
Fastbot2: Reusable Automated Model-based GUI Testing for
Android Enhanced by Reinforcement Learning

Zhengwei Lv
lvzhengwei.m@bytedance.com

Bytedance
Beijing, China

Chao Peng∗
pengchao.x@bytedance.com

Bytedance
Beijing, China

Zhao Zhang
zhangzhao.a@bytedance.com

Bytedance
Beijing, China

Ting Su∗
tsu@sei.ecnu.edu.cn

East China Normal University
Shanghai, China

Kai Liu†
liukai.0914@bytedance.com

East China Normal University /
ByteDance, Beijing, China

Ping Yang
yangping.cser@bytedance.com

Bytedance
Beijing, China

ABSTRACT

We introduce a reusable automated model-based GUI testing tech-
nique for Android apps to accelerate the testing cycle. Our key in-
sight is that the knowledge of event-activity transitions from the pre-
vious testing runs, i.e., executing which events can reach which ac-
tivities, is valuable for guiding the follow-up testing runs to quickly
cover major app functionalities. To this end, we propose (1) a proba-
bilistic model to memorize and leverage this knowledge during test-
ing, and (2) design a model-based guided testing strategy (enhanced
by a reinforcement learning algorithm). We implemented our tech-
nique as an automated testing tool named Fastbot2. The evaluation
on two popular industrial apps (with billions of user installations),
Douyin and Toutiao, shows that Fastbot2 outperforms the state-
of-the-art testing tools (Monkey, Ape and Stoat) in both activity
coverage and fault detection in the context of continuous testing. To
date, Fastbot2 has been deployed in the CI pipeline at ByteDance
for nearly two years, and 50.8% of the developer-fixed crash bugs
were reported by Fastbot2, which significantly improves app qual-
ity. Fastbot2 has been made publicly available to benefit the com-
munity at: https://github.com/bytedance/Fastbot_Android.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; • Computing methodologies→ Reinforcement learning.
ACM Reference Format:

Zhengwei Lv, Chao Peng, Zhao Zhang, Ting Su, Kai Liu, and Ping Yang.
2022. Fastbot2: Reusable Automated Model-based GUI Testing for An-
droid Enhanced by Reinforcement Learning. In 37th IEEE/ACM Interna-

tional Conference on Automated Software Engineering (ASE ’22), October

10–14, 2022, Rochester, MI, USA. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3551349.3559505
∗Chao Peng and Ting Su are the corresponding authors.
†Kai Liu was a research intern at ByteDance when this work was conducted.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3559505

1 INTRODUCTION

Mobile apps have drastically increased in number over the recent
years [1]. Ensuring app quality is crucial to keeping user loyalty and
maintaining business success. To this end, automated GUI testing
has become an attractive and cost-effective solution [2, 10, 11].

In practice, an industrial app undergoes frequent updates to
catch up with the changing user demands. At ByteDance, we re-
lease new updates of major apps on a weekly basis. As a result,
continuous testing becomes crucial for quick feedback on app qual-
ity (e.g., doing smoke testing) whenever a new internal version
is built. However, simply adopting existing testing tools [10], al-
though feasible, is inefficient and ineffective, as they simply rerun
each version from scratch and do not leverage the knowledge from
previous testing runs to accelerate GUI testing in the current run.

To fill this important gap, we introduce a reusable automated GUI
testing technique. Our key idea is to leverage model-based testing
(MBT). Among existing testing solutions, MBT is recognized for
its unique model construction phase, which is ideal for storing
and leveraging the prior knowledge. However, we face two major
technical challenges in putting our idea into practice.

The first challenge is how to effectively store the knowledge
from previous testing runs. Our key insight is that the knowledge
of event-activity transitions, i.e., executing which events reaches
which activities, is valuable for guiding the follow-up testing to
quickly cover core activities. Thus, we propose a probabilistic model

as the basis of MBT to memorize such knowledge from each testing
run. This model stores a set of event-activity transitions, each of
which records the historical probability of an event to reach an
activity. Moreover, to tackle the complexity of industrial apps, we
introduce a conception of hyper-event to represent events in this
model, which is useful to balance the model scalability and accuracy.

The second challenge is how to effectively leverage the prior
knowledge to guide GUI testing. Classic MBT methods traverse the
model to generate GUI events (i.e., GUI tests). However, one promi-
nent problem is that such GUI tests are likely to be broken due to
the unawareness of the connectivity between different GUI events.
To overcome this issue, our key insight is to employ the proba-
bilistic model to achieve on-the-fly, guided model-based testing.
Specifically, the probabilistic model (which stores the knowledge of
event-activity transitions) provides one-step guidance about which
events on the current GUI page could be selected to quickly reach

https://github.com/bytedance/Fastbot_Android
https://doi.org/10.1145/3551349.3559505
https://doi.org/10.1145/3551349.3559505
https://doi.org/10.1145/3551349.3559505

ASE ’22, October 10–14, 2022, Rochester, MI, USA Zhengwei Lv, Chao Peng, Zhao Zhang, Ting Su, Kai Liu, and Ping Yang

Fastbot2

Hyper-event
Abstractor

Valid-text Pool
APK Probabilistic

Model

Historical Data
(v1, v2, … , vn-1)

RL Agent

Q-Table
a2. Installation

a1. Valid-text Extraction

b1. GUI Info
b2. Available Events

a3. Probabilistic
Model Construction

b3. Algorithm Determination

b6. Rewards

b4. Event Execution

b5. Update Historical Data and Probabilistic Model

Activity Coverage

Crashes

vn

Figure 1: Fastbot2’s workflow in each testing run. The arrows denote different steps, which are annotated by “a1”, “b1”, etc.

those not-yet-covered activities in the current testing run. More-
over, to further improve performance, we develop a reinforcement
learning algorithm to provide multi-step guidance (also informed by
the probabilistic model), which aims to reach those deep activities
requiring executing multiple sequential events.

We implemented our technique as an automated testing tool
named Fastbot2. Our evaluation on our two popular industrial
apps, Douyin and Toutiao, shows that Fastbot2 outperforms the
two state-of-the-art MBT tools, Stoat [9] and Ape [5], and the
random testing tool Monkey [4] in both activity coverage and bug
finding in the context of continuous testing. To sum up, our work

makes two major contributions: (1) We propose a reusable automated
model-based GUI testing technique enhanced by reinforcement
learning to satisfy the practical needs of continuous testing, which
has not been considered by prior work. (2) Our implementation,
Fastbot2, outperforms the state-of-the-art. It has also been suc-
cessfully deployed in the CI pipeline at ByteDance and received
positive feedback on its ability of improving app quality.

2 FASTBOT2

Figure 1 shows Fastbot2’s workflow. Fastbot2 takes as input an
APK file of the app, outputs coverage and crash reports. Fastbot2
includes twomajor phases. The first phase does setup before testing:
decompiling the APK to gather static widget text labels of (Step
“a1”), installing the app on a pool of mobile devices (Step “a2”), and
loading the historical data if available to populate the probabilistic
model (Step “a3”, cf. Section 2.2.1). The second phase does guided
GUI exploration (cf. Section 2.3). Fastbot2 dumps the current GUI
page from the app (Step “b1”), identifies and abstracts available
hyper-events from the current page (Step “b2”, cf. Section 2.2.2),
selects the event which is likely to increase activity coverage (Step
“b3”), executes this UI event (Step “b4”) and updates the historical
testing data, the probabilistic model (Step “b5”) and the reinforce-
ment learning agent (Step “b6”). These steps (“b1”∼“b6”) will be
iteratively conducted until the time budget is used up.

2.1 An Illustrative Example

Figure 2(a) gives an illustrative example taken from Toutiao, a
popular daily news app. We use this example to ease the exposition
of our approach in Sections 2.2 and 2.3. In Toutiao, users can view
news on Activity 1, click the news title (e.g., “Title 1”) to reach
Activity 2 to view the content, click the news author (“Author”) to
view all news from this author on Activity 3 and watch the live
video on Activity 4 if available by clicking the profile photo.

(c) Q-value Update

(a) App Under Test (Toutiao)

e1 e5 e7 e9 … an

reward1 reward5 reward7 rewardn

q1 q5 q7 qn

Title 1 (e1)

Remarks 1
(e3)

Back
(e4)

Author
(e5)

News
Content

(e6)

Profile Photo
(e7)

News 1 (e8)
Livestream

Video
(e9)

Activity 1
(Home)

Activity 2
(News Info)

Activity 3
(Author Homepage)

Activity 4
(Livestream)

News 2 (e8’)

News 3 (e8’’)

e1 q1

Q Table

e5 q5
e7 q7
an qn

Author 1 (e2)

(b) Probabilistic Model

e1
Activity 2

Activity 5

e2 Activity 3

e3
Activity 1

e4 Activity 1

Activity 5

60%

40%

100%

100%

90%

10%

e1
Activity 2

Activity 5

e2 Activity 3

e3
Activity 1

e4 Activity 1

Activity 5

63.6%

36.4%

100%

100%

90%

10%

e5 Activity 3
100%

Update

Title 2 (e1’)

Remarks 2
(e3’)

Author 2 (e2’)

News n (e8n)

…

M: Initial M’: After executing e1 and e5

Figure 2: Activity Transition Example from Toutiao App

2.2 Probabilistic Model and Hyper-events

2.2.1 Probabilistic Model. We propose a probabilistic model as
the basis of MBT to memorize the knowledge of event-activity
transitions from previous testing runs. Specifically, this model𝑀 is
formally defined as a 3-tuple𝑀 = (E,A, 𝛿), where

• E is the set of hyper-events created from UI widgets.
• A is the set of activities of the app under test.
• 𝛿 is the transition function, i.e., E → P(A × [0, 1]). P
is a powerset function and each transition is of the form
𝑒 → (𝐴, 𝑝), meaning that the probability of a hyper-event 𝑒
reaching an app activity 𝐴 is 𝑝 , where 𝑒 ∈ E and 𝐴 ∈ A.

The probabilistic model 𝑀 is constructed from historical explo-
ration data. The probability of reaching activity 𝐴𝑖 by executing
the hyper-event 𝑒 (denoted by 𝑃 (𝑒,𝐴𝑖)) is calculated by :

Fastbot2: Reusable Automated Model-based GUI Testing for Android Enhanced by Reinforcement Learning ASE ’22, October 10–14, 2022, Rochester, MI, USA

𝑃 (𝑒, 𝐴𝑖) =
𝑁 (𝑒,𝐴𝑖)
𝑁 (𝑒) (1)

where 𝑁 (𝑒,𝐴𝑖) denotes the number of times of 𝑒 reaching 𝐴𝑖 ,
and 𝑁 (𝑒) denotes the total execution times of 𝑒𝑖 in all the pre-
vious testing runs. If the hyper-event 𝑒 can reach 𝑘 activities (e.g.,
𝐴1, . . . , 𝐴𝑖 , . . . , 𝐴𝑘),

∑𝑘
𝑖=1 𝑃 (𝑒, 𝐴𝑖) = 1 holds.

Example. Figure 2(b) gives an example of the initial probabilistic
model (see the left part) loaded from previous testing runs before
starting the current testing run. For example, Activity 2 can be
reached by executing the hyper-event 𝑒1 on Activity 1, 𝑒1 can reach
Activity 2 and 5 with probability values 60% and 40%, respectively.

2.2.2 Hyper-events. We propose the concept of hyper-event to rep-
resent the events in the probabilisticmodel. A hyper-event is created
from each UI widget according to its properties. Specifically, we only
consider the following four properties of a widget: the activity
which the widget belongs to, the widget’s text1, resource-id,
and the supported action types (e.g., click, long click). In other
words, if some widgets have the same four properties, we assume
they have the similar functionality and only one hyper-event will be
created. We ignore all the other minor widget properties (e.g., a wid-
get’s type) when creating hyper-events with the aim of balancing
between model scalability and accuracy.
Example. In Figure 2(a), on Activity 1, Fastbot2 will create only
one hyper-event “e1” for the widgets named “Title 1” and “Title 2”
because these two widgets have the identical widget properties: the
same activity, the same empty text (“Title 1” and “Title 2” are the
texts dynamically loaded from the app server without static text
labels), the same resource-id, and the same click action type. In
this way, we will create three hyper-events, i.e., “e1” (representing
“Title 1” and “Title 2”), “e2” (representing “Author 1” and “Author
2”), “e3” (representing “Remarks 1” and “Remarks 2”), on Activity 1.

2.3 Model-based Guided UI Exploration

The key idea of Fastbot2 is to reuse the prior knowledge stored in
the probabilistic model to effectively guide GUI testing. To achieve
this, the key step is to decide which UI event on the current GUI
page should be selected so as to quickly increase activity coverage.
This step corresponds to Step “b3” in Figure 1. Specifically, given a
GUI page, Fastbot2 extracts the available hyper-events, and selects
the event2 to be executed based on the two synergistically combined
strategies: (1) model-based event selection (cf. Section 2.3.1), and (2)
learning-based event selection (cf. Section 2.3.2).

2.3.1 Model-based event selection. Model-based event selection
contains two modes, i.e., model expansion and model exploitation.
Model expansion. If some hyper-events from the current GUI page
have not been included in the probabilistic model𝑀 , Fastbot2will
activate this mode to randomly select one not-yet-executed hyper-
event. This situation may occur because the previous testing runs
may not cover all hyper-events or some new app features have

1Here, the text means the static text labels stored in the resource files of the APK file.
If the text is dynamically loaded from the app server, we treat its text as empty.
2After we decide which hyper-event should be selected, if the selected hyper-event
represents multiple UI widgets, we will randomly pick one UI widget to exercise.

been added in the current tested app version. This mode can help
expand the model and prioritize exploring potentially new features.
Model exploitation. If all the hyper-events from the current GUI
page have been included in the probabilistic model 𝑀 , Fastbot2
will activate this mode to select an event with higher probability
to cover those not-yet-covered activities in the current testing run
(which were covered in the previous testing runs). LetA𝑡 be the set
of already covered activities in the current testing run and E𝑐 be
the set of hyper-events from the current GUI page, the expectation
of improving activity coverage by executing 𝑒𝑖 (𝑒𝑖 ∈ E𝑐) can be
computed as E(𝑒𝑖) =

∑
𝐴∉A𝑡

𝑃 (𝑒𝑖 , 𝐴), 0 ≤ 𝑖 ≤ |E𝑐 |.
Here, E(𝑒𝑖) represents the expectation value of probability that

those not-yet-covered activities in the current testing run will be
covered after the hyper-event 𝑒𝑖 is executed. The higher E(𝑒𝑖), the
more likely it is to improve activity coverage.Thus, Fastbot2 in
this mode selects the hyper-event 𝑒𝑖 by probability 𝑃𝑀 (𝑒𝑖):

𝑃𝑀 (𝑒𝑖) = 𝑒𝑥𝑝 (
E(𝑒𝑖)
𝛼

) /
∑

𝑒𝑖 ∈E𝑐

𝑒𝑥𝑝 (
E(𝑒𝑖)
𝛼

) (2)

where, 𝛼 is a hyperparameter which adjusts the randomness of
this mode. This equation is adapted from the softmax formula. We
also require that 𝑒𝑖 should be selected no more than 𝐾 times to
ensure fairness. In practice, we set 𝛼 as 0.8 and 𝐾 as 1. By using the
probabilistic model as priori information, the model exploitation
mode can quickly improve activity coverage in a short time.
Example. In Figure 2(a), three hyper-events are available on Ac-
tivity 1. Since all these three events have been included in the
probabilistic model 𝑀 (see the left part of Figure 2(b)), Fastbot2
activates the model exploitation mode to select events. According
to𝑀 , event e1 and e2 are more likely to reach unexplored activities
(i.e., Activity 2, 3, 5), while event e3 has 90% probability to stay in
Activity 1. Thus, Fastbot2 is likely to select e1 or e2. Assume e1
is selected and then Activity 2 is covered. In Activity 2, event e4
(the back button) has 100% probability to return back to Activity 1,
while event e5 and e6 have not been included in 𝑀 . As this time,
Fastbot2 activates the model expansion mode and randomly se-
lects e5 or e6. Assume e5 is selected and then Activity 3 is covered.
Meanwhile,𝑀 is updated by adding e5→Activity 3 with probability
value 100% (see the right part of Figure 2(b)).

2.3.2 Learning-based event selection. However, the probabilistic
model can only express one-step guidance information. Fortunately,
reinforcement learning technique is able to spread one-step into
multiple-step guidance information.
Q-table expansion. The key component of the RL agent is the Q-
table, which contains the Q-values (which indicate the possibility of
executing each hyper-event to reach a new activity). During testing,
no matter which event selection strategy is used, the Q-value of
the selected hyper-event 𝑒𝑡 on the current GUI page, i.e., 𝑄 (𝑒𝑡), is
updated to 𝑄 (𝑒𝑡) + 𝛼 (𝐺𝑡,𝑡+𝑛 − 𝑄 (𝑒𝑡)), where 𝐺𝑡,𝑡+𝑛 is the n-step
cumulative reward calculated by an N-step Sarsa method [3]:

𝐺𝑡,𝑡+𝑛 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + · · · + 𝛾𝑛𝑄 (𝑒𝑡+𝑛) (3)

Here, 𝛾 is the discount factor. 𝑟𝑡+1 is the immediate reward earned
after the event 𝑒𝑡 is executed, which is defined as

ASE ’22, October 10–14, 2022, Rochester, MI, USA Zhengwei Lv, Chao Peng, Zhao Zhang, Ting Su, Kai Liu, and Ping Yang

𝑟𝑡+1 =
E(𝑒𝑡)√
𝑁 (𝑒𝑡) + 1

+
𝑉√

𝑁 (𝐴𝑡) + 1
(4)

Here, 𝑁 (𝑒𝑡) denotes the number of times 𝑒𝑡 is executed,𝐴𝑡 denotes
the activity 𝑒𝑡 leads to, and 𝑁 (𝐴𝑡) denotes the number of times 𝐴𝑡
is visited so far in the current testing. 𝑉 represents the value of 𝐴𝑡
and is calculated using:

𝑉 = 𝑛ℎ + 0.5 ∗ 𝑛𝑐 +
∑

𝑒𝑖 ∈E𝑐

E(𝑒𝑖) (5)

Here, 𝑛ℎ is the number of hyper-events in the reached GUI page
but are not in the probabilistic model. Thus, executing these hyper-
events will likely touch new features. 𝑛𝑐 is the number of hyper-
events in the next GUI page and contained in the probabilistic model
but have not been executed in the current testing run.

∑
𝑒𝑖 ∈E𝑐

E(𝑒𝑖)
is the sum of expectation values of executing 𝑒𝑖 to improve activity
coverage, which is the same formula defined in model exploitation.
Q-table exploitation. A hyper-event is selected by probability 𝑃𝑄 :

𝑃𝑄 (𝑒𝑖) = 𝑒𝑥𝑝 (
𝑄 (𝑒𝑖)
𝛽

) /
∑

𝑒𝑖 ∈E𝑐

𝑒𝑥𝑝 (
𝑄 (𝑒𝑖)
𝛽

) (6)

where 𝛽 is the hyperparameter that adjust the randomness of the
strategy, which is set to 0.1 in our practice.
Example. In Figure 2(a), on Activity 2, e4 and e6 have not been
executed yet and e6 is in the model𝑀 . In this case, e1 (on Activity
1) will be given a higher reward because e1 can lead to interesting
actions (e4 and e6). Similarly, e8 is also a new event (not in 𝑀)
on Activity 3 after executing e5, thus e5 is also given a higher
reward. Assume e1, e2 and e3 are all executed for many times after
a while, and Activities 2, 3 and 4 are all covered (all events have
been included in the model𝑀). In this case, the Q-table is used to
make decision on event selection: e1 is likely to be selected as it has
the highest rewards indicating that it can reach deeper activities.

2.4 Fastbot2’s Implementation

Fastbot2 is implemented as a fully automated tool and consists of
client and server modules. The client reuses the GUI tree dumping
and action execution capabilities of Ape [5] to interact with the
app. The server written in GoLang performs event selection and
supports multi-device collaboration mode (which allows multiple
clients to test the same app in parallel on multiple devices and share
the same probabilistic model and RL agent).

3 EVALUATION

We evaluate the effectiveness of Fastbot2 by comparing it with
two popular model-based tools, Stoat [9] and Ape [5]; and
Monkey [4], a popular industrial testing tool. We tried to include
Q-testing [8], a recent reinforcement learning-based testing tool.
However, Q-testing always fails with exceptions after a few min-
utes of testing our industrial apps. Thus, we do not compare with
Q-testing. We investigate the following research questions:
RQ1: Test Effectiveness: Is Fastbot2 able to achieve higher activ-

ity coverage and reveal more unique crashes than existing tools when

applied in the scenario of continuous app version updates?

We use our two popular apps, Douyin (short video) and Toutiao
(daily news), as our subjects and selected ten recent consecutive

versions of Douyin (v19.7∼v20.6) and Toutiao (v8.7.0∼v8.7.9) for
continuous testing. We ran Fastbot2 to test one version on 10
devices in parallel for 1 hour, and test the next version by reusing
historical data from all previous runs. For the other tools, we ran
them on each version on 10 devices in parallel as this is the typical
usage scenario of these tools. We compare the achieved activity
coverage and the number of uncovered unique crashes by each tool.
RQ2: Ablation Study. Do model-based and learning-based event se-

lection strategies both contribute to Fastbot2’s overall performance?

We test Douyin (v.19.7) and Toutiao (v.8.7.0) on 10 devices for
1 hour with the model-based strategy enabled only, the learning-
based strategy enabled only, and both strategies enabled to evaluate
their respective impact on Fastbot2’s overall performance.

In RQ1 and RQ2, 10 different Huawei, OPPO and Google Pixel
Android devices are used to mitigate the device fragmentation issue.

3.1 RQ1: Test Effectiveness

Figures 3(a) and 3(b) show activity coverage achieved: bars give
numbers of activities covered by different tools on each app version,
and curves give accumulated numbers of activities covered after
testing ten consecutive versions. Figures 3(c) and 3(d) give the
similar information on the number of unique crashes revealed by
these tools (we deduplicate crashes according to stack traces [9]).

We can see that Fastbot2 achieved the highest activity coverage
on each single version of both apps (except Toutiao’s v8.7.3) and
the highest accumulated activity coverage across ten continuous
versions for both apps. It indicates that reusing the knowledge from
previous testing runs can effectively improve activity coverage within

the same time budget. On the other hand, We can see that Fastbot2
uncovered many more crashes on Douyin than all other tools (all
the crashes were confirmed as real bugs). Fastbot2 uncovered 2
fewer crashes thanApe on Toutiao. We find that most crashes found
by these two tools on Toutiao are similar native crashes (i.e., crashes
triggered by the app but reside in native C++ libraries). The overall
result indicates that reusing the knowledge from previous testing runs

can also effectively improve Fastbot2’s bug finding ability.
Figures 4(a) and (b) use venn diagrams to compare the differences

between Fastbot2 and other tools in terms of the accumulated
activity coverage after testing ten app versions. The overlapped
part denotes the number of activities covered by both tools, while
other parts denote the number of activities covered by the two tools
alone, respectively. We can see that Fastbot2 is indeed effective as
it can cover many more unique activities than other tools.

We note that Fastbot2 performed much better on Douyin than
Toutiao, compared to Ape. This is because Douyin is much more
complicated than Toutiao. For example, Douyin has more com-
plicated features, e.g., online shopping in the livestreaming room,
video recording and editing. In contrast, Toutiao has simpler fea-
tures (e.g., news reading). As a result, Toutiao is more likely to reach
saturated coverage within 1-hour testing by Fastbot2 and Ape.

We also note that Stoat did not perform well as we expected.
After inspection, we find Stoat only generated around 300 events
during 1-hour testing. The main reason is that Stoat kept querying
the GUI tree and only generated the next event until the current GUI
page became stable. However, many features of Douyin and Toutiao,
e.g., advertisements, profiles and user comments, are dynamically
changing, which makes Stoat waste a lot of time for waiting.

Fastbot2: Reusable Automated Model-based GUI Testing for Android Enhanced by Reinforcement Learning ASE ’22, October 10–14, 2022, Rochester, MI, USA

0

50

100

150

200

v8
.7.

0
v8

.7.
1
v8

.7.
2
v8

.7.
3
v8

.7.
4
v8

.7.
5
v8

.7.
6
v8

.7.
7
v8

.7.
8
v8

.7.
9N

um
. o

f C
ov

er
ed

 A
ct

iv
iti

es

(a) Activity Coverage for Toutiao

0

50

100

150

200

250

v1
9.7

v1
9.8

v1
9.9

v2
0.0

v2
0.1

v2
0.2

v2
0.3

v2
0.4

v2
0.5

v2
0.6

N
um

. o
f C

ov
er

ed
 A

ct
iv

iti
es

(b) Activity Coverage for Douyin

0

5

10

v8
.7.

0
v8

.7.
1
v8

.7.
2
v8

.7.
3
v8

.7.
4
v8

.7.
5
v8

.7.
6
v8

.7.
7
v8

.7.
8
v8

.7.
9

N
um

. o
f R

ev
ea

le
d

C
ra

sh
es

(c) Uncovered Crashes of Toutiao

0

5

10

15

20

v1
9.7

v1
9.8

v1
9.9

v2
0.0

v2
0.1

v2
0.2

v2
0.3

v2
0.4

v2
0.5

v2
0.6

N
um

. o
f R

ev
ea

le
d

C
ra

sh
es

Fastbot
APE
Stoat
Monkey
Fastbot-Accum.
APE-Accum.

Stoat-Accum.
Monkey-Accum.

(d) Uncovered Crashes of Douyin

Figure 3: Testing results between Fastbot2 and other tools in terms of activity coverage and bug finding.

(a) Toutiao (b) Douyin

Figure 4: Differences of accumulative activity coverage.

3.2 RQ2: Ablation Study

Figure 5(a) and (b) shows the activity coverage of Toutiao and
Douyin achieved by different testing strategies within 1-hour test-
ing. Fastbot2 (denoted by “RL+PM”) achieves 31.5% coverage
for Toutiao, which is higher than both the model-based event
selection strategy alone (28.5%, denoted by “PM Only”) and the
learning-based event selection strategy alone (29.0%, denoted by “RL
Only”). Similarly, Fastbot2 achieves higher coverage for Douyin
(20.8%) than model-based strategy alone (18.6%) and learning-based
strategy alone (19.2%). The result indicates that both the model-
based and learning-based event selection strategies contribute to
Fastbot2’s overall performance in improving activity coverage.

(a) Toutiao (b) Douyin

Figure 5: Comparing Fastbot2’s internal strategies.

4 INDUSTRIAL DEPLOYMENT

To date, Fastbot2 have been deployed in the Continuous Inte-
gration pipeline at ByteDance for nearly two years. Fastbot2 is
automatically triggered by nightly builds to obtain quick feedback
on app quality when new code changes occur.We have received pos-
itive feedback from app development teams. For example, among
all the developer-fixed bugs for Toutiao from September 1 to Oc-
tober 31, 2021, 50.8% of these bugs were uncovered by Fastbot2.
Additionally, Fastbot2 can cover 80% of the hot-spot activities in
Toutiao that are frequently visited by online users. These results
corroborate Fastbot2’s strong effectiveness.

5 RELATEDWORK

We focus on discussing the industrial practice of automated Android
GUI testing. Facebook Sapienz [6] adopts search-based testing to

improve code coverage and fault detection. They also extract infor-
mation from crowd-based testing to enhance Sapienz [7]. WeChat
WCTester [12, 13] adopts Monkey-based random testing. WCTester
allows human testers to specify blacklisted widgets and define GUI
event sequences to improve coverage. However, our work is sig-
nificantly different from the prior work. First, Fastbot2 mainly
adopts model-based testing (enhanced by a learning-based algo-
rithm). Second, Fastbot2 reuses the knowledge from the historical
exploration data to resolve the practical needs of continuous testing,
which have not been considered by prior work.

6 CONCLUSION

This paper presents a reusable automated model-based GUI testing
technique for Android enhanced by reinforcement learning to sat-
isfy the practical needs of continuous testing. Our implementation
Fastbot2 outperforms the three state-of-the-art testing tools in
both activity coverage and bug finding in the scenario of contin-
uous testing on two popular apps Douyin and Toutiao. Fastbot2
has been successfully deployed in the CI pipeline at ByteDance and
received positive feedback on its ability of improving app quality.

REFERENCES

[1] AppBrain. 2022. . Retrieved June 3, 2022 from https://www.appbrain.com/stats/
number-of-android-apps

[2] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Au-
tomated test input generation for android: Are we there yet?. In ASE. IEEE,
429–440.

[3] Kristopher De Asis, J Hernandez-Garcia, G Holland, and Richard Sutton. 2018.
Multi-step reinforcement learning: A unifying algorithm. In AAAI, Vol. 32.

[4] Google. 2021. UI/Application Exerciser Monkey. Retrieved March 3, 2021 from
https://developer.android.com/studio/test/monkey

[5] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao,
Qirun Zhang, Jian Lu, and Zhendong Su. 2019. Practical GUI testing of Android
applications via model abstraction and refinement. In ICSE. IEEE, 269–280.

[6] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated
testing for android applications. In ISSTA. 94–105.

[7] KeMao, Mark Harman, and Yue Jia. 2017. Crowd intelligence enhances automated
mobile testing. In ASE. IEEE, 16–26.

[8] Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. 2020.
Reinforcement learning based curiosity-driven testing of Android applications.
In ISSTA. 153–164.

[9] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang
Pu, Yang Liu, and Zhendong Su. 2017. Guided, stochastic model-based GUI testing
of Android apps. In ESEC/FSE. 245–256.

[10] Ting Su, Jue Wang, and Zhendong Su. 2021. Benchmarking Automated GUI
Testing for Android against Real-World Bugs. In ESEC/FSE. to appear.

[11] Wenyu Wang, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang, Yuetang
Deng, and Tao Xie. 2018. An empirical study of android test generation tools in
industrial cases. In ASE. IEEE, 738–748.

[12] Xia Zeng, Dengfeng Li, Wujie Zheng, Fan Xia, Yuetang Deng, Wing Lam, Wei
Yang, and Tao Xie. 2016. Automated test input generation for android: Are we
really there yet in an industrial case?. In ESEC/FSE. 987–992.

[13] Haibing Zheng, Dengfeng Li, Beihai Liang, Xia Zeng, Wujie Zheng, Yuetang
Deng, Wing Lam, Wei Yang, and Tao Xie. 2017. Automated test input generation
for android: Towards getting there in an industrial case. In ICSE-SEIP. IEEE,
253–262.

https://www.appbrain.com/stats/number-of-android-apps
https://www.appbrain.com/stats/number-of-android-apps
https://developer.android.com/studio/test/monkey

	Abstract
	1 Introduction
	2 Fastbot2
	2.1 An Illustrative Example
	2.2 Probabilistic Model and Hyper-events
	2.3 Model-based Guided UI Exploration
	2.4 Fastbot2's Implementation

	3 Evaluation
	3.1 RQ1: Test Effectiveness
	3.2 RQ2: Ablation Study

	4 Industrial Deployment
	5 Related Work
	6 Conclusion
	References

