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Abstract—Exploring GUIs of Android apps plays a key role in
many important scenarios such as functional testing (e.g., finding
crash errors), security analysis (e.g., identifying malicious behav-
iors) and competitive analysis (e.g., storyboarding app features).
To automate GUI exploration, existing techniques often try to
visit as many GUI pages as possible via specific strategies, e.g.,
random (like Monkey) or heuristic (like Stoat, A3E). However,
their effectiveness is still unclear and much under-explored. To
this end, we conducted the first study in this paper to understand
and characterize their limitations by carefully analyzing the
coverage reports from a set of real-world, open-source apps.
Through this study, we identified three key limitations due
to the lack of dependency knowledge during exploration, i.e.,
widget-page dependency, widget-widget dependency and system-
event dependency. To overcome them, we introduce dependency-
informed exploration, an automated approach that leverages
static dependency analysis to effectively improve GUI exploration
performance. Given an app, our approach first constructs a GUI
page transition model that captures the dependencies between
GUI widgets, and then guides GUI exploration during a depth-
first traversal. We realized our approach as a tool named
GESDA, and evaluated it on 70 open-source Android apps. The
results show GESDA outperforms existing state-of-the-art GUI
exploration techniques, i.e., Monkey and Stoat. Additionally,
GESDA uncovers 4 previously unknown crashes in 4 apps as a
by-product of GUI exploration due to the benefit of dependency
knowledge, while Monkey and Stoat have not discovered them.

Index Terms—Android, Test, Exploration

I. INTRODUCTION

Android applications (apps) are UI-centric whose pages
are transited to each other by operating the GUI widgets.
Automated GUI exploration of Android apps exercises the
behavior of an app by generating relevant inputs such as clicks
and scrolls [1]. Based on the mechanism, it can play a key role
in many important scenarios. For example, GUI exploration
has been widely leveraged for functional testing to find runtime
errors such as crashes [2][1][3]. It is also used for security
analysis to identify malicious behaviors of an app [4][5], and
for competitive analysis to storyboard the app features [6][7].

To automate GUI exploration, existing techniques try to visit
as many GUI pages as possible via specific strategies. These
strategies guide the choice of the correct interactions for a
given UI to improve the exploration effectiveness [8], reflected
as the coverage on page transitions, on widget associated

events and callbacks, and on the underlying program code and
control logic. Among them, the random strategy, as the name
suggests, freely chooses a widget to interact with. Monkey
[9] is one of the current state-of-the-practice tools following
the random strategy. It sends pseudo-random sequences of
events to random locations on the screen. Besides, the heuristic
strategy enhances the selection decision based on heuristics.
In this category, Stoat performs the dynamic exploration
supported by the weighted UI heuristics [10]. A3E explores
an app by means of a systematic depth-first traversal [11].

Existing work reports the achieved activity, method or line
coverage applying Monkey and Stoat towards open-source and
industrial apps [12][13][1][14]. These coverages are basically
low, so that their effectiveness is still unclear and much under-
explored. To this end, we conducted the first study using
Monkey and Stoat on 70 real-world open-source Android apps
to understand and characterize their limitations. Through the
study, we found that the unexplored code is mainly due to the
lack of dependency knowledge on the required events and the
widgets state of an app. Three key dependencies are identified.

• The reach of a new page depends on triggering the event
of the correct widget on the current page. There are quite
a few cases where an event driving the transition to a
new page is not triggered, therefore the callback method
as well as the class of the target activity is not covered.
We name the dependency as widget-page dependency.

• The execution of the code branches in a widget callback
depends on the triggering of the specific widget as well as
the states of associated widgets. For example, the callback
execution flow of a button is affected by the state of a
checkbox on the same page. The applied tools did not
click the button again, or they did not modify the state
of the checkbox when clicking the button repeatedly.
Therefore, one of the code branches associated with
the state of the checkbox is not covered. We name the
dependency as widget-widget dependency.

• The execution of specific lifecycle callbacks depends
on the triggering of specific system-level events. These
tools did not simulate system events to activate the
lifecycle callbacks such as onSaveInstanceState



and onRestoreInstanceState as needed. We name
the dependency as system-event dependency.

These types of dependencies are hardly identified during
the runtime exploration. For an app which has not been
instrumented, it is difficult in most cases to determine whether
a widget in the current page has an event handler, whether
its event callback depends on the state of other widgets, and
whether the current page has special lifecycle callbacks that
need to be triggered by system events. However, we believe
static analysis of the app can identify some of the dependencies
in advance, thereby improving the efficiency and the coverage
of dynamic exploration.

In this paper, we introduce dependency-informed explo-
ration, an automated approach that leverages static dependency
analysis to effectively improve GUI exploration performance.
The process of the approach is two-stage. First, a dependency-
integrated page transition model (dPTM) is statically con-
structed from an Android apk. The model uses page as the
basic unit to describe the transitions between them. It captures
the dependencies as the elements denoting the widgets with
callbacks in a page (widget-page dependency), the widgets
whose states influence a callback (widget-widget dependen-
cy), and the lifecycle callbacks of the page (system-event
dependency). Second, a depth-first traversal based dynamic
exploration is guided utilizing the static model. During a
step of page exploration, the widgets with callbacks and the
lifecycle callbacks are exercised preferentially, and the widgets
whose callback are affected by the states of other widgets are
fully exercised based on the combination of the states.

We realized our approach as a tool named GESDA ( GUI
exploration improved via static dependency analysis). We then
evaluate the tool on the 70 Android apps to compare the cov-
erage performance with the state-of-the-art GUI exploration
techniques, i.e., Monkey and Stoat. The results show GESDA
outperforms existing tools and the dependencies play a key
role for coverage increment. Additionally, GESDA uncovers
4 previously unknown crashes in 4 apps as a by-product of
GUI exploration due to the benefit of dependency knowledge,
while Monkey and Stoat have not discovered them. We make
GESDA open source. The tool and the data of the evaluation
can be found in our replication package [15].

The rest of paper is organized as follows. Section II presents
the empirical study. Section III overviews our approach, and
the two stages are presented in Section IV and Section V
respectively. Section VI briefs our tool and presents the
comparative experiments. Section VII is the related work and
Section VIII is the conclusion of the paper.

II. COVERAGE STUDY BASED ON EXISTING TOOLS

We introduce the empirical study in this section. Because
the line coverage is to be measured, we pre-defined a rule for
selecting the exploration objects that they can be instrumented
by Jacoco 1. Therefore, we selected 18 apps from Stoat

1Jacoco. https://www.jacoco.org/jacoco/

benchmark[10] and 52 apps from F-Droid[16], totally 70 open-
source apps which have been verified by instrumenting Jacoco
successfully. Furthermore, we prepared an Android emulator
configured with 2GB RAM, and Android Version 5.1.1 (API
level 22). Then we kept one hour exercising time limit for each
app using Monkey and Stoat separately. After the testing, the
two co-authors of us manually read the reports generated by
Jacoco, identifying the unexplored statements, the unexplored
code branches, the unexplored methods, and even the unex-
plored classes. Finally we analyzed the limitations of the tools
and characterized the reasons in terms of dependencies.

On average, Monkey achieved 56.7%, 45%, and 41.1% in
terms of class, method and line coverage, while Stoat achieved
55.54%, 44.5%, and 40.6% correspondingly. The coverage by
Stoat is slightly lower than Monkey which is inline with prior
findings [12][17]. Another reason is that we only compared
with Stoat’s weighted exploration strategy used in the model
construction phase and did not include the second MCMC
fuzzing phase. The detailed coverage of both tools on the
apps is given in Table I. In this study, we focused on the
dependencies missed by both tools and named them separately.

1) Widget-page dependency: There are both about 40 apps
(41 from Monkey and 38 from Stoat) whose partial code was
not covered due to the lack of this dependency knowledge.
During exploration, Monkey randomly selected the widgets
on a page, while Stoat decided the widgets by their weights
computed by heuristic rules. Their strategies do not take
the dependency into account, therefore they were not able
to execute all the widgets on a page sometimes. Figure 1
depicts an example of exercising arXiv mobile. There is a
search icon (a magnifying glass surrounded by a yellow
dotted frame) located at the top right of the page. Its event
is defined in the layout file (android:onClick) and the
callback (searchPressed) is defined in the class arXiv.
The callback searchPressed can open a new page of
class SearchWindow. Neither Monkey nor Stoat clicked the
search icon during the exploration, thus the code surrounded
by red dotted framework in searchPressed and even in
the SearchWindow class was not covered.

Fig. 1. Example of widget-page dependency

We also noticed a set of other similar scenarios where the



widgets in a dialog or a menu were not completely executed.
This is also a widget-page dependency where the execution of
the widgets in a dialog/menu depends on the opening of the
dialog/menu, and further depends on the repeated triggering
of the events responsible for opening the dialog/menu.

2) Widget-widget dependency: There are about 15 apps (15
from Monkey and 16 from Stoat) whose code involved in a
branch was not covered due to the lack of this dependency
knowledge. Monkey and Stoat focus on the selection of
widgets but they do not care about the control logic and
dependencies in the callbacks. Therefore they may not be
able to cover all the branches in the callbacks by setting
the states of other widgets. Figure 2 depicts an example of
exercising OI Notepad. The left is a page of an opened dialog
(ThemeDialog) with a OK button in the bottom-left and a
checkbox (surrounded by the red solid framework) above this
button. In the callback of the OK button, there exists a branch
associated with the check state of the checkbox. Neither Mon-
key nor Stoat checked the checkbox before clicking the OK
button during the exploration. Therefore the code surrounded
by red dotted framework in pressOk was not covered.

Fig. 2. Example of widget-widget dependency

3) System-event dependency: Lifecycle callbacks for An-
droid activities such as onCreate, onDestroy are executed
in a routine exploration process [18]. However, there are other
kinds of lifecycle callbacks which are triggered by specific sys-
tem events. Both Monkey and Stoat can simulate system events
such as rotation, but in a random manner. Therefore, we found
there are around 13 apps (12 from Monkey and 14 from Stoat)
in which the callbacks including onSaveInstanceState
and onRestoreInstanceState were not covered.

4) User-data related issue: Some pages depend on user
input data to continue their business logic, for example a
login page. If the data input randomly cannot be accepted,
the app generally cannot transit to the other pages whose
code is not covered. We found 6 apps which were explored
by Monkey and Stoat each but the exploration is affected by
the user-data related issue. However, we do not define it as a
static dependency because the requisite for user data is hardly
recognized during static analysis.

III. APPROACH OVERVIEW

The high-level overview of our approach is depicted in
Figure 3. The approach is composed of two stages which are
the model construction and the dynamic exploration.

Fig. 3. Approach overview

Model construction is responsible for extracting a structural
model of an Android app through static analysis. Taking an
Android app as input, the stage generates a graph-style model
named Dependency-integrated Page Transition Model (dPT-
M), with nodes representing app pages and edges representing
transitions between the pages. The dependencies are integrated
in the model according to the following principles. (1) The
widgets with one or more event handles are the dependee
UI elements of the widget-page dependency and should be
completely recognized. (2) The widgets whose states affecting
the control logic of a callback are the dependee elements
of the widget-widget dependency and should be recognized
and associated with the widget containing the callback. (3)
The specific lifecyle callbacks, as the triggering object of
the system-event dependency, should be recognized and pre-
extracted from a page.

The dynamic exploration performs actions on a running An-
droid app deployed in an emulator according to the depth-first
traversal strategy assisted by dPTM. We leverage the depth-
first strategy in order to systematically explore the app states
by triggering the events of different widgets [11]. According to
a typical exploration process, an exploration manager applying
the strategy keeps interaction with the emulator running the
app. The manager first sends the instruction of starting the app
to start the exploration process. In each subsequent interaction,
the manager generates the execution decision based on the
screen dump returned by the emulator and the dPTM. The de-
cision can be an instruction of executing a widget on the page
(e.g., clicking a button, clicking a checkbox), or simulating
a system event (e.g., rotating the screen). Once the emulator
received the instructions, it performs the corresponding actions
and returns back the screen dump to the manager after the
action finishes.

The dependencies statically identified improve the dynamic
exploration in making the execution decision. (1) The widgets
existing in both the screen dump and dPTM are executed pref-
erentially. This enables the code associated with the widget-
page dependency explored as fully as possible. (2) A widget
whose callback involves dependee elements of widget-widget
dependency is executed completely. This enables to cover the
branches determined by the combination of the states of the
dependees. (3) The lifecycle callbacks of a page identified in
dPTM are triggered by simulated events when entering this
page for the first time. This enables the callbacks covered as
needed.



IV. MODEL CONSTRUCTION

In this section, we first define the model, and then present
the model construction process.

A. Model Definition

A Dependency-integrated Page Transition Model (dPTM) is
a tuple < P, p0, T > where

• P is a non-empty set of pages of the app. In our approach,
a page is an Activity, a Menu or a Dialog. We take
menu and dialog as the same level elements of the activity
because they are also user interfaces that appear by
executing widgets on the host activity.

• p0 ∈ P is the starting activity of the app. It is specified
in the manifest file of the app.

• T is the set of transitions between the app pages. A
transition exists when there is an invocation of starting
another page (e.g., startActivity) from the current page.

P and T are compound elements which are defined as
follows.

For each p ∈ P , p is a tuple < pType,W, lcCallbacks >
where

• pType is the type identifier of the page,
pType ∈ {Activity,Menu,Dialog, PseudoPage}.
PseudoPage represents an undetermined page object,
used in a transition whose target page cannot be
determined. It is also used to represent a page of an
other app in an inter-app communication scenario.

• W is the set of widgets included in the page
and each has at least one event handler. A wid-
get w ∈ W is further defined as a tuple <
wType, wId,wText, wEventHandler > in which
wType is the type of the widget such as Button
and CheckBox, wId and wText are the resource
id and the displayed textual characters of the widget.
wEventHandler is the set of event handlers associated
with the widget.
An event handler wEh ∈ wEventHandler is defined
as a tuple < wEventType, wCallback >. The former is
the type of the event, for example click, longclick. The
latter is a sub-tuple < cbMethod, {tcb}, wDepends >.
In it, cbMethod is the callback method of the event.
{tcb} is the set of transitions which can be triggered
in the logic of the callback. wDepends is the set of
widget methods which are used to obtain the states of
the widgets. These methods affect the control flow of the
callback (wCallback), e.g. checkbox1.isChecked.

• lcCallbacks is the set of specific lifecycle callbacks
having been implemented in the code of the page.

A transition t ∈ T is defined as a tuple < ps, pd, wEht >
where

• ps ∈ P and pt ∈ P are the source page and the target
page of the transition respectively.

• wEht ∈ w.wEventHandler is an event handler be-
longing to a w ∈ ps.W . The transition is triggered by
executing the callback of wEht.

B. Construction Process

The process of dPTM construction adopts a workflow
integrated by the analysis on pages, transitions and depen-
dencies. The process can be sketched by Algorithm 1, which
takes an Android Apk file as input and finally generates the
corresponding model. The algorithm first extracts the pages
from the XML-based manifest file as well as the intermediate
code representation (i.e., jimple code converted by Soot[19])
of the apk (line 2). For each page, it identifies the pre-specified
lifecycle callbacks implemented in the page (line 4). The
contained widgets are subsequently extracted based on the
layout configuration and the intermediate code representation
(line 5). For the widgets with event handles, transitions and
possibly widget-widget dependencies are recognized through
applying control-flow and data-flow analysis on the code of
each callback (line 6-15). After traversing all the pages and
their widgets, dPTM is synthesized (line 17).

Algorithm 1: dPTM-Construction
Input: apk: an Android Apk file
Output: dPTM

1 pages← ∅, trans← ∅
2 pages← extractPages(apk)
3 foreach p ∈ pages do
4 p.lcCallbacks← identifyLcCallbacks(p)
5 widgets← extractWidgets(p)
6 foreach w ∈ widgets do
7 eventhandlers← extractEventHandlers(w)
8 if |eventhandlers| > 0 then
9 foreach eh ∈ eventhandlers do

10 t← analyzeTransition(eh.wCallback)
11 trans.append(t)
12 eh.wCallback.{tcb}.append(t)
13 deps←

analyzeDepends(eh.wCallback)
14 eh.wCallback.append(deps)
15 end
16 p.W.append(w)
17 end
18 end
19 end
20 dPTM ← (pages, pages.getStartPage, trans)

The details of the construction steps are explained as
follows.

1) Page extraction: Pages in the app are classified into
Activity, Menu and Dialog. According to Android develop-
ment specifications, activities are specified in the manifest
file and are thus retrieved directly. Menus are hosted in
an activity and are initialized by callback methods such as
onCreateOptionsMenu and onCreateContextMenu.
Therefore, we check whether there is such method in the code
of the activity in order to extract the menu-type page. Dialogs,
on the other hand, are identified by filtering out the app class-
es which directly or indirectly extend android.app.Dialog.



For each page, the pre-specified lifecycle callbacks are
first identified. According to the coverage study, the
most ignored callbacks are onSaveInstanceState and
onRestoreInstanceState. Therefore, we currently rec-
ognize only these two callbacks by traversing and matching
the names of callbacks.

2) Widget extraction: Widgets on a page are extracted
subsequently. Activities and dialogs are pages containing
various widgets with different capabilities such as Button
and CheckBox. They can be defined in the corresponding
XML-based layout file, and can also be dynamically ap-
pended into the page through customized statements. In our
approach, we reserve the widgets with at least one event
handler since their response logic is the main target of dynamic
exploration. We then leverage an extraction method starting
from the events. On one hand, events of widgets registered
in the layout file are identified for instance retrieving the
configuration like android:onClick="onClick". The
resource id, type, text of the widget can be obtained and the
callback method of the event is located. On the other hand,
events which are specified using listener registration methods
(e.g., setOnClickListener) are identified by scanning
the code. We further adopt data-flow analysis on the caller
of the method to locate its declaration statement which is a
findViewById invocation when the widget is specified in
the layout, or a new instantiation method when the widget
is dynamically created. In this case, the resource id of the
widget is obtained (if it is specified) and its type and text are
retrieved from the layout file or from the arguments of the
method invocations.

Menus are usually composed of hierarchical menu items
each is regarded as a widget with corresponding event handler.
There exist static and dynamic ways to define the interface of
a menu. The former is to specify the constituents of a menu in
the resource file and then to load the resource in the program.
The latter uses menu-related methods (e.g., addSubMenu,
add) to construct the menu structure. Unlike the other kinds
of widgets, deep-level menu items are displayed through
selecting their ancestor menus. Therefore, in the process of
identifying the hierarchical menu items, we additionally need
to record the display path of each menu item, which contains
the sequence of the ancestor menus to be selected.

3) Transition analysis: The transitions between different
pages are generally identified by the methods invoked in the
callback of a widget. It means to locate the pre-specified meth-
ods in the callback and analyze the parameters of the method
invocation to identify the target page. When the method is
identified, a transition is created between the different pages.
Otherwise, if there is no such method identified, we create
a transition pointing to itself from the source page. We then
explain the rules based on the methods specified.

• Methods prefixed with startActivity such as
startActivity and startActivityForResult
indicate a transition to a new page which is determined
by the intent object. Since the intent can be explicit
or implicit, we analyze the target of the transition as

an activity belonging the app, or as a pseudo page
(PseudoPage) belonging to a third-party app.

• Dialog.show indicates a transition to an instantiated
dialog. The declaration class of the dialog can be retrieved
by the caller of the method.

• Dialog.dismiss indicates a transition from a dialog
to its host page. Since a dialog can be instantiated from
arbitrary pages, the target page of the transition is set to
a pseudo page (PseudoPage).

• The transition to a menu (including optionMenu and
contextMenu) is a special case in transition analy-
sis. Because an optionMenu is hosted in an activ-
ity, the transition from the activity to the menu is
determined when the menu is extracted. On the other
hand, a contextMenu is registered on widgets using
registerForContextMenu in lifecycle method such
as onCreate. In this case, the transition can be deter-
mined from the host page to the menu with a longclick
event handler of the widget which registers the event.

4) Widget-widget dependency analysis: Based on the
study from Section II, we conclude the most common
widgets leading to widget-widget dependency and their
state query methods, i.e, CheckBox.isChecked,
RadioButton.isChecked, Switch.isChecked
and ToggleButton.isChecked. These methods return
boolean value thus can be involved as a condition.

During the analysis process, we sequentially scan each state-
ment in the callback. When it comes to a decision statement,
each condition belonging to the decision is analyzed whether
it relates to a widget state. There are different situations for
the identification.

• If the condition is a method invocation of isChecked,
the caller is retrieved and matched with an extracted
widget based on the data flow.

• If the condition is a boolean variant, the variant is traced
backwards through the data flow to locate its assignment
statement. If the statement is a method invocation of
isChecked, we apply the previous rule to get the
dependee widget.

Once a widget is determined, the expression combined
with the widget object and its state query method
(e.g., checkbox1.isCheck) is added into the set
wCallback.wDepends.

V. DYNAMIC EXPLORATION

Dynamic exploration exercises an app and tracks the state
of the app. We define the exploration state as the state of a
page that is currently visible during the exploration process.
An exploration state, denoted by Se is synthesized with the
screen dump of the page obtained from an emulator and
the knowledge from the dPTM. It is recomputed after each
transition by a widget execution. Se is defined as a tuple
< pId, pType,Ws,Wd, lcCbks > where

• pId and pType are the same as those in dPTM when
matching from the screen dump to the model. We assume
p as the object denoting the current page.



• ws ∈ Ws =< w ∈ p.W,wEh ∈
w.wEventHandler, exectuable >. ws is an actual
widget in the screen dump that has its counterpart in
p.W . Meanwhile, executable is the flag indicating
whether an event of the widget needs to be triggered. In
particular, if a widget has more than one event handler,
there should be the same number of tuple instances in
order to facilitate the exploration.

• wd ∈Wd =< w /∈ p.W, executable >. wd is an operable
widget dynamically extracted from the current page but
does not has the counterpart in p.W . executable means
whether wd can be executed.

• lcCbk ∈ lcCbks =< Cbk ∈ p.lcCallbacks, triggered}.
triggered denotes whether the lifecycle callback has
been triggered or not.

We sketch the process by Algorithm 2. The algorithm is
performed by an explorer manager. The manager interacts with
an emulator by continuously receiving the screen dump and
sending the execution instructions according to the algorithm.
The algorithm takes the dPTM of the app as input and a
timeout indicating the time the exploration can spend.

The algorithm first launches the app (line 1), then computes
the exploration state based on the currently visible page after
each transition by computeState (line 3). If the page is visited
for the first time, the exploration state is synthesized based on
the page object from dPTM and the screen dump.

• One task in this step is to identify the static extracted
widgets (a w ∈ dPTM.P.W ) in the current page. We
adopt the following rules to achieve matching. If w.wId
is not empty, it retrieves the correspondent widget on the
current page by the id. Otherwise, it finds the widget by
matching the properties including wType, wText and
wEventType. When there are multiple widgets found in
an activity, it randomly selects one of them. If no actual
widget found, w is not counted in Es.Ws and a warning is
reported. In addition, for an identified widget with more
than one event handler, we duplicate the corresponding
number of ws with the different event handlers.

• Es.Wd is collected by retrieving the remaining operable
widgets on the page. We recognize the operable widgets
by checking whether the attributes such as clickable,
longClickable and scrollable are true in the screen
dump.

• Es.lcCbks is consistently ported from w.lcCallbacks
and each lcCkb.triggered is set as false initially.

On the other hand, if the page is not visited the first
time, the exploration state is recovered from the saved page
states. In this case, Es.Ws and Es.Wd are re-identified but
the executable value remains. It should be noted that the
exploration states related to a same page may be different
reflected in the number of wd, thus requiring the recomputation
of the state. For example in the case of self-transition from a
page to itself, a widget execution may load a fragment whose
widgets are counted in the host activity but we cannot find
their counterparts in the static model.

Algorithm 2: DynamicExploration
Input: dPTM, timeout

1 launchApp
2 repeat
3 Es ← computeState(curPage)
4 foreach

lcCbk ∈ Es.lcCbks, lcCbk.triggered = false do
5 triggerLcCallback(lcCbk)
6 end
7 if

|{Es.Ws.ws|Es.Ws.ws.exectuable = true}| > 0,
then

8 select any ws from the above set
9 if |ws.wEh.wCallback.wDepends| > 0 then

10 setUncoveredDependsState
(ws.wEh.wCallback.wDepends)

11 end
12 execute ws with ws.wEh
13 if checkExecutable(ws) = fase then
14 ws.exectuable← false
15 end
16 save Es as page state
17 end
18 else
19 if

|{Es.wd|Es.Wd.wd.exectuable = true}| > 0
then

20 select a wd from the above set by top-down
order and execute wd

21 set wd.exectuable← false
22 save Es as page state
23 end
24 else
25 go back to the previous page
26 end
27 end
28 until timeout;

After the state computation, the algorithm fist triggers
the lifecycle callbacks as needed (line 4-6). Our approach
specify the two callbacks, i.e., onSaveInstanceState
and onRestoreInstanceState. Therefore, we apply a
strategy of rotating the screen in the emulator to simulate the
system events that are consumed by the callbacks.

After that an actual widget is to be executed by the following
rules.

• Choose a ws whose exectuable is true and execute
the widget (line 7-12). One major concern here
is to handle with the widget-widget dependencies
included. The algorithm guides to perform operations
on the widgets to set their states (e.g., check
a checkbox, check a radiobutton) which has
not been covered beforehand (line 9-11). For
example, assume ws.wEh.wCallback.wDepends =



{chk1.isChecked, chk2.isChecked} and
(chk1.isChecked = true, chk2.isChecked = true)
has been covered, the operations leading to
(chk1.isChecked = true, chk2.isChecked = false)
are performed this time.
Another major concern is to determine whether the
widget can be executed again (line 13-15). For a wid-
get whose callback involves widget-widget dependencies,
ws.executable is set to false when all the combinations
of the sates have been covered. For a widget whose
execution transits to a menu or dialog, ws.executable
is set to false when all the executable of the widgets on
the menu or the dialog is false. A widget with the both
characteristics needs to consider these two conditions
together. Finally, the exploration state also indicating the
latest state of the current page is saved and it may be
recovered in the further iterations.

• When there is no executable ws on the page, the algo-
rithm executes a selected wd from Es.Wd in order to
cover the possibly existing code that is not recognized
in static analysis (line 20). Once the widget is executed,
wd.executable is set to false (line 21) and the page state
is saved (line 22).

• When there is no executable widget on the page, the
algorithm guides to go back to the previous page by
means of simulating the back button of the emulator (line
25).

There is an exception handling mechanism designed for the
exploration process. On one hand, when a runtime exception
is raised, the exception is reported and the exploration is
performed again from the start page. On the other hand,
transitions to third-party apps by implicit intents are also
regarded as an exception. In this case, the exploration manager
tries to return back to the original app by simulating the
back button clicking. If it is unsuccessful, it performs the
exploration from the start page.

VI. TOOL AND EVALUATION

Currently, GESDA is implemented by two major modules
responsible for the static model construction and the dynamic
exploration. We apply a set of off-the-shelf tools for analyzing
an app, i.e., Apktool [20] is used to decompile an apk
and obtain the resources, Soot [19] is used to analyze the
intermediate code representation, and FlowDroid [21] is used
to obtain the call graph of methods. Additionally, we develop
the exploration manager as an Android app which contains
UI Automator[22] and communicates with UI Automator by
sending instructions based on the exploration algorithm.

To evaluate the effectiveness of GESDA, we aim to answer
the following research questions.

RQ1: Compared with existing GUI exploration techniques,
can GESDA improve the exploration effectiveness?

RQ2: How does the identified dependencies benefit the
coverage?

RQ3: Can GESDA find crashes with the help of the identi-
fied dependencies?

We have explored 70 open-source Android apps by Monkey
and Stoat. Therefore, we design further experiments utilizing
GESDA on these apps based on the same environment setting,
i.e., the same emulator and the same time limit (one hour)
for exercising. Also, we only compared with Stoat’s weighted
exploration strategy in our experiment. Besides, in order to
answer RQ2, we customized a tool named GESDA DF which
modifies Algorithm 2 by removing the parts taking advantage
of the dependencies. GESDA DF thus follows a primitive
depth-first traversal strategy where the revised algorithm only
reserves Wd during exploration.

A. RQ1: Exploration Effectiveness

The coverage statistics using Monkey, Stoat, GESDA DF
and GESDA is shown in Table I. For each tool, we list its
coverage value (cv.) and coverage ratio (cr.) on the class level,
method level, and code line level. The tools with the best cov-
erage for each app is marked in the cells with gray background.
In particular, two apps, i.e., Addi and InternetRadio, cannot
be explored by Stoat due to some compatibility issues, which
were denoted by “-” in the corresponding cells.

On average, GESDA outperforms the other tools on all
levels. The coverage on class level achieved on average 86
classes and 62.7%, at least 7 more explored classes and 6%
higher than the others (Monkey has the highest 79 classes
and 56.7% among the others). The coverage on method level
achieved on average 366 methods and 50.6%, at least 34 more
explored methods and 5.6% higher than the others (Monkey
has the highest 332 methods and 45% among the others). The
coverage on line level achieved on average 1776 lines and
46.5%, at least 205 more explored lines and 5.4% higher than
the others (Monkey has the highest 1571 lines and 41.1%).

We choose two examples from the apps to describe the
exploration effectiveness brought by GESDA.

Case 1 (chanu). chanu is a comic app composed of
totally 29 menus distributed in 7 activities. Stoat activated 9
of them, while Monkey activated 13 of them. Based on the
knowledge from widget-page dependency related to the menus,
GESDA fully visited all the items on the menus, thus achieving
a higher coverage. On the other hand, there are 6 activi-
ties containing the callbacks of onSaveInstanceState
and onRestoreInstanceState. GESDA sent simulated
screen rotation events as needed when being informed with
their existence in advance. On the contrary, Stoat did not cover
any of the callbacks while Monkey triggered one of them.

Case 2 (MultiSms). MultiSms is a chat app. There
are three buttons (i.e., mAddButton, mAddGroupButton,
mSend) with event handlers in the chat interface named
MultiSmsSender. When clicking the mSend button, the app
transits to the ListEntryActivity page, however it has no
widget responsible for returning back to the previous page. In
this case, Stoat and Monkey were stuck in ListEntryActivity
after clicking mSend. It is reported that Stoat triggered two of
the buttons, while Monkey only triggered one. On the contrary,
GESDA has the ability to return back to the previous page,
helping to cover all the three buttons recognized in advance.



TABLE I
COVERAGE STATISTICS OF MONKEY, STOAT, GESDA DF AND GESDA

App Class Level Method Level Line Level
Monkey Stoat GESDA DF GESDA Monkey Stoat GESDA DF GESDA Monkey Stoat GESDA DF GESDAName KLOC cv. cr.(%) cv. cr.(%) cv. cr.(%) cv. cr.(%) cv. cr.(%) cv. cr.(%) cv. cr.(%) cv. cr.(%) cv. cr.(%) cv. cr.(%) cv. cr.(%) cv. cr.(%)

T(s)

36C3 Schedule 3.3 47 72 44 67 45 69 51 78 238 53 204 45 216 48 260 58 1546 47 1126 34 1223 37 1782 54 40
A Photo Manager 11.3 120 39 201 65 148 48 192 62 573 28 1024 50 674 33 934 46 2832 25 5051 44 3387 30 4545 40 47

Addi 19.6 54 14 - - 48 12 48 12 235 11 - - 193 9 193 9 3775 19 - - 3477 17 3477 17 7
ADSdroid 0.2 9 90 9 90 9 90 9 90 31 86 29 80 31 86 31 86 187 86 168 77 197 91 197 91 7

Amaze Debug 17.8 158 40 162 41 155 39 170 43 719 27 808 30 739 28 821 31 3703 20 4512 25 3893 22 4833 27 6
AnyMemo 12.2 223 38 160 27 240 41 309 54 889 33 630 24 828 31 1211 46 3692 30 2539 20 2836 23 4905 40 8

Apod Classic 0.4 19 90 19 90 19 90 19 90 66 68 67 69 64 65 69 71 238 62 256 67 240 63 262 69 12
arXiv Explorer 1.6 43 86 35 70 32 64 44 88 312 76 284 69 243 59 316 77 1234 75 1158 71 1094 67 1240 76 6
arXiv mobile 2 31 55 30 53 22 39 36 64 95 48 83 47 78 40 114 58 810 41 825 42 727 37 982 50 7

Atomic 7.9 70 37 21 11 27 14 27 14 392 28 69 5 100 7 100 7 1941 24 342 4 476 6 476 6 10
AudioBook 1 41 66 28 45 30 48 56 90 127 47 74 27 89 33 195 72 455 45 263 26 304 30 769 76 8
AudioMeter 0.3 14 93 14 93 14 93 14 93 54 85 50 79 46 72 51 80 281 87 271 84 265 82 281 87 7

Binaural Beats 3 92 86 88 83 81 76 97 91 356 69 330 64 293 57 382 74 2152 71 2001 66 1796 59 2243 74 8
Bop-MusicPlayer 4.4 91 48 91 48 95 50 99 52 306 34 271 30 280 31 305 34 1405 32 1183 27 1227 28 1534 35 7

Budget 2.5 49 72 53 77 44 64 48 70 255 56 301 66 249 55 289 64 1241 49 1528 60 1183 46 1529 60 6
Car Report 7.3 182 75 172 71 97 40 97 40 718 50 733 51 316 22 316 22 3249 44 3342 46 1238 17 1238 17 4
CEtoolbox 1.7 15 69 16 69 16 69 16 69 110 70 114 72 88 56 88 56 1068 61 1133 65 1048 60 1048 60 5

chanu 36.8 397 34 329 28 306 26 486 41 1831 28 1374 21 1180 18 2439 37 9588 26 7751 21 6656 18 13505 36 29
Dalvik Explorer 1.4 38 80 40 85 40 85 43 91 149 62 187 77 165 68 179 74 739 52 969 69 854 61 953 68 5
DemocracyDroid 1.1 26 39 26 39 22 32 36 54 68 28 68 28 54 22 97 40 364 32 375 33 341 30 390 34 15
Dev GrowTracker 6.3 132 42 126 41 99 32 130 41 366 34 374 35 283 26 347 32 1988 31 1836 29 1403 22 1782 28 6

Diary 2 12 54 11 50 10 45 12 54 102 41 97 39 92 37 107 43 569 29 548 28 431 25 587 30 6
Diccionario castellano 0.2 15 88 13 76 14 82 15 88 49 70 48 68 44 62 50 71 170 69 129 52 157 64 174 71 8

Eternity Wall 4.7 63 33 98 51 55 28 57 30 203 24 331 39 180 21 189 22 859 18 1570 33 776 16 805 17 5
Finance Manager 3.4 131 59 130 58 124 56 140 63 396 50 405 51 373 47 420 53 1428 42 1451 42 1324 39 1491 44 10

Fissure 1.1 6 19 19 86 19 86 19 86 11 8 80 62 77 59 78 60 64 6 443 41 415 39 422 40 7
Free Mobile Netstat 3 45 51 46 52 42 47 45 51 174 42 184 45 165 40 177 43 1257 41 1342 44 1190 39 1238 41 8

FTP Server 3.3 26 31 26 31 26 31 29 35 128 31 120 29 109 26 142 34 709 21 606 18 616 18 780 23 13
G-droid 6 93 48 78 40 98 51 155 80 322 35 248 27 297 32 520 56 2332 38 1358 22 2351 39 3711 61 23
Goblim 1.4 32 42 26 34 27 35 33 44 87 36 77 31 79 32 92 37 451 31 426 29 439 30 484 33 8

Hendroid-beta 11.2 114 36 130 41 109 39 131 42 489 21 526 22 507 21 528 22 1936 17 1965 17 1940 17 1984 17 41
InternetRadio 0.6 29 82 - - 24 68 30 85 94 73 - - 70 54 97 75 467 79 - - 331 56 484 82 9

inventum 2.4 53 49 56 51 53 49 57 52 191 29 205 31 178 27 204 31 648 27 674 28 602 25 675 28 11
Just Craigslist 2.2 18 48 28 75 28 75 36 97 47 46 77 76 75 74 97 96 386 17 1713 77 1338 60 1504 67 7

Just Notes 0.6 20 86 20 86 17 73 20 86 51 80 52 82 38 60 54 85 343 59 452 78 290 50 373 64 7
KeePassDroid 9 48 14 30 9 30 9 169 52 159 9 83 4 102 5 613 35 645 7 330 3 371 4 2751 30 17

KindMind 1.7 34 59 40 70 34 59 44 77 108 48 144 64 112 50 146 65 619 37 914 55 718 43 986 59 7
klaxon 0.7 16 55 17 58 17 58 18 62 44 34 50 39 49 38 53 41 205 28 227 31 214 29 235 32 4

KouChat 5.3 70 41 88 52 82 49 83 49 352 30 444 38 381 33 393 34 1373 25 1691 31 1501 28 1506 28 10
library 2.5 12 24 12 24 12 24 13 26 23 11 23 11 23 11 26 12 154 6 156 6 154 6 181 7 6

Lock Pattern Generator 0.7 22 75 24 82 21 72 22 75 76 58 93 71 71 54 81 62 446 68 506 77 403 61 442 67 4
LogicalDefence 0.2 12 92 11 84 12 92 12 92 47 81 46 79 47 81 47 81 204 87 210 90 203 87 203 87 6

man man 2.5 75 65 59 51 77 67 82 71 242 50 150 31 218 45 249 51 892 36 523 21 793 32 948 38 7
Markor 8.4 109 63 114 66 97 56 117 68 709 45 678 43 519 33 740 47 3344 39 3215 38 2462 29 3461 41 11

MatLong 3.1 49 66 40 54 40 54 43 58 285 49 208 35 203 35 209 36 1487 47 1053 33 952 30 1088 34 16
MoneyWallet 25.3 309 35 357 40 151 17 179 20 1441 31 1754 38 690 15 815 17 6056 23 7821 30 3021 11 3555 14 10

Multi Sms 0.8 11 33 17 51 16 46 20 60 25 19 59 48 39 30 74 58 151 18 308 37 257 31 359 43 4
nanoConverter 1.2 17 40 20 47 16 38 20 47 46 37 61 49 44 35 56 45 356 28 456 36 311 24 439 35 5
Net Monitor 3.4 38 45 33 39 50 60 61 73 158 39 137 33 194 48 257 63 1497 44 1382 40 1655 48 2031 59 9

News 7.8 135 43 138 44 126 40 138 44 425 26 477 29 408 25 490 30 2132 27 2212 28 1885 24 2196 28 37
Ninja 4 76 52 76 52 64 44 73 50 326 45 320 45 214 30 298 41 1684 42 1678 42 1323 33 1539 38 10

Oinotepad 2.9 34 51 49 74 45 68 51 77 151 40 231 62 203 54 248 67 991 34 1482 51 1223 42 1631 56 10
OpenManga 11.1 140 44 87 27 114 36 137 43 629 31 357 17 511 25 642 32 2822 25 1479 13 2231 20 3037 27 36

primitive ftpd 3.6 40 38 65 63 54 52 56 54 174 25 294 42 229 33 242 34 791 22 1368 38 1072 30 1124 31 12
PWMP 1.9 64 70 61 67 37 40 67 73 252 61 229 55 168 40 263 63 1045 54 900 46 694 36 1099 57 17

RedReader 12.5 131 24 165 31 142 27 142 27 444 19 555 24 484 21 484 21 1901 15 2443 19 2182 17 2190 17 15
ringdroid 1.4 20 76 15 57 14 53 16 61 116 67 75 43 91 53 111 64 1007 69 682 47 880 60 1015 70 6

Sanity 4.6 87 34 41 16 56 22 56 22 330 28 151 12 208 17 208 17 922 19 381 8 603 12 605 12 11
Shopping List 4.2 140 74 149 78 144 76 144 76 597 52 766 67 643 56 644 57 2046 48 2750 64 2290 53 2311 54 13

Silectric 1.3 52 98 52 98 32 60 52 98 214 81 217 82 122 46 219 83 1076 83 1062 82 616 47 1082 83 8
sNotePad 0.4 21 91 22 95 15 65 22 95 55 62 67 76 36 40 74 84 240 59 296 73 158 39 321 79 7

Starke Verben 0.7 23 88 25 95 23 88 23 88 104 81 102 80 97 76 101 79 613 85 607 84 583 81 594 82 13
SyncMyPix 5.2 56 41 74 54 50 37 74 54 137 19 187 26 126 18 187 26 624 12 826 15 467 9 827 16 8

Tinte Webcoms 3.2 100 59 43 25 43 25 112 66 381 57 107 16 107 16 407 61 1696 53 453 14 446 14 1821 57 14
Tshot 12.4 285 50 171 30 268 47 319 56 1096 41 668 25 904 34 1362 51 4245 34 2499 20 3750 30 5483 44 39

Vinyl DEBUG 12.6 229 58 247 63 209 53 232 59 1319 44 1437 48 1127 38 1260 42 4791 38 5316 42 4056 32 4564 36 48
vlilleChecker 2.1 55 55 54 54 52 52 55 55 271 44 264 43 257 42 271 44 851 41 841 40 794 38 870 42 18

Zapp 2.6 91 84 79 73 84 77 101 93 489 72 381 56 434 64 525 77 1792 70 1393 54 1572 61 1925 75 19
charmplayer 1 36 97 35 93 30 81 36 97 130 76 137 80 113 66 139 81 781 75 842 81 552 53 831 80 8
WikiPedia 22.2 380 43 432 48 415 46 438 49 1677 28 2079 35 1951 33 2209 37 6375 28 7994 35 7211 32 8420 37 50
Average 5.2 79 56.7 76 55.54 70 52.5 86 62.7 332 45.0 322 44.5 280 40.0 366 50.6 1571 41.1 1509 40.6 1338 37.0 1776 46.5 13

In general, the effectiveness is improved especially for the
apps with menus or dialogs. GESDA can generally guarantee
the full coverage of the widgets in these pages. On the
other hand, the code of branches related to widget-widget
dependency is also covered in the study but the size of the
code is relatively small. However, we believe the exploration
efficiency will be better improved if a branch involves complex
logic, and even the transitions to other activities.

We also tracked the progressive coverage of the tools over

time. Figure 4 reports the coverage on line level over the time
threshold we used, i.e., 60 minutes. The plot illustrates the
average coverage achieved across all the 70 apps. It should be
noted that we started timing for these tools after the app loads
its main page. Therefore, the initial coverage is greater than
zero. The plot shows that GESDA surpassed the others from
the beginning, and achieved 90 percent of the final coverage
in about 10 minutes. The progressive coverage on the method
level and the class level is also consistent with the figure, thus



is omitted here for paper limitation (all the data can be found
in our replication package [15]). These time-related data also
proves the exploration effectiveness improved by GESDA.

Fig. 4. Progressive coverage on line level

B. RQ2: Benefit of Static Dependencies

We compare the coverage between GESDA and GESDA DF.
The results show that GESDA performs better (at least not
worse) than GESDA DF for each app. It indicates the identified
dependencies play an effective role in the exploration process,
leading to explore more classes, methods and code lines.

We also use the data in RQ1 to explain the benefits. In
these cases, GESDA DF has a lower coverage than Monkey
and Stoat. When taking advantage of the dependencies, the
coverage exceeds those two tools because the exploration is
guided to cover all the recognized widgets and the recognized
code branches.

However, there are still situations where GESDA and
GESDA DF have the same coverage. For example, ADSdroid
is a simple app consisting only of activities, without menus and
dialogs. The dependency only contains the widgets which can
trigger a page transition. These widgets can also be covered
by a conventional depth-first traversal. Therefore, the identified
dependencies can benefit the coverage if they exist.

We also recorded the time spent on static analysis (i.e.,
model construction) for each app which is listed in the last
column of Table I. It varies according to the number of the
activities and callbacks in an app, however up to 50 seconds.
It spent on average 13 seconds which is considered acceptable
as an offline task.

C. RQ3: Crash Detection

Through the automated GUI exploration of the 70 open-
source apps, we totally uncovered 7 crashes in 6 apps. In it, 4
crashes in 4 apps listed in Table II were previously unknown
and were uncovered only by GESDA, while the remaining
3 crashes could be discovered by Monkey or Stoat (one of
them by Monkey, the other two by Stoat). In particular, all
the crashes were uncovered benefiting from the knowledge of
widget-page dependency.

The first crash appears in a menu item (open-M-file) clicking
scenario in Addi. The menu containing the item is opened
by simulating the menu key on the home page. Actually the
menu has two items causing different crashes. Besides the
listed one, the other crash was uncovers by both GESDA and

TABLE II
CRASH UNCOVERED BY GESDA ONLY

# app operations causing crash

1 Addi Addi
menukey→ optionMenu

open−M−file→ crash

2 ringdroid
RingdroidEditActivity save→ saveDialog
save→ successDialog close→ crash

3 Silectric UsageActivity add→ addDialog
add→ crash

4 Bop-Music
Player

MainScreen
menukey→ optionMenu

quit→
HomeScreen restart→ MainScreen

menukey→ crash

Monkey. Monkey clicked the other item (create-M-file) but
neglected the open-M-file item since it did not open the menu
again. However, GESDA uncovered the both crashes through
a complete traversal. It takes advantage of the dependency
indicating that the menus should be opened repeatedly.

The second and third crashes appear in scenarios of di-
alog widget clicking in ringdroid and Silectric respec-
tively. The former is caused by clicking the close button
on the success dialog opened by another save dialog. The
save dialog is opened by clicking the save button on the
RingdroidEditActivity page. The latter is caused by click-
ing the add button of a dialog opened by the add button on the
UsageActivity page. They both benefited from the widget-
page dependency so that all the widgets in the dialogs were
explored by repeatedly opening the dialogs while Monkey and
Stoat did not guide in this regard.

The forth crashes appears in Bop −MusicP layer where
the simulating of the menu key causes the crash after the
app is restarted by clicking the quit button on the option
menu. Among the tools, only GESDA guided the operations,
i.e., clicking the quit button and restarting the app due to the
dependency knowledge.

D. Limitations and Threats to Validity

There are some limitations of GESDA. First, GESDA may
fall into a “quagmire”. It means to constantly explore the
newly appeared widgets whose logics are the same, so that
the coverage cannot be increased and GESDA has no chance to
leave the page. For example, when exercising MoneyWallet,
GESDA fell in a Calendar page where there was new click-
able date icons appeared when clicking an existing date icon.
GESDA thus has a low coverage on this app. Future work
may integrate Repetition-Avoidance technique [14] to tackle
this issue. Second, GESDA does not have the ability to send
broadcasts like Monkey, therefore it cannot cover the code
related to broadcast receiver. For example, GESDA performs
poor for Atomic because it is a chat client consuming series
of broadcasts. GESDA does not pay attention to it currently
but can be improved by recognizing the callback of broadcast
receiver and sending the broadcasts when necessary.

The main threat to external validity is the selection of the
apps. In order to compare the exploration effectiveness with
Monkey and Stoat, we carefully choose some apps from Stoat



benchmark and supplement others from F-Droid. These apps
with different design structures and different sizes are able to
demonstrate the ability of GESDA. However, we acknowledge
that these apps may not be broadly representative. The threat
to internal validity lies in the coverage analysis. We currently
analyze the reports manually, thus causing possible inaccura-
cies. To alleviate the threat, we arranged two persons to review
the reports and check the results with each other.

VII. RELATED WORK

A. Static Analysis for Android Apps

Static analysis for Android apps has been used for clone
detection [23][24], security assessing [25][26], automated test
cases generation [27][28], and so on. The modeling of the
GUI behavior of an app is a basis thus receiving a lot of
attentions. Among them, A3E is the first to build a static
model of an Android app which constructs the Static Activity
Transition Graph (SATG) by data-flow analysis [11]. Gator
[29] constructs a Window Transition Graph (WTG) which
adds components like menus and dialogs on the SATG.
GoalExplorer [30] further extends the static model by adding
other component such as fragments, drawers, and broadcast
receivers. There are also some work aiming to construct a stat-
ic model by inter-component communication analysis. EPICC
[31] is the first to extract inter-component communication.
Based on it, IC3 [32] improves the extraction ability of inter-
component communication. StoryDroid [33] extends IC3 and
adds the fragment information. Our approach relies on a static
model to improve the exploration effectiveness. Compared
with the above techniques, the model we customized captures
the dependencies benefitting exploration.

B. Automated GUI Exploration

Automated GUI exploration performs according to specific
strategies. Monkey [9] is the state-of-the-practice tool applying
the random strategy. Dynodroid [34] also follows the random
strategy to generate UI events and system-level events, and
it generates more system-level events than Monkey such as
incoming phone calls and geolocation changes. PUMA [35]
is a dynamic analysis framework that provides a random
exploration implemented by Monkey. Sapienz [2] extends
Monkey and leverages a genetic algorithm to maximize code
coverage and fault detection while minimizing the length of
the generated test sequences. Our approach also follows a
random strategy when selecting the pre-recognized widget, and
involves system events from the lifcycle perspective.

There is another strategy for exploration by constructing
a finite state machine (FSM). GUIRipper [36] and MobiGU-
ITAR [37] are the first two approaches aiming to construct
a FSM by depth-first exploration. ORBIT [38] improves the
efficiency of GUIRipper by analyzing the app’s source code
to get the relevant events of the current activity. Besides
constructing SATG, A3E implements a depth-first exploration
strategy named Depth-First Exploration. Unlike GUIRipper,
when there exists no event to enter a new activity, it will
return back to the previous activity instead of restarting the

exploration. Stoat [10] (upgraded to Stoat+ [39]) computes the
priority of each widget in a state by the heuristics composed of
the execution frequency, event type and the number of widgets
after the execution. APE [40] uses a model-based approach,
but its model is dynamically refined according to the attributes
of UI elements. Its core idea is to balance the model precision
and scalability. Different from the traditional FSM-based work,
our approach makes use of the dependency knowledge and
integrates into a basic depth-first traversal.

C. Combination of static and dynamic analysis

There are some studies leveraging the combination of static
and dynamic analysis to improve the test efficiency or to
find specific crashes. TrimDroid [27] employs static analysis
to extract dependencies meanwhile combining Robotium to
improve GUI-based testing. The dependencies of TrimDroid is
used to reduce the combinatorics in testing. Fax [41] combines
static activity launching context construction and dynamic
exploration to achieve multiple-entry testing of android apps.
APEChecker [42] combines static analysis and dynamic UI
exploration to uncover asynchronous programming errors in
android apps. However, our approach has a different purpose
which is to enhance GUI exploration in order to increase the
coverage and to uncover unknown crashes [43].

D. Coverage Study of Existing Tools

There have been some studies comparing the exploration
coverage of exiting tools. Choudhary et al. [1] conducted
a study to analyze 7 main testing tools at the time on 60
apps by the metrics including code coverage. Zeng et al. [44]
analyzed the limitations of Monkey in exploring an industrial
app WeChat and then compared the line coverage and activ-
ity coverage between their proposed approach and Monkey.
They further analyzed the uncovered code of Monkey and
summarize six main reasons [14]. Wang et al. [12] conducted
a systematic study by applying 6 tools on 68 industrial apps,
and compared their coverage on the method and activity level.
Compared with their work, we also conducted an empirical
study investigating the coverage on class, method and line
using Monkey and Stoat, and we went further to understand
the key limitations due to the lack of dependency knowledge.

VIII. CONCLUSION

In this paper, we propose an automated approach leverag-
ing static dependency analysis to improve GUI exploration.
The identified three types of dependencies are captured in a
structural model and are used to guide the widgets selection
during exploration. We developed a prototype and conducted
experiments on 70 open-source apps. The results verify the
effectiveness of GESDA in exploration and crash detection.

As a preliminary work, our approach and tool still have
potentials for development such as constructing a more com-
prehensive model by involving components like drawers and
fragments. In addition, the limitations discussed require re-
solved in the future.
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