (like Simplenote), developers should consider that
users may input special characters which may lead to garbled text.
In fact, our inspection on all the developer-written tests of the eight
apps in our study shows that many (73.7%) of these tests missed
the functional bugs because of missing cases.

Android resource related error is another one of the most common
root causes (Finding 3,RQ1) affecting many (15.8%) functional bugs.
It mainly leads to UI distortion, missing UI elements and content

related issue. In some cases, this error occurs because developers
mistake the resource ids between some UI elements (see Figure 2(h)).
To counter this, developers could (1) avoid ambiguity when defining
resource ids and (2) check whether there are some resource ids
defined in the resource files but have never been used in the app
code. In other cases, some hard-coded strings left in the app code
lead to displaying incorrect texts or icons. Developers can use
Lint [35] to avoid such bad programming practices.

By analyzing the correlation between bug symptoms (RQ2) and
root causes (RQ1), we find that (1) most (78%) of UI distortion are in-
duced by Android resource related error (42%), Android compatibility

issue (20%) and missing cases (16%), and (2) many (61%) of UI ele-
ment does not react are induced by resource related error (39%) and
missing feature (22%). Thus, developers could use such information
of the correlation to aid diagnosing functional bugs.

8.2 Finding Functional Bugs

Choosing appropriate oracles to find functional bugs. Our
study reveals that 33.3% of the functional bugs can be found by app

feature agnostic oracle, while 66.7% of the functional bugs require
app feature related oracle (Finding 6, RQ3). Moreover, by analyz-
ing the correlation between bug symptoms (RQ2) and test oracles

(RQ3), we find that (1) app feature agnostic oracle can capture many
UI distortion (73%) and UI element does not react (78%), respectively,
while (2) functionality does not take effect (80%) and Redundant

UI elements (71%) can only be captured by app feature related or-

acle. These results indicate that choosing appropriate oracles is
important in effectively finding functional bugs (e.g., balancing the
implementation effort and the effectiveness of the oracles).

For example, to find the bugs of UI element does not react, we can
implement an app agnostic oracle, i.e., exercising any executable
(e.g., clickable) UI element should always lead to some UI effects.
On the other hand, to find app feature related bugs, we have to use
the derived oracles or specified oracles [5]. In the case of derived
oracles, we could use metamorphic testing [7] or differential test-
ing [40] to derive more oracles and overcome the oracle limitations
in existing automated testing tools (Finding 7, RQ4). Section 9 will
demonstrate the feasibility of adapting differential testing to find
functional bugs. In the case of specified oracles, property-based
testing [9] could be an ideal approach. Because we can specify the
knowledge of app functionalities as some properties [38, 42] and
then automatically validate functional correctness by generating
different inputs. To our knowledge, little effort adapts property-
based testing to find functional bugs in Android apps [30].
Effective input generation is still crucial. Although existing au-
tomated testing tools have designed automated oracles to find func-
tional bugs, their generated inputs are hard to cover meaningful app
functionalities (Finding 7, RQ4). Thus, researchers should design
more effective input generation techniques to generate context-
aware inputs that meaningfully interact with the app’s functionali-
ties, and thus increase the chance of finding functional bugs.

9 FINDING FUNCTIONAL BUGS VIA

DIFFERENTIAL TESTING

According to RQ3, 66.7% of functional bugs can only be found
by app feature related oracle. This finding inspires us to adapt the
idea of differential testing to overcome the oracle problem. Because
differential testing can compare the behaviors of the tested app with
those of a reference app (with similar functionalities) to identify
likely functional bugs without specifying app features. Moreover,
inspired by the results of RQ2, we find that a prior version of the
tested app can be used as the reference app (which likely has similar
functionalities). For example, we can compare the two app versions,
e.g., corresponding to Figure 4(a) v.s. (b) and Figure 4(g) v.s. (h),
to find those functional bugs of missing UI elements or incorrect
interaction logic, respectively. Specifically, we identify the functional
inconsistencies between the two app versions by checking whether
some event trace from the prior app version is executable on the
tested app version. In this way, we can find both UI display issue

and UI interaction issue. To our knowledge, we are the first to apply
differential testing on two different versions of the same app to find
functional (regression) bugs (discussed in Section 11).

9.1 Approach Design and Implementation

We implemented the preceding idea as an automated differential
testing tool named RegDroid to find functional bugs. Figure 6
depicts the workflow of RegDroid. At the high-level, RegDroid
generates random GUI tests (in the form of UI event sequences),

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yiheng Xiong, Mengqian Xu, Ting Su, Jingling Sun, Jue Wang, He Wen, Geguang Pu, Jifeng He, and Zhendong Su

App
Oracle Checker

Bug reports

B

Event Selector

A
Get GUI layout

Vers
ion A

Version B

Iterate per n events

Get GUI layout

Execute event

Execute event

Figure 6: Overview of RegDroid.

Table 6: Statistics of the 14 functional bugs found by Reg-

Droid from five popular open-source apps.

App Name #Stars ID Bug State New Bug? Bug Symptom

AnkiDroid 5.4K 1 Fixed Yes (#12053) Incorrect interaction logic
2 Fixed Yes (#11220) UI element does not react
3 Fixed No Incorrect interaction logic
4 Fixed Yes (#11363) UI element does not react

Amaze 4.0K 5 Fixed Yes (#3378) Missing UI elements
6 Fixed Yes (#3394) Redundant UI elements
7 Fixed No Missing UI elements
8 Fixed No Redundant UI elements

AntennaPod 4.4K 9 Fixed Yes (#5977) Missing UI elements
10 Fixed Yes (#5863) UI Element does not react

Markor 2.4K 11 Fixed Yes (#1800) Functionality does not take effect
Omni-Notes 2.5K 12 Fixed Yes (#865) UI Element does not react

13 Fixed Yes (#867) Functionality does not take effect
14 Fixed No Missing UI elements

runs these tests separately on the two app versions (e.g., version
𝐴 and 𝐵), and checks whether the GUI pages of version 𝐴 and 𝐵

(along the GUI tests) contain the similar UI widgets. Specifically,
RegDroid runs two identical Android devices in parallel to improve
testing efficiency. It includes two key modules: (a) event selector
and (b) oracle checker, which we explain as follows.

Event selector. This module is responsible for generating random
GUI tests. It randomly selects one executable GUI widget𝑤 from
the current GUI page ℓ𝐴 of app version 𝐴 and generates the corre-
sponding event 𝑒 (e.g., click, edit, scroll) according to𝑤 ’s widget
property (e.g., clickable, editable, scrollable). Later, this event 𝑒
will be executed on version 𝐴 and 𝐵, respectively. Note that the
oracle checker module will be called before the event execution
(which we explain later). This module will be iteratively called until
generating 𝑛 events, or some inconsistency is found (in this case,
RegDroid will restart the app from fresh and test it again).

Oracle checker. This module is responsible for oracle checking. It
is called before the actual execution of the selected event 𝑒 . Specif-
ically, since the UI widget 𝑤 exists on the current GUI page ℓ𝐴
of app version 𝐴, this module checks whether 𝑤 also exists on
the corresponding GUI page ℓ𝐵 of app version 𝐵. Specifically, we
check whether the GUI page ℓ𝐵 contains the same UI widget whose
resource id and class name are identical to those of𝑤 . If𝑤 does not
exist on ℓ𝐵 , RegDroid finds the inconsistency and reports a likely
bug. Otherwise, 𝑒 will be executed on version 𝐴 and 𝐵, respectively.
After the execution, event selector is called.

RegDroid is implemented in Python, and uses uiautomator2 [63]
to parse UI widgets from the UI pages and send UI events.

9.2 Evaluation Setup and Results

Evaluation Setup. We applied RegDroid on five popular, long-
maintained open-source apps (see Table 6). Among these five apps,
three apps are selected from our studied subjects, i.e., AnkiDroid,
Amaze, AntennaPod, which are convenient to setup on the machine
for testing. The other two apps are not within our studied subjects,
i.e., Markor and Omni-Notes. The experiments were conducted on

a 64-bit Ubuntu 20.04 machine and Android emulators (Android
8.0, Pixel XL). Specifically, we selected 56 versions of AnkiDroid,
19 versions of Amaze, 16 versions of AntennaPod, 19 versions of
Markor and 16 versions of Omni-Notes for testing. Note that all
these versions are continuously released on GitHub. RegDroid is
configured to test any two continuous release versions of an app
by generating 50 random GUI tests (each test contains 100 events),
which took about 12 hours. Since we tested 5 apps and their 121
two-continuous release versions in total, the whole experiment
took around 8 days = 121*12/8/24 (because at most 16 Android
devices can run in parallel on one machine, we can test at most
8 two-continuous release versions in parallel on one machine).
Afterwards, we inspected all the bugs reported by RegDroid. If
a bug is a true positive, we tried to reproduce it on the latest app
version to verify whether this is a new (unknown) bug or a fixed
one. If it is a new bug, we filed a bug report to the app developers.
Otherwise, we further checked whether this bug was reported by
others or silently fixed by the developers.
Results. RegDroid successfully found 14 unique functional bugs.
Among these 14 bugs, 10 are new bugs (which affect the latest
released versions), 2 were silently fixed by the developers (which
have not been reported by others), and 2 were reported by others
and fixed. We submitted the bug reports for those 10 news bugs,
all of which have been confirmed and fixed by the app developers.
Table 6 shows these 14 functional bugs, including the app name,
the number of stars on GitHub, the bug id, the bug state, whether it
is a new bug affecting the latest released version (with the issue id
on GitHub), and the bug symptom. We can see that the found bugs
cover five different symptoms (e.g.,missing UI elements, incorrect in-
teraction logic, functionality does not take effect). Specifically, among
these 14 bugs, only 4 bugs (ID: 5, 6, 7, 14) can be detected by existing
testing tools in Section 6. RegDroid complements existing testing
tools in finding the remaining 10 functional bugs. As a by-product
of the functional testing, RegDroid also found 12 crashing bugs.

We find that 6 out of the new 10 bugs (60%) have hidden in the
apps for over six months and affected more than eight versions. For
example, RegDroid found a functional bug in Markor (Bug ID: 11)
in which selecting any option (e.g., search, select all) in a menu
list does not take effect in the landscape mode. This bug has been
hidden in the app for three years. The developer quickly fixed this
bug in a few hours after we reported it. We also received positive
feedback from the developers, e.g., “Thanks for reporting!”, “Thanks
for the feedback!” These results show that RegDroid is useful.
Discussion. In the experiment,RegDroid reported 205 bugs. Among
these bugs, 73 are true positives (36%) and 132 are false positives
(64%). Many false positives are duplicated (only 50 out of 132 are
unique ones). We note that these false positives are caused by two
major reasons: (1) some app feature of the current version was
updated (removed or added) in the newer version (accounting for
93% cases); and (2) some bug in the current version was fixed in
the newer version (accounting for 7% cases). In practice, RegDroid
highlights the inconsistencies on the UI pages to ease bug inspec-
tion. It took us less than one hour to inspect all the 205 bugs.

Despite the false positive rate, our simple implementation (with-
out any optimization) of RegDroid already shows its promise in

An Empirical Study of Functional Bugs in Android Apps ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

finding hard-to-detect functional bugs, which complements exist-
ing tools. In fact, its positive rate (64%) is comparable to existing
sophisticated, state-of-the-art functional testing tools Genie [57]
and Odin [65], which respectively have 59% and 68% false posi-
tive rates. Moreover, it is feasible to avoid many false positives by
choosing two “closer” app versions with fewer feature (UI) changes.
It can be achieved by analyzing the app code to identify which code
commits changed UIs. We leave such optimizations as future work.

10 THREATS TO VALIDITY

Our study may suffer from some threats to validity. First, our study
collected 399 functional bugs from 8 apps. Our findings may not
be general to all the apps. To mitigate this threat, these apps are
selected carefully to ensure that their representativeness. These 8
apps are popular, actively-maintained and have different features.
Moreover, we complement our study by studying a third-party
dataset, AndroR2, which contains 130 bugs from 43 different apps.
The results from these two datasets are consistent (Section 7). Sec-
ond, our study involves manual analysis, which may bring some
biases. To this end, in Section 3, 4, 5, two co-authors independently
inspected the bugs and then cross-checked the results between
themselves and the other co-authors to achieve consensus.

11 RELATEDWORK

Empirical studies related to functional bugs in Android apps.
Different from the prior work on studying crashing bugs [14, 26, 54],
our work studies non-crashing functional bugs. To our knowledge,
the most relevant work is from Hu et al. [23], Zaeem et al. [69] and
Johnson et al. [28]. But all these work does not aim to conduct a
systematic study on functional bugs (see Table 1). The other studies
only investigate specific types (and a small portion) of functional
bugs, e.g., WebView bugs [25], compatibility issues [67], system
setting-related defects [58], i18n bugs [13] and UI display issues [36].
In contrast, our work covers different functional bugs.
Finding functional bugs in Android apps. In addition to the
automated testing tools discussed in Section 6, other tools require
human inputs to find functional bugs. For example, some tools rely
on human-written tests to find functional bugs. Thor [1] and Chim-
pCheck [30] could inject neutral events (e.g., pause-stop-restart)
into the human tests to check whether the assertions in the tests still
hold. AppFlow [24], ACAT [47], AppTestMigrator [6] and Craft-
Droid [33] migrate the human tests written for one app to another
similar app to validate functional correctness. Some tools require
manually defining app functionalities in specification languages
for bug finding, e.g., Augusto [38] and FARLEAD-Android [29].
Static analysis is also used to find specific functional bugs with
distinct faulty code patterns. For example, KREfinder [49] and
LiveDroid [15] scan incorrect handling of specific data variables
to find data loss issues. But these tools suffer from high false posi-
tives. Android Lint [35] is a popular static analysis tool for finding
different issues in Android apps based on many predefined rules.
However, it focuses on general code issues in Android apps and
falls short in detecting app specific functional bugs.
Differential testing on Android apps. Our demo tool RegDroid
adapts differential testing on two different versions of the same app

to find functional bugs. Thus, RegDroid can be viewed as a differen-
tial regression testing technique. To our knowledge, we are the first
to adopt this technique to test Android apps. For example, Diff-
Droid [16] and SPAG-C [34] also use differential testing, but they
run the same app version on two different devices to find compati-
bility issues. In the direction of regression testing for Android apps,
no prior work compares the UI pages between two app versions
to find functional bugs. For example, Redroid [11] and ReTest-
Droid [27] analyze the updated app code to identify which prior
tests can be reused to test the app updates. QADoird [50] analyzes
which new activities or UI events should be targeted for regression
testing. ATOM [31] updates the test scripts for the evolving apps.
None of these work targets finding functional bugs.

12 CONCLUSION

In this paper, we conduct the first systematic study on 399 functional
bugs to study their symptoms, root causes, test oracles, and the
capabilities and limitations of existing testing techniques. From
this study, we obtain new interesting findings and implications
that help shed light on tackling functional bugs. Based on some
study findings, we design a differential testing tool RegDroid to
detect functional bugs in Android apps. RegDroid successfully
demonstrates its usefulness and complements existing testing tools.

DATA AVAILABILITY

We have made all the artifacts (including the bug dataset and the
source code of RegDroid) publicly available at https://github.com/

Android-Functional-bugs-study/home for replication.

ACKNOWLEDGMENTS

We thank the anonymous ISSTA reviewers for their valuable feed-
back and the insightful comments from Zhao Zhang and Chao Peng
from ByteDance on the bug symptoms of functional bugs. This
work was supported in part by NSFC Grant 62072178, National
Key Research and Development Program (Grant 2022YFB3104002),
“Digital Silk Road” Shanghai International Joint Lab of Trustworthy
Intelligent Software under Grant 22510750100, National Key Re-
search and Development Program (Grant 2020AAA0107800), and
the Shanghai Collaborative Innovation Center of Trusted Industry
Internet Software.

REFERENCES

[1] Christoffer Quist Adamsen, Gianluca Mezzetti, and Anders Møller. 2015. System-
atic execution of Android test suites in adverse conditions. In Proceedings of the

2015 International Symposium on Software Testing and Analysis (ISSTA). 83–93.
https://doi.org/10.1145/2771783.2771786

[2] Anders Toxboe . 2022. Design patterns. Retrieved 2022-9 from https://ui-patterns.
com/patterns

[3] Android. 2022. Input events overview. Retrieved 2022-9 from https://developer.
android.com/develop/ui/views/touch-and-input/input-events

[4] AppBrain Team. 2023. Most popular Google Play categories. Retrieved 2023-2
from https://www.appbrain.com/stats/android-market-app-categories

[5] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo.
2015. The Oracle Problem in Software Testing: A Survey. IEEE Trans. Software

Eng. 41, 5 (2015), 507–525. https://doi.org/10.1109/TSE.2014.2372785

[6] Farnaz Behrang and Alessandro Orso. 2019. Test migration between mobile apps
with similar functionality. In 2019 34th IEEE/ACM International Conference on

Automated Software Engineering (ASE). 54–65. https://doi.org/10.1109/ASE.2019.
00016

https://github.com/Android-Functional-bugs-study/home
https://github.com/Android-Functional-bugs-study/home
https://doi.org/10.1145/2771783.2771786
https://ui-patterns.com/patterns
https://ui-patterns.com/patterns
https://developer.android.com/develop/ui/views/touch-and-input/input-events
https://developer.android.com/develop/ui/views/touch-and-input/input-events
https://www.appbrain.com/stats/android-market-app-categories
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/ASE.2019.00016
https://doi.org/10.1109/ASE.2019.00016

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Yiheng Xiong, Mengqian Xu, Ting Su, Jingling Sun, Jue Wang, He Wen, Geguang Pu, Jifeng He, and Zhendong Su

[7] Tsong Y. Chen, Shing C. Cheung, and Shiu Ming Yiu. 2020. Metamorphic testing:

a new approach for generating next test cases. Technical Report. HKUST-CS98-01,
Hong Kong University of Science and Technology.

[8] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Au-
tomated Test Input Generation for Android: Are We There Yet? (E). In 30th

IEEE/ACM International Conference on Automated Software Engineering (ASE).
429–440. https://doi.org/10.1109/ASE.2015.89

[9] Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for
random testing of Haskell programs. In Proceedings of the Fifth ACM SIGPLAN

International Conference on Functional Programming (ICFP). 268–279. https:
//doi.org/10.1145/351240.351266

[10] Compuware. 2013. Users Have Low Tolerance For Buggy Apps - Only

16% Will Try A Failing App More Than Twice. Retrieved 2020-5
from https://techcrunch.com/2013/03/12/users-have-low-tolerance-for-buggy-
apps-only-16-will-try-a-failing-app-more-than-twice/

[11] Quan Chau Dong Do, Guowei Yang, Meiru Che, Darren Hui, and Jefferson Ridge-
way. 2016. Redroid: A Regression Test Selection Approach for Android Applica-
tions. In The 28th International Conference on Software Engineering and Knowledge

Engineering (SEKE). 486–491. https://doi.org/10.18293/SEKE2016-223
[12] Dawson R. Engler, David Yu Chen, and Andy Chou. 2001. Bugs as Deviant

Behavior: A General Approach to Inferring Errors in Systems Code. In Proceedings
of the 18th ACM Symposium on Operating System Principles (SOSP 2001). 57–72.
https://doi.org/10.1145/502034.502041

[13] Camilo Escobar-Velásquez,Michael Osorio-Riaño, JuanDominguez-Osorio,Maria
Arevalo, and Mario Linares-Vásquez. 2020. An Empirical Study of i18n Collateral
Changes and Bugs in GUIs of Android apps. In IEEE International Conference on

Software Maintenance and Evolution (ICSME). 581–592. https://doi.org/10.1109/
ICSME46990.2020.00061

[14] Lingling Fan, Ting Su, Sen Chen, Guozhu Meng, Yang Liu, Lihua Xu, Geguang Pu,
and Zhendong Su. 2018. Large-scale analysis of framework-specific exceptions
in Android apps. In Proceedings of the 40th International Conference on Software

Engineering (ICSE). 408–419. https://doi.org/10.1145/3180155.3180222
[15] Umar Farooq, Zhijia Zhao, Manu Sridharan, and Iulian Neamtiu. 2020. Livedroid:

Identifying and preserving mobile app state in volatile runtime environments.
Proceedings of the ACM on Programming Languages 4, OOPSLA (2020), 1–30.
https://doi.org/10.1145/3428228

[16] Mattia Fazzini and Alessandro Orso. 2017. Automated cross-platform incon-
sistency detection for mobile apps. In Proceedings of the 32nd IEEE/ACM Inter-

national Conference on Automated Software Engineering (ASE). 308–318. https:
//doi.org/10.1109/ASE.2017.8115644

[17] Mattia Fazzini, Martin Prammer, Marcelo d’Amorim, and Alessandro Orso. 2018.
Automatically translating bug reports into test cases for mobile apps. In Proceed-

ings of the 27th ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA). 141–152. https://doi.org/10.1145/3213846.3213869
[18] Gil Bouhnick. 2019. Visually distorted - when symmetrical UI looks all wrong.

Retrieved 2022-10 from https://www.mobilespoon.net/2019/08/visually-distorted-
when-ui-looks-all.html

[19] Google. 2022. Google Issue Tracker. Retrieved 2022-9 from https://issuetracker.
google.com/issues/37124582?pli=1

[20] Google. 2022. Google Play Store. Retrieved 2022-9 from https://play.google.com/
store/apps

[21] Wunan Guo, Zhen Dong, Liwei Shen, Wei Tian, Ting Su, and Xin Peng. 2022.
Detecting and fixing data loss issues in Android apps. In ISSTA ’22: 31st ACM

SIGSOFT International Symposium on Software Testing and Analysis. 605–616.
https://doi.org/10.1145/3533767.3534402

[22] Hacker News. 2013. Tell Facebook: There’s a severe bug when changing profile pics

on the iOS app. Retrieved 2022-8 from https://news.ycombinator.com/item?id=
6456285.

[23] Cuixiong Hu and Iulian Neamtiu. 2011. Automating GUI testing for Android
applications. In Proceedings of the 6th International Workshop on Automation of

Software Test (AST). 77–83. https://doi.org/10.1145/1982595.1982612
[24] Gang Hu, Linjie Zhu, and Junfeng Yang. 2018. AppFlow: using machine learning

to synthesize robust, reusable UI tests. In Proceedings of the 2018 ACM Joint

Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, ESEC/SIGSOFT (FSE). 269–282. https://doi.
org/10.1145/3236024.3236055

[25] Jiajun Hu, Lili Wei, Yepang Liu, Shing-Chi Cheung, and Huaxun Huang. 2018.
A tale of two cities: how WebView induces bugs to Android applications. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software

Engineering (ASE). 702–713. https://doi.org/10.1145/3238147.3238180

[26] Ajay Kumar Jha, Sunghee Lee, and Woo Jin Lee. 2019. Characterizing Android-
specific crash bugs. In Proceedings of the 6th International Conference on Mobile

Software Engineering and Systems (MOBILESoft). 111–122. https://doi.org/10.
1109/MOBILESoft.2019.00024

[27] Bo Jiang, Yu Wu, Yongfei Zhang, Zhenyu Zhang, and W. K. Chan. 2018. ReTest-
Droid: Towards Safer Regression Test Selection for Android Application. In 2018

IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC).
235–244. https://doi.org/10.1109/COMPSAC.2018.00037

[28] Jack Johnson, Junayed Mahmud, Tyler Wendland, Kevin Moran, Julia Rubin, and
Mattia Fazzini. 2022. An Empirical Investigation into the Reproduction of Bug
Reports for Android Apps. In 2022 IEEE International Conference on Software

Analysis, Evolution and Reengineering (SANER). 321–322. https://doi.org/10.1109/
SANER53432.2022.00048

[29] Yavuz Köroglu and Alper Sen. 2021. Functional test generation from UI test
scenarios using reinforcement learning for android applications. Softw. Test.

Verification Reliab. 31, 3 (2021). https://doi.org/10.1002/stvr.1752
[30] Edmund S. L. Lam, Peilun Zhang, and Bor-Yuh Evan Chang. 2017. ChimpCheck:

property-based randomized test generation for interactive apps. In Proceedings of

the 2017 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,

and Reflections on Programming and Software (Onward!). 58–77. https://doi.org/
10.1145/3133850.3133853

[31] Xiao Li, Nana Chang, Yan Wang, Haohua Huang, Yu Pei, Linzhang Wang, and
Xuandong Li. 2017. ATOM: Automatic maintenance of GUI test scripts for
evolving mobile applications. In 2017 IEEE International Conference on Software

Testing, Verification and Validation (ICST). 161–171. https://doi.org/10.1109/ICST.
2017.22

[32] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and Chengxiang
Zhai. 2006. Have things changed now?: an empirical study of bug characteristics
in modern open source software. In Proceedings of the 1st Workshop on Archi-

tectural and System Support for Improving Software Dependability (ASID). 25–33.
https://doi.org/10.1145/1181309.1181314

[33] Jun-Wei Lin, Reyhaneh Jabbarvand, and Sam Malek. 2019. Test Transfer Across
Mobile Apps Through Semantic Mapping. In 34th IEEE/ACM International Con-

ference on Automated Software Engineering (ASE). 42–53. https://doi.org/10.1109/
ASE.2019.00015

[34] Ying-Dar Lin, José F. Rojas, Edward T.-H. Chu, and Yuan-Cheng Lai. 2014. On
the Accuracy, Efficiency, and Reusability of Automated Test Oracles for Android
Devices. IEEE Trans. Software Eng. 40, 10 (2014), 957–970. https://doi.org/10.
1109/TSE.2014.2331982

[35] Lint Team. 2022. Android Lint. Retrieved 2022-10 from http://tools.android.com/
lint/overview

[36] Zhe Liu, Chunyang Chen, Junjie Wang, Yuekai Huang, Jun Hu, and Qing Wang.
2020. Owl Eyes: Spotting UI Display Issues via Visual Understanding. In 35th

IEEE/ACM International Conference on Automated Software Engineering (ASE).
398–409. https://doi.org/10.1145/3324884.3416547

[37] Localytics. 2019. 25% of Users Abandon Apps After One Use. Retrieved 2020-5
from http://info.localytics.com/blog/25-of-users-abandon-apps-after-one-use

[38] Leonardo Mariani, Mauro Pezzè, and Daniele Zuddas. 2018. Augusto: exploiting
popular functionalities for the generation of semantic GUI tests with Oracles. In
Proceedings of the 40th International Conference on Software Engineering (ICSE).
280–290. https://doi.org/10.1145/3180155.3180162

[39] Martijn van Welie. 2008. Pattern library. Retrieved 2022-9 from http://www.
welie.com/patterns/index.php

[40] William M McKeeman. 1998. Differential testing for software. Digital Technical
Journal 10, 1 (1998), 100–107.

[41] Motherboard. 2020. Here’s the Shadow Inc. App That Failed in Iowa Last Night.
Retrieved 2020-5 from https://www.vice.com/en_us/article/y3m33x/heres-the-
shadow-inc-app-that-failed-in-iowa-last-night

[42] Liam O’Connor and Oskar Wickström. 2022. Quickstrom: property-based accep-
tance testing with LTL specifications. In Proceedings of the 43rd ACM SIGPLAN

International Conference on Programming Language Design and Implementation

(PLDI). 1025–1038. https://doi.org/10.1145/3519939.3523728
[43] Dominik Pacholczyk. 2014. Mobile UI Design Patterns A Deeper Look At The

Hottest Apps Today. www.uxpin.com.
[44] Reuters. 2021. Japan’s COVID-19 app failed to pass on some contact warnings.

Retrieved 2022-10 from https://www.reuters.com/article/us-health-coronavirus-
japan-app-idUSKBN2A31BA

[45] Vincenzo Riccio, Domenico Amalfitano, and Anna Rita Fasolino. 2018. Is this the
lifecycle we really want?: an automated black-box testing approach for Android
activities. In Companion Proceedings for the ISSTA/ECOOP 2018 Workshops (ISSTA).
68–77. https://doi.org/10.1145/3236454.3236490

https://doi.org/10.1109/ASE.2015.89
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://techcrunch.com/2013/03/12/users-have-low-tolerance-for-buggy-apps-only-16-will-try-a-failing-app-more-than-twice/
https://techcrunch.com/2013/03/12/users-have-low-tolerance-for-buggy-apps-only-16-will-try-a-failing-app-more-than-twice/
https://doi.org/10.18293/SEKE2016-223
https://doi.org/10.1145/502034.502041
https://doi.org/10.1109/ICSME46990.2020.00061
https://doi.org/10.1109/ICSME46990.2020.00061
https://doi.org/10.1145/3180155.3180222
https://doi.org/10.1145/3428228
https://doi.org/10.1109/ASE.2017.8115644
https://doi.org/10.1109/ASE.2017.8115644
https://doi.org/10.1145/3213846.3213869
https://www.mobilespoon.net/2019/08/visually-distorted-when-ui-looks-all.html
https://www.mobilespoon.net/2019/08/visually-distorted-when-ui-looks-all.html
https://issuetracker.google.com/issues/37124582?pli=1
https://issuetracker.google.com/issues/37124582?pli=1
https://play.google.com/store/apps
https://play.google.com/store/apps
https://doi.org/10.1145/3533767.3534402
https://news.ycombinator.com/item?id=6456285
https://news.ycombinator.com/item?id=6456285
https://doi.org/10.1145/1982595.1982612
https://doi.org/10.1145/3236024.3236055
https://doi.org/10.1145/3236024.3236055
https://doi.org/10.1145/3238147.3238180
https://doi.org/10.1109/MOBILESoft.2019.00024
https://doi.org/10.1109/MOBILESoft.2019.00024
https://doi.org/10.1109/COMPSAC.2018.00037
https://doi.org/10.1109/SANER53432.2022.00048
https://doi.org/10.1109/SANER53432.2022.00048
https://doi.org/10.1002/stvr.1752
https://doi.org/10.1145/3133850.3133853
https://doi.org/10.1145/3133850.3133853
https://doi.org/10.1109/ICST.2017.22
https://doi.org/10.1109/ICST.2017.22
https://doi.org/10.1145/1181309.1181314
https://doi.org/10.1109/ASE.2019.00015
https://doi.org/10.1109/ASE.2019.00015
https://doi.org/10.1109/TSE.2014.2331982
https://doi.org/10.1109/TSE.2014.2331982
http://tools.android.com/lint/overview
http://tools.android.com/lint/overview
https://doi.org/10.1145/3324884.3416547
http://info.localytics.com/blog/25-of-users-abandon-apps-after-one-use
https://doi.org/10.1145/3180155.3180162
http://www.welie.com/patterns/index.php
http://www.welie.com/patterns/index.php
https://www.vice.com/en_us/article/y3m33x/heres-the-shadow-inc-app-that-failed-in-iowa-last-night
https://www.vice.com/en_us/article/y3m33x/heres-the-shadow-inc-app-that-failed-in-iowa-last-night
https://doi.org/10.1145/3519939.3523728
https://www.reuters.com/article/us-health-coronavirus-japan-app-idUSKBN2A31BA
https://www.reuters.com/article/us-health-coronavirus-japan-app-idUSKBN2A31BA
https://doi.org/10.1145/3236454.3236490

An Empirical Study of Functional Bugs in Android Apps ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

[46] Oliviero Riganelli, Simone Paolo Mottadelli, Claudio Rota, Daniela Micucci, and
LeonardoMariani. 2020. Data loss detector: automatically revealing data loss bugs
in Android apps. In ISSTA ’20: 29th ACM SIGSOFT International Symposium on

Software Testing and Analysis. 141–152. https://doi.org/10.1145/3395363.3397379
[47] Ariel Rosenfeld, Odaya Kardashov, and Orel Zang. 2018. Automation of android

applications functional testing using machine learning activities classification.
In Proceedings of the 5th International Conference on Mobile Software Engineering

and Systems. 122–132. https://doi.org/10.1145/3197231.3197241
[48] Konstantin Rubinov and Luciano Baresi. 2018. What Are We Missing When

Testing Our Android Apps? Computer 51, 4 (2018), 60–68.
[49] Zhiyong Shan, Tanzirul Azim, and Iulian Neamtiu. 2016. Finding resume and

restart errors in android applications. ACM SIGPLAN Notices 51, 10 (2016), 864–
880. https://doi.org/10.1145/3022671.2984011

[50] Aman Sharma and Rupesh Nasre. 2019. QADroid: regression event selection
for Android applications. In Proceedings of the 28th ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA). 66–77. https://doi.org/10.
1145/3293882.3330550

[51] Sixth Tone. 2019. E-Commerce App Loses ‘Tens of Millions’ From Coupon Glitches.
Retrieved 2020-5 from https://www.sixthtone.com/news/1003483/e-commerce-
app-loses-tens-of-millions-from-coupon-glitches

[52] Donna Spencer and T Warfel. 2004. Card Sorting. Boxes and arrows 7 (2004).
[53] statcounter. 2022. Mobile Operating System Market Share Worldwide. Retrieved

2022-8 from https://gs.statcounter.com/os-market-share/mobile/worldwide
[54] Ting Su, Lingling Fan, Sen Chen, Yang Liu, Lihua Xu, Geguang Pu, and Zhendong

Su. 2022. Why My App Crashes? Understanding and Benchmarking Framework-
Specific Exceptions of Android Apps. IEEE Trans. Software Eng. 48, 4 (2022),
1115–1137. https://doi.org/10.1109/TSE.2020.3013438

[55] Ting Su, GuozhuMeng, Yuting Chen, KeWu,Weiming Yang, Yao Yao, Geguang Pu,
Yang Liu, and Zhendong Su. 2017. Guided, Stochastic Model-based GUI Testing
of Android Apps. In The joint meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on the Foundations of Software

Engineering (ESEC/FSE). 245–256. https://doi.org/10.1145/3106237.3106298
[56] Ting Su, Jue Wang, and Zhendong Su. 2021. Benchmarking automated GUI

testing for Android against real-world bugs. In 29th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering

(ESEC/FSE). 119–130. https://doi.org/10.1145/3468264.3468620
[57] Ting Su, Yichen Yan, Jue Wang, Jingling Sun, Yiheng Xiong, Geguang Pu, Ke

Wang, and Zhendong Su. 2021. Fully automated functional fuzzing of Android
apps for detecting non-crashing logic bugs. Proc. ACM Program. Lang. 5, OOPSLA
(2021), 1–31. https://doi.org/10.1145/3485533

[58] Jingling Sun, Ting Su, Junxin Li, Zhen Dong, Geguang Pu, Tao Xie, and Zhendong
Su. 2021. Understanding and finding system setting-related defects in Android
apps. In ISSTA ’21: 30th ACM SIGSOFT International Symposium on Software

Testing and Analysis. 204–215. https://doi.org/10.1145/3460319.3464806

[59] Jingling Sun, Ting Su, Kai Liu, Chao Peng, Zhao Zhang, Geguang Pu, Tao Xie,
and Zhendong Su. 2023. Characterizing and Finding System Setting-Related
Defects in Android Apps. IEEE Transactions on Software Engineering (2023).
https://doi.org/10.1109/TSE.2023.3236449

[60] Lin Tan, Chen Liu, Zhenmin Li, XuanhuiWang, Yuanyuan Zhou, and Chengxiang
Zhai. 2014. Bug characteristics in open source software. Empirical software

engineering 19, 6 (2014), 1665–1705. https://doi.org/10.1007/s10664-013-9258-8
[61] ASCII Team. 2022. ASCII Codes Table. Retrieved 2022-10 from https://ascii.cl/
[62] Jenifer Tidwell. 2010. Designing interfaces: Patterns for effective interaction design.

" O’Reilly Media, Inc.".
[63] uiautomator2 Team. 2021. uiautomator2. Retrieved 2022-10 from https://github.

com/openatx/uiautomator2
[64] Mario Linares Vásquez, Kevin Moran, and Denys Poshyvanyk. 2017. Continu-

ous, Evolutionary and Large-Scale: A New Perspective for Automated Mobile
App Testing. In 2017 IEEE International Conference on Software Maintenance and

Evolution (ICSME). 399–410. https://doi.org/10.1109/ICSME.2017.27
[65] Jue Wang, Yanyan Jiang, Ting Su, Shaohua Li, Chang Xu, Jian Lu, and Zhendong

Su. 2022. Detecting non-crashing functional bugs in Android apps via deep-
state differential analysis. In Proceedings of the 30th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineering

(ESEC/FSE). 434–446. https://doi.org/10.1145/3540250.3549170
[66] Wenyu Wang, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang, Yuetang

Deng, and Tao Xie. 2018. An empirical study of Android test generation tools in
industrial cases. In Proceedings of the 33rd ACM/IEEE International Conference on

Automated Software Engineering (ASE). 738–748. https://doi.org/10.1145/3238147.
3240465

[67] Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2016. Taming Android fragmen-
tation: characterizing and detecting compatibility issues for Android apps. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Software

Engineering (ASE). 226–237. https://doi.org/10.1145/2970276.2970312
[68] Tyler Wendland, Jingyang Sun, Junayed Mahmud, S. M. Hasan Mansur, Steven

Huang, Kevin Moran, Julia Rubin, and Mattia Fazzini. 2021. Andror2: A Dataset
of Manually-Reproduced Bug Reports for Android apps. In 18th IEEE/ACM In-

ternational Conference on Mining Software Repositories (MSR0). 600–604. https:
//doi.org/10.1109/MSR52588.2021.00082

[69] Razieh Nokhbeh Zaeem, Mukul R. Prasad, and Sarfraz Khurshid. 2014. Automated
Generation of Oracles for Testing User-Interaction Features of Mobile Apps.
In Seventh IEEE International Conference on Software Testing, Verification and

Validation (ICST). 183–192. https://doi.org/10.1109/ICST.2014.31
[70] Yu Zhao, Tingting Yu, Ting Su, Yang Liu, Wei Zheng, Jingzhi Zhang, and William

G. J. Halfond. 2019. ReCDroid: automatically reproducing Android application
crashes from bug reports. In Proceedings of the 41st International Conference on

Software Engineering (ICSE). 128–139. https://doi.org/10.1109/ICSE.2019.00030

Received 2023-02-16; accepted 2023-05-03

https://doi.org/10.1145/3395363.3397379
https://doi.org/10.1145/3197231.3197241
https://doi.org/10.1145/3022671.2984011
https://doi.org/10.1145/3293882.3330550
https://doi.org/10.1145/3293882.3330550
https://www.sixthtone.com/news/1003483/e-commerce-app-loses-tens-of-millions-from-coupon-glitches
https://www.sixthtone.com/news/1003483/e-commerce-app-loses-tens-of-millions-from-coupon-glitches
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://doi.org/10.1109/TSE.2020.3013438
https://doi.org/10.1145/3106237.3106298
https://doi.org/10.1145/3468264.3468620
https://doi.org/10.1145/3485533
https://doi.org/10.1145/3460319.3464806
https://doi.org/10.1109/TSE.2023.3236449
https://doi.org/10.1007/s10664-013-9258-8
https://ascii.cl/
https://github.com/openatx/uiautomator2
https://github.com/openatx/uiautomator2
https://doi.org/10.1109/ICSME.2017.27
https://doi.org/10.1145/3540250.3549170
https://doi.org/10.1145/3238147.3240465
https://doi.org/10.1145/3238147.3240465
https://doi.org/10.1145/2970276.2970312
https://doi.org/10.1109/MSR52588.2021.00082
https://doi.org/10.1109/MSR52588.2021.00082
https://doi.org/10.1109/ICST.2014.31
https://doi.org/10.1109/ICSE.2019.00030

	Abstract
	1 Introduction
	2 Empirical Study Methodology
	2.1 Collection of Functional Bugs
	2.2 Analysis Methods of Functional Bugs

	3 RQ1: Root Causes
	3.1 General Programming Error
	3.2 Android Related Error
	3.3 Third-Party Library Bugs/Limitations

	4 RQ2: Bug Symptoms
	4.1 UI Display Issue
	4.2 UI Interaction Issue
	4.3 Other Symptoms

	5 RQ3: Test Oracles
	6 RQ4: Status of Existing Techniques
	7 Representativeness of Our Study
	8 Implications and Discussions
	8.1 Avoiding and Diagnosing Functional Bugs
	8.2 Finding Functional Bugs

	9 Finding Functional Bugs via Differential Testing
	9.1 Approach Design and Implementation
	9.2 Evaluation Setup and Results

	10 Threats to validity
	11 Related Work
	12 conclusion
	References

