
Runtime Verification by Convergent Formula Progression

Yan Shen∗, Jianwen Li∗, Zheng Wang†, Ting Su∗, Bin Fang∗, Geguang Pu∗, Wanwei Liu‡ and Mingsong Chen∗

∗Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China
†Beijing Institute of Control Engineering, Beijing, China

‡National University of Defense Technology, Changsha, China

Abstract—Runtime verification is a dynamic verification
technique widely used in practice. In this paper we revisit the
runtime verification technique with formula progression, which
verifies the execution trace step by step by progressing the
desired property written in temporal logic. The previous work
did not discuss explicitly the bound for the sizes of expanded
formulas, while the successive invoking of formula progression
is likely to cause divergence. In this paper1, we present the
convergent formula progression by introducing a novel fix-
point reduction technique, and prove it guarantees the sizes
of expanded formulas be always convergent. To the best of our
knowledge, this is the first work discussing the convergence
of formula progression. Furthermore, we implement the new
runtime verification framework, and experiments show the
efficiency of our proposed strategy.

I. INTRODUCTION

Recently program verification has become a popular re-

search area. Informally, this topic answers the question that

given a system model M and a specification φ then how

to prove that M satisfies φ. As safety-critical systems are

strongly required nowadays, the achievements of program

verification have been widely used in industry, cf. [1].

Generally speaking, the verification can be either static or

dynamic. Static verification methods include model checking

[2], theorem proving [3], and dynamic verification ones

include runtime verification [4] and etc.

Due to the state-explosion problem of model checking

[2] and the possible manual intervention in theorem proving

[3], the light-weight formal technique of program verifica-

tion, runtime verification becomes attractive [5]. Runtime

verification is a complementary technique to exhaustive ver-

ification, where a monitor is generated from the specification

φ, and inspects the execution of the program at run time to

check whether the program meets the specification φ. There

are two main strategies for this checking: One is the on-

line manner in which the monitoring occurs during program

execution, while the other one is off-line such that the

monitoring occurs after program execution, with the traces

stored in a log file. Here we can see that the monitor plays

a key role in both approaches.

The monitor in runtime verification is often considered as

a deterministic finite automata (DFA), for the reason that the

verification aims to detect the violation in the (finite) prefix

1Geguang Pu is the corresponding author.

of an execution trace [6]. Therefore, runtime verification

framework is normally available for safety specifications

(properties) only, in which case the DFA can be generated

[7]. However, lots of researches have shown that the DFA

construction from specifications, such as LTL properties, can

involve a doubly exponential grow-up, which in practice is

not efficient [7], [8]. Thus some efforts are paid in con-

structing the minimal DFA such that the checking cost can

be reduced as much as possible [8]. This optimization speeds

up the performance indeed, while the whole automaton still

needs to be generated.

Another improvement is to construct the DFA dynami-

cally, i.e., DFA are constructed from properties under the

guidance of the input execution traces. Such techniques

are called formula-rewriting [9] or formula progression

[10].(Although proposed independently, they actually follow

the same formula expansion technique). In this paper, we

fix the notation by formula progression and consider its

application in linear temporal logic (LTL).

The formula progression technique takes an LTL formula

φ and a current assignment P as inputs, and returns the next

formula after P acting on φ. The technique was originally

available for co-safety formulas, whose satisfaction can be

determined in finite steps [10].Using this technique, the

monitor generation is guided by the execution trace and thus

saves time and space. There are a few research work that

integrate formula progression into the runtime verification

field. For instance, [5] utilizes the formula-progression-based

technique to verify the Android operating system. Also,

a formula-rewriting-based technique is established for the

logic FLTL4.

Theoretically, invoking the formula progression one at

a time has only a linear complexity with respect to the

input formula φ. However, the algorithm is normally invoked

successively in runtime verification by feeding the status

of the execution trace step-by-step, in which case the cost

may grow up unlimitedly if the expanded formulas do not

arrive in the fix-point states. Actually, the pure formula

progression technique in general is divergent, which means

the sizes of the generated formulas grow up unlimitedly.

Although earlier work [5] introduced formula progression

for runtime verification framework, they did not discuss

how to ensure the convergence of the generated formulas

by formula progression technique. Evidently, the divergence

2014 21st Asia-Pacific Software Engineering Conference

1530-1362/14 $31.00 © 2014 IEEE

DOI 10.1109/APSEC.2014.47

278

2014 21st Asia-Pacific Software Engineering Conference

1530-1362/14 $31.00 © 2014 IEEE

DOI 10.1109/APSEC.2014.47

255

of formula progression may jeopardize the effective of this

technique for runtime verification.

In this paper, we revisit the formula progression for LTL

in runtime verification, and propose the convergent formula

progression by integrating the novel fix-point reduction tech-

nique. We prove that by convergent formula progression the

sizes of generated formulas are restricted under the bound

of 2|φ|, where |φ| means the size of input formula φ.

The main contributions in this paper are listed as below:

1). We propose the convergent formula progression by inte-

grating the novel fix-point reduction technique introduced,

which ensures the sizes of generated formulas are bounded;

2). We implement a new runtime verification framework

with convergent formula progression; 3). A real case study

from industry is carried on and the experiments show the

efficiency and effectiveness of our method.

This paper is organized as follows. Section II introduces

LTL and the formula progression algorithm in runtime

verification; Section III presents the convergent formula

progression with the fix-point reduction technique; Section

IV introduces a detailed runtime verification framework with

convergent formula progression; Section V shows the exper-

imental results of a case study; And Section VI concludes

the paper. All missing proofs in this paper can be found

in the online technique report: http://www.lab205.org/home/

pages/lijianwen/data/rv.pdf.

II. PRELIMINARIES

A. Linear Temporal Logic

The Linear Temporal Logic (LTL) has been widely used

in the program verification area since it was first introduced

into computer science in 1977. Given an atomic set P , we

can inductively define the LTL formulas over P as follows:

φ ::= � | ⊥ | a | ¬φ | φ1∧φ2 | φ1∨φ2 |Xφ | φ1Uφ2 | φ1Rφ2

where a ∈ P , and �, ⊥ stand for True, False, respectively.

LTL is considered to be an extension of propositional

logic, which inherits all unary and binary operators from

propositional logic. Beyond that, LTL also introduces three

temporal operators: Next (X), Until (U), and Release (R). U
and R are duals of each other, i.e., it holds that ¬(φ1Uφ2) ≡
¬φ1R¬φ2 and ¬(φ1Rφ2) ≡ ¬φ1U¬φ2. Especially, we also

use the abbreviation Fφ to represent �Uφ, and Gφ to ⊥Rφ.

The formula φ is called a literal iff φ is an atom a or its

negation ¬a. We use Lφ to denote the set of literals in φ,

i.e., Lφ = P ∪ {¬a | a ∈ P} (We notate it L directly in the

following). In this paper, we consider LTL formulas in NNF

(Negation Normal Form), which can be acquired by pushing

all negations inwards so that all remaining negations appear

only in front of atoms. As a result, we need only consider

the literal, ∧, ∨, X , U and R operators if the formulas are in

NNF. In this paper we use φ, ψ to represent LTL formulas,

and α, β for propositional formulas.

Since we consider LTL in NNF, formulas are interpreted

on infinite literal sequences over Σ := 2L. A trace ξ =
ω0ω1ω2 . . . is an infinite sequence over Σω . For ξ and k ≥ 1
we use ξk = ω0ω1 . . . ωk−1 to denote the prefix of ξ up to

its k-th element, and ξk = ωkωk+1 . . . to denote the suffix

of ξ from its (k + 1)-th element. Thus, ξ = ξkξk. Before

giving the LTL semantics, we first introduce the notion of

consistent trace:

Definition 1 (Consistent Trace). We say a literal set A is

consistent iff for all a ∈ A we have that
∧
a
≡ ⊥. A trace

ξ = ω0ω1 . . . is consistent iff ωi is consistent for all i ≥ 0.

Let ω ∈ Σ be a consistent set of literals, and the semantics

of LTL operators with respect to a consistent trace ξ is given

by:

• ξ |= α iff ξ1 |= α;

• ξ |= φ1 ∧ φ2 iff ξ |= φ1 and ξ |= φ2;

• ξ |= φ1 ∨ φ2 iff ξ |= φ1 or ξ |= φ2;

• ξ |= X φ iff ξ1 |= φ;

• ξ |= φ1 U φ2 iff there exists some i � 0 such that

ξi |= φ2 and for all 0 � j < i, ξj |= φ1;

• ξ |= φ1 R φ2 iff either ξi � φ2 for all i ≥ 0, or there

exists some i ≥ 0 with ξi |= φ1 ∧ φ2 and ξj � φ2 for

all 0 ≤ j < i;

Informally speaking, Xφ holds iff φ holds in the next

state; φ1Uφ2 holds iff there exists a position in which φ2
holds, and before that (not including current position) φ1
continuously hold; φ1Rφ2 holds iff φ2 holds forever, or

there exists a position in which φ1 holds, and before that

(including current position) φ2 continuously holds.

B. Formula Progression

The formula progression technique was first introduced

in the goal planning [10] in Artificial Intelligence (AI) area.

The algorithm takes an LTL formula φ and an assignment

P ⊆ Lφ as the inputs, and then computes the next formula

φ′ after P acting on φ. The explicit definition of formula

progression is as follows:

Definition 2 (Formula Progression). Given an LTL formula

φ and an assignment P over Lφ, we define fprog(φ, P) to

compute the next formula after P acting on φ. Explicitly,

this operator can be defined recursively over φ:

• If φ = a is a literal, then fprog(φ, P) = � iff a ∈ P ;

Otherwise fprog(φ, P) = ⊥;

• If φ = φ1 ∨ φ2, then fprog(φ, P) = fprog(φ1, P) ∨
fprog(φ2, P);

• If φ = φ1 ∧ φ2, then fprog(φ, P) = fprog(φ1, P) ∧
fprog(φ2, P);

• If φ = Xφ2, then fprog(φ, P) = φ2;

• If φ = φ1Uφ2, then fprog(φ, P) = fprog(φ2, P) ∨
(fprog(φ1, P) ∧ φ);

• If φ = φ1Rφ2, then fprog(φ, P) = fprog(φ2, P) ∧
(fprog(φ1, P) ∨ φ);

279256

Note that in the literature [10], the input formula must

be co-safety [11], i.e., Release-free. The reason is that the

Release formulas may not be checked within finite steps,

which however is often required but not always holds in

practice. In the real situation, runtime verification checks

the traces of the program under scrutiny in a step-by-step

manner, so the framework works only when the results can

be achieved in finite steps, but leaves the new formulas to

be checked further.

For simplicity, we say that φ′ is derived from φ after being

acted on by P , denoted as φ
P
−→ φ′, if fprog(φ, P) = φ′

holds. And given a finite trace η = ω0ω1 . . . ωn(n ≥ 0),

we write φ
η
−→ φ′ if there exists φ

ω0−→ φ1
ω1−→ . . . φn

ωn−−→
φ′. Then the following theorem establishes the theoretical

foundation of runtime verification with formula progression:

Theorem 1. Let η be a finite trace and ξ be an arbitrary

infinite trace. Then for an LTL formula φ:

• φ
η
−→ � holds implies η · ξ |= φ;

• φ
η
−→ ⊥ holds implies η · ξ
|= φ;

According to the above theorem, the runtime verification

procedure based on formula progression can be implemented

in the following way: Let φ be the negation of the specifi-

cation and η be the finite trace extracted from the program’s

execution path, then

1) If φ
η
−→ �, then the execution path of the program

under scrutiny does not satisfy the specification, so

we can terminate the whole verification process and

give the negative result;

2) If φ
η
−→ ⊥, then the execution path of the program

under scrutiny satisfies the specification, which indi-

cates that we can stop the current execution and start

another one with a new execution path;

3) If φ
η
−→ φ′ and φ′ is neither � or ⊥, then whether

the execution path of the program satisfies the speci-

fication cannot be decided within the finite steps, and

needs to be checked further.

III. CONVERGENT FORMULA PROGRESSION

In the previous section we introduce the formula progres-

sion technique that is used in runtime verification. However,

there are two main factors affecting the performance:

1) The selected execution path. This is essentially based

on the initial status (inputs) of the program under ver-

ification. A good choice of the inputs, which results in

a satisfied/violated path can lead to a fast verification.

But such paths are not always easily found;

2) The sizes of generated formulas from formula progres-

sion. Often, it needs to explore more if larger formulas

are generated, which may be even worse with respect

to the divergence of formula progression.

To overcome the second point mentioned above, we

present in this section the convergent formula progression

technique in runtime verification framework, and we show

that the exact bound for the sizes of generated formulas with

convergent formula progression. First, we introduce some

formula simplification rules for LTL which are used in the

fix-point reduction technique introduced in the following.

Theorem 2 (Simplification). Let φ1, φ2 and φ3 be LTL

formulas, the following equations hold:

1) (φ1Uφ2) ∧ φ2 ≡ φ2;

2) (φ1Uφ2) ∨ φ2 ≡ φ1Uφ2;

3) (φ1Rφ2) ∧ φ2 ≡ φ1Rφ2;

4) (φ1Rφ2) ∨ φ2 ≡ φ2;

5) (φ1Rφ2) ∧ φ1 ≡ φ1 ∧ φ2;

6) (φ1Uφ2) ∨ (φ3U¬φ2) ≡ �;

7) (φ1Rφ2) ∧ (φ3R¬φ2) ≡ ⊥.

The above simplifications aim to reduce the temporal

operators U and R, as their expansions are likely to enlarge

the sizes of expanded formulas. Note that such simplifi-

cations are not limited: we here just list some that are

used frequently in practice. Actually, the equations proposed

above are not enough to avoid the potential explosion, and

the following example shows the pure formula progression

may be divergent.

Example 1. Consider the formula φ = φ1Uφ2 and the

infinite trace ξ = Pω where P ∈ Σ. Then we let

ψ1 = fprog(φ, P) and ψn = fprog(ψn−1, P)(n ≥
2). We know that φ ≡ φ2 ∨ (φ1 ∧ Xφ), thus ψ1 =
fprog(φ2, P) ∨ (fprog(φ1, P) ∧ φ). Moreover, we have

ψ2 = fprog2(φ2, P) ∨ (fprog2(φ1, P) ∧ (fprog(φ2, P) ∨
(fprog(φ1, P) ∧ φ))). Iteratively, we can compute ψn =
fprogn(φ2, P) ∨ (fprogn(φ1, P) ∧ (fprogn−1(φ2, P) ∨
(fprogn−1(φ1, P)∧(. . .∧(fprog(φ2, P)∨(fprog(φ1, P)∧
φ)))))). From the equations above we know, the size of

ψn grows divergently if the equations fprogn(φ2, P) =
fprogn−1(φ2, P), fprog

n(φ1, P) = fprogn−1(φ1, P) are

not detected, in which the evaluations are not � or ⊥.

If we consider the case that φ = φ1Rφ2 is a Release

formula, a similar situation also occurs. From the view of

fix-point theory, the U (Until) operator is considered as the

least fix point and the R (Release) operator is the largest fix

point – This causes the potentially infinite iterations unless

the fix point is found. However, as far as we know, previous

literatures about formula progression did not study the fix-

point of the generated formulas. In the example above,

if the equations fprogn(φ2, P) = fprogn−1(φ2, P) and

fprogn(φ1, P) = fprogn−1(φ1, P) are not recognized, the

sizes of generated formulas from formula progression grow

up unlimitedly. In the following, we propose a reduction

strategy for formula progression, which successfully avoids

the unlimited growing up.

Theorem 3 (Fix-point Reduction). Let the formulas f1(n)
and f2(n) be defined recursively in the following way: 1)

280257

f1(1) = φ3 ∨ (φ2 ∧ φ1), f2(1) = φ3 ∧ (φ2 ∨ φ1); and 2)

f1(n) = φ2n+1∨(φ2n∧f1(n−1)), f2(n) = φ2n+1∧(φ2n∨
f2(n − 1)) when n > 1. Then the the following statements

are true:

1) φ2n+1 = φ2k+1(n > k) ⇒ f1(n) ≡ f1(n)[⊥/φ2k+1];
2) φ2n = φ2k(n > k) ⇒ f1(n) ≡ f1(n)[�/φ2k];
3) φ2n+1 = φ2k+1(n > k) ⇒ f2(n) ≡ f2(n)[�/φ2k+1];
4) φ2n = φ2k(n > k) ⇒ f2(n) ≡ f2(n)[⊥/φ2k].

Theorem 3 comes from the observation that the operators

U and R follow the corresponding expansion rules during

formula progression, i.e., φ1Uφ2 ≡ φ2 ∨ (φ1 ∧X(φ1Uφ2))
which has the form of f1(n), and φ1Rφ2 ≡ φ2 ∧ (φ1 ∨
X(φ1Rφ2)) which has the form of f2(n). The formula

structures satisfying the conditions in the theorem are easily

detected in application. The convergent formula progression

is the formula progression weaponed with the laws in

Theorem 3. Given an LTL formula φ we denote the size

of φ as |φ|. Then we show next that the sizes of formulas

processed by convergent formula progression are bounded.

Theorem 4 (The Convergency Theorem). Let φ, ψ be LTL

formulas and η = ω0ω1ω2 . . . ωn−1 be a finite trace. Then

under the convergent formula progression framework, φ
η
−→

ψ holds implies |ψ| ≤ 2|φ|.

Theorem 4 shows that the sizes of formulas processed

by formula progression are bounded to 2|φ| where φ is the

input formula. Using the reduction strategy above, we can

highly optimize the formula progression, and more details

are shown below. Moreover, this is the first bound ever given

to the sizes of expanded formulas in formula progression,

to the best of our knowledge.

Although the same upper bound for automata construction

for LTL has been shown in [12], the one for formula

progression is necessary. In [12], each state of automata

is a set of subformulas of the input formula (property) φ
and the subformulas in the set are distinctive, thus the size

of generated automata is bounded by 2|φ|. However in the

framework of formula progression, the subformulas may

repeat in a state, which implies that the size of generated

state can be divergent. So the conclusion in [12] cannot be

adapted into the formula progression directly, and an exact

bound should be proposed clearly.

IV. RUNTIME VERIFICATION FRAMEWORK

In this section we introduce the explicit runtime verifi-

cation framework used in our experiments. Fig. 1 shows

such a snapshot. As indicated in the figure, we extract four

components from the framework, i.e. Program, Status Pool,

CFP-based Monitor and Configuration modules. Now we

explain them below, respectively.

a) Program: In the framework, Program module is the

executable source codes in the computer. As there is the

Status Pool module caching the program status and from

��

���=1; �=2; �=3
�� �=2; �=0; �=9
�� �=3; �=3; �=4

��

Program: aerospace craft
Properties: F G (a & b & c)
Trace: DampRate.out
a: �� � �� � �	��

b: ��� � �	�

��

CFP-based
Monitor

Program
Config-
uration

Status
Pool

Trace Extraction

Verdict

Instrumentation

Status Flow

Specification

Figure 1: Runtime Verification Framework

which the Monitor (i.e., CFP-based Monitor) fetches status,

the Monitor is independent on the Program. This indicates

that the source codes can be in any programming language,

such as C, Java and etc. To collect the program status,

instrumentation has to be done to provide with the interfaces,

which output the evaluations of concerning variables, as well

as indicate the way feedbacks communicating to the original

Program. The interfaces must obey the protocol of Status

Pool module.

b) Status Pool: The Status Pool module stores the pro-

gram status (trace information) sequentially. It could be a

block in memory or a separate file. The existence of this

module successfully makes the Monitor independent on the

Program, which makes our framework more flexible.

In our experiment, we make it a log file, Trace file.

Each line of the Trace file records a set of assignments

for desired variables in the Program in a period. Every

assignment is separated by the “;” notation. These data are

further processed by the Monitor module such that they can

match the atoms appearing in the properties for verification.

During the verification process, the Trace file is dynamically

updated whenever the Program produces fresh status, or

after a period to cut down the consumption of opening or

closing files.

c) Configuration: This module is the main input of the

Monitor. In our experiment, we make it a file. As indicated

in Fig. 1, it contains the specification and all the other related

information that the Monitor needs when constructed, i.e.,

the name of program under scrutiny, the Trace file path, one

or more LTL properties to be verified, and the mapping of

the atoms on the program variables. A block of this file must

contain all the above information, and the file recognizes

one or more blocks. The atoms of LTL properties represent

the evaluations of the expressions on program variables. For

instance, as shown in the figure, x is a program variable

and x > 1 is an expression whose value is to be evaluated

by the Monitor. The corresponding mechanism is introduced

below.

d) CFP-based Monitor: The Convergent Formula Pro-

gression based Monitor module constitutes the core of

our runtime verification framework. And the Convergent

281258

Event
Generator

�������� ��
��

�

Status
Pool

�

� � ��

Verdict

Check ��

Figure 2: The verification workflow in the CFP-based

Monitor.

Formula Progression separates our framework from others

apparently. It takes the Configuration information and the

execution trace of the Program as input. Mainly, this module

has to finish the following five tasks in a period:

1) Fetch the current program status from the Status Pool;

2) Determine the values of atoms in LTL formulas by

evaluating the expressions they represent with the

program status information;

3) Invoke the convergent formula progression algorithm;

4) Check whether the properties being verified are satis-

fied or not, and give out the verdicts;

5) Send the feedback to the Program module.

The module follows the processes above recursively until

a specific verification result (i.e., � or ⊥) is achieved.

Here, the CFP-based Monitor contains a parser to extract

the execution status from the Status Pool. As the atoms

and their expressions are all indicated in the Configuration

module, the Monitor module also includes an evaluator to

determine the values of atoms in LTL properties. Both the

parser and evaluator are integrated into the Event Generator

component, as shown in Fig. 2.

The figure also illustrates the verification workflow in

CFP-based Monitor module. Once the current assignment P
comes, Monitor invokes the convergent formula progression

algorithm with the parameters P and the input formula φ,

denoted by cfprog(φ, P) in the figure, and returns the next

formula φ′, which represents the next checking goal. If

φ′ = �, the Monitor returns the result that the LTL property

under scrutiny is violated at exactly the checking point, and

sends the feedback to the Program to stop the execution.

If φ′ is ⊥, then the current program trace has satisfied the

property, and it sends the feedback to the Program to ask

for a new trace for more complete verification. Otherwise,

Monitor sends the feedback to the Program asking for more

status information on the current execution trace, replaces φ
with φ′ and then the verification proceeds.

Now we use a running example to illustrate the whole

workflow in our runtime verification framework:

Example 2. Assume that we have a Program M , which

has three crucial variables x, y, z. Now we want to ver-

ify whether M |= (¬(x > 1)R¬(y < 10))R¬(1 < z < 5)
holds. Then following our framework, we have:

1) Let a, b, c be atoms on x > 1, y < 10 and 1 < z < 5
respectively, and write the mappings into the Con-

figuration file together with the negation formula

¬((¬aR¬b)R¬c), i.e., (aUb)Uc;
2) The Monitor reads the trace information from the

Trace file. Assume here the prefix of the trace is

{x = 2; y = 12; z = 6}{x = 2; y = 12; z = 6}{x =
1; y = 9; z = 4}. Then the Monitor read the first

status and evaluates that a = �, b = ⊥, c = ⊥. So

the assignment P = {a,¬b,¬c} is created;

3) Let φ = (aUb)Uc. The Monitor invokes the convergent

formula progression algorithm, and computes that

φ′ = cfprog(φ, P) = (aUb) ∧ (aUb)Uc. As φ′ is not

yet � or ⊥, so the Monitor continues the verification

process;

4) Now φ = (aUb)∧(aUb)Uc and P = {a,¬b,¬c} from

the second status. Invoking the convergent formula

progression again we get φ′ = (aUb) ∧ ((aUb) ∧
(aUb)Uc). And by our Fix-point Reduction, we get

φ′ = (aUb) ∧ (aUb)Uc;
5) Repeat the formula progression again with φ =

(aUb) ∧ (aUb)Uc and P = {¬a, b, c}, then we get

φ′ = �, which implies that the Program M violates

the property (¬(x > 1)R¬(y < 10))R¬(1 < z < 5).
So the Monitor sends the feedback to terminate the

Program, and the verification process ceases.

V. EXPERIMENTS

In this section we talk about the experimental details under

the runtime verification framework.

A. Experimental Strategies

a) Platform: We conduct our experiments in a computer

which contains two 2.93GHz Intel Core Duo CPUs. The

computer has a 4 GB RAM and the operating system is

Ubuntu 12.04.

b) Model (Program): In the experiments, we select a

model from China Academy of Space Technology (CAST).

A detailed description about this model can be found in the

literatures [13], [14]. This model is a periodical embedded

system that is used to control and adjust the attitude of

satellites. It consists of 8 different modes, and in every

period the system (model) is in one of them. All the modes

are implemented in C language, and contain about 2000-

3000 lines of source codes. To check whether the Program

satisfies an LTL property, we must decide whether all these 8

sub programs satisfies the property. Although in the system

level, the complete verification is required during the trans-

formation among different modes, it can be less complicated

to verify each sub programs separately. The mechanism is

trivial: all sub programs satisfy the LTL property implies

282259

���� ���

����!" ��� #"����#" ��� !"

���� ���

����!" ��� #"����#" ��� !"

Figure 3: The bound description of the variables ω and r
in the experimental model.

that their combination, i.e., the whole system, also satisfies

this property. For simplicity, we use the notations M1-M8
to represent these 8 sub programs.

Note that runtime verification may not terminate if � or

⊥ cannot be reached on an infinite execution trace, which

hardly contributes to the evaluation of our experiments, but

only causes unnecessary cost. To avoid this non-termination,

we address two limits to our experiments: 1) The length of

the trace from the program execution is bounded by 10,000;

2) The timeout for verifying on each trace is set to be 10

minutes for each property. The first limitation also makes

us verify as many program executions as possible, which

leads the runtime verification closer to ideal goal of complete

verification. In the experiments, we randomly choose 100

execution traces for each mode (sub program).

c) LTL Properties: In our experiments we choose sets of

random formulas [15] and five kinds of pattern formulas that

are used frequently in model checking as our benchmarks.

Random formulas are generated by randomly choosing

atoms and connectives (operators). Some such generating

algorithms are presented by invoking the random functions

in programming languages. There are also a few executable

scripts that implement the generating algorithms, see [15].

Using these scripts, one can generate the formulas they

want by fixing the atom number, formula size, and the

appearing frequency of each operator. In our experiments,

we generate five groups of random formulas, varying on

size from 10 to 50, fixing atom number to 8 and varying

on the operator frequencies ([0,1]) as well. We generate

100 different formulas for each group, and also guarantee

those among groups are distinct. In the following, we use the

notations F1-F5 to represent these five groups of random

formulas.

Researches show that there are five kinds of pattern

formulas that are used frequently in model checking area
2. Their briefly descriptions are as below (Note that P,Q,R
in the formulas below represent arbitrary LTL formulas.):

• P1 (Globally) : GP . It represents that P must hold in

every position;

• P2 (Before R): FR→ (PUR). It means that P must

hold before R holds;

2http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml

• P3 (After Q): G(Q→ GP). This pattern indicates that

if Q holds, then P must hold after at some time – And

this must be always true;

• P4 (Between Q and R): G((Q∧¬R∧FR)→ (PUR)).
It means that it is always true that, Q holds currently

and R will hold at some future time but now, implies

P holds at every position from the one Q holds to that

R holds;

• P5 (After Q until R): G(Q∧¬R→ (GP ∨ (PUR))).
It means that it is always true that, Q holds currently

implies P holds at every position until that R holds

(Note here R may never hold, so P should hold forever

in this situation).

In our experimental model, there are two crucial variables

that are used to achieve the goal of controlling and adjusting

satellite’s attitude: ω and r which represent the angle value

and angular rate of the satellite, respectively. In practice,

both values must be within the safe ranges, which are shown

in Fig. 3. As depicted in the figure, both ω and r must be

normally in the ranges of [ωmin, ωmax] and [rmin, rmax].
However, they are also allowed to have the deviation of Δ
due to the continuity of physical property. Thus, although the

safe area of ω is from ωmin to ωmax, it is indeed allowed

to be within the range of [ωmin−Δ, ωmax+Δ]. The similar

situation also applies to variable r.

According to the statements from system developers,

we summarize the following specifications on these two

variables: 1) The values of ω and r must be always in

the ranges of [ωmin−Δ, ωmax+Δ] and [rmin−Δ, rmax+Δ];
2) Before ω ≥ ωmin, the angular rate r ≥ rmax must hold

such that the angle can reach the regular bound [ωmin, ωmax]
as soon as possible; 3) After ω ≥ ωmax−Δ, the angular rate

r ≤ rmax must hold so that ω can go back to be regular; 4)

Once ω is in the very safe area, i.e., [ωmin+Δ, ωmax−Δ],
the angular rate r can be any of its allowed value, i.e.

r ∈ [rmin−Δ, rmax+Δ]; 5) After ω ≥ ωmax, the angular rate

r ≤ rmin must hold so that ω go back to be regular as soon

as possible until it reaches the safe area, i.e., [ωmin, ωmax].
Compared to the third specification, this one is more crucial.

Based on the above observations, we establish a mapping

from the specifications to the five pattern formulas, which

is shown in Table I.

d) Evaluation: As our work focuses on the improvement

of formula progression, which is a dynamic DFA construc-

tion technique, we do not compare our work with the static

DFA construction techniques, but with the original one.

And as mentioned above, there are seldom open runtime

verification toolkits using formula progression so far [5].

We could not compare the performance of our framework

as well as the verification results with those of others that

are off-the-shelf, such as JUnitRV[16]. So the evaluation in

our experiments follows this way: To show the efficiency

of the proposed Fix-point Reduction (Theorem 3) in the

paper, we compare the verification costs between the original

283260

Table I: The mapping from expressions in model to atoms

in the pattern formulas.

P Q R

P1

ω ≥ ωmin−Δ∧

ω ≤ ωmax+Δ∧

r ≥ rmin−Δ∧

r ≤ rmax+Δ

- -

P2 r ≥ rmax - ω ≥ ωmin

P3 r ≤ rmax ω ≥ ωmax−Δ -

P4
r ≥ rmin−Δ∧

r ≤ rmax+Δ

ω ≥ ωmin+Δ ω ≤ ωmax−Δ

P5 r ≤ rmin ω ≥ ωmax

ω ≥ ωmin∧

ω ≤ ωmax

runtime verification framework and the convergent one,

which integrates the Fix-point Reduction; And moreover,

to show the scalability of the framework, we run sets

of random LTL properties as well as specialized pattern

formulas that are used frequently in model checking. By

fixing the Program, We investigate the verification results

and performance, which somewhat affirm the usefulness of

our proposed framework.

Summarily, the notations used in the experimental part

are listed as below. 1) M1-M8: The eight different models

extracted from our project. Each model contains 100 exe-

cution traces, the length of which is bounded by 10,000.

The timeout addressed on each trace is 10 minutes for

each property; 2) F1-F5: The five groups of random LTL

formulas. Each group contains 100 different formulas and

each formula is distinct from that in other groups. 3) P1-P5:

The five frequently used patterns.

B. Experimental Results

In this section we exhibit the experimental results. We first

verify the five meaningful properties corresponding to those

frequently used patterns, i.e., P1 to P5, with our convergent

formula progression framework. The models under scrutiny

are chosen from M1 to M8. Table II details the verification

results. The value of each meta is a tuple, e.g., “(22.3, Unv)”

on program M1 and the property in pattern P1, indicating

the cost is 22.3 seconds and this property is unverified on this

run. Here, “Sat”, “Vio” represent “Satisfied” and “Violated”,

respectively.

We highlight the three cases in which the properties under

scrutiny are violated, and send the report to the program

developers. With the professional and careful judgment, the

selection of the deviations (Δ) for ω and r matters the most

to the result whether the property is satisfied or not. And

we get the feedback that they would take it more rigorous

to avoid the potential “bug” in further application. This is

an evidence showing that the runtime verification framework

proposed in this paper is useful and promising.

Then we show how the Fix-point Reduction plays the

key role in the performance of formula progression. We

test the cases on M1-M8, with properties chosen from

Table II: Verification Results on the Five Pattern Properties

P1 P2 P3 P4 P5

M1 22.3 Unv 5.6 Sat 27.3 Unv 27.2 Unv 6.7 Unv

M2 22.8 Unv 5.8 Sat 27.2 Unv 27.5 Unv 21.2 Vio

M3 22.9 Unv 6.5 Sat 27.0 Unv 19.7 Unv 22.4 Unv

M4 7.8 Vio 7.6 Sat 28.9 Unv 19.2 Unv 21.8 Unv

M5 23.0 Unv 5.4 Sat 28.9 Unv 18.7 Unv 23.1 Unv

M6 21.7 Unv 6.9 Sat 24.7 Unv 6.8 Vio 19.9 Unv

M7 22.6 Unv 6.4 Sat 26.8 Unv 17.6 Unv 24.5 Unv

M8 25.4 Unv 9.8 Sat 26.8 Unv 19.6 Unv 23.1 Unv

Table III: Verification Results on Random Properties

F1 F2 F3 F4 F5

M1 387 40/60 389 44/56 399 41/59 399 44/56 373 53/47

M2 392 40/60 389 34/66 399 41/59 399 53/47 372 53/47

M3 383 37/63 389 54/46 390 53/47 399 46/54 372 46/54

M4 373 29/71 374 45/55 379 60/40 398 54/46 372 43/57

M5 393 32/68 389 45/55 380 47/53 400 49/51 372 54/46

M6 391 40/60 390 53/47 399 61/39 400 47/53 373 55/45

M7 395 44/56 395 41/59 394 41/59 398 54/46 373 45/55

M8 392 45/55 392 54/46 389 40/60 399 47/53 373 52/48

random benchmarks F1-F5. The results of our convergent

framework are shown in Table III, and those of the original

one are omitted for the sake of brevity. Also, each meta

contains a tuple information, e.g., “(387, 40/60)” on program

M1 and property group F1, in which “387” is the running

cost of the verification on M1, and “40/60” indicates that

among all the 100 properties, 40 ones are verified to get an

explicit verdict, either satisfied or violated, and the results

of other 60 ones are not known yet, i.e., when the timeout

or the maximal trace length is reached.

This experiment shows that, each verification process

successfully finishes in 10 minutes under our convergent

runtime verification framework. Every status of the bounded

trace is processed before the timeout meets. However, there

are more than 80% of verification cases cannot terminate

within timeout, i.e., more than 8000 cases out of the to-

tal amount of 10,000 (100 traces multiple 100 properties

for each model), under the original runtime verification

framework. In these cases, the rest of traces are yet to

be processed. This is mainly ascribed to the blow-up of

generated formulas size, which causes the iterative invoking

of the technique becomes increasingly slower. By weaponing

the Fix-point Reduction, the running cost is dramatically cut

down.

In the worst case, the size of generated formula increases

unlimitedly from the original formula progression. For ex-

ample, there is a trace {a}∗ in M1 and a formula (aUb)Uc
in group F1, where a, b, c are atoms mapping to expressions

from the model. The experiment data shows that, after the

progression is invoked more than 100 times, i.e., the monitor

has processed the 100-length prefix of the trace, the input

formula of formula progression becomes extremely large,

which causes the hardly obtaining of the next formula.

Thus our experiments show accurately the importance and

efficiency of the Fix-point Reduction.

From Table III we see that there are tiny differences

284261

among the verification costs on each program. The costs all

range from 370 seconds to 400 seconds. More interesting,

there are quite a few random properties that are violated

by the programs. For example, consider the formula φ =
(h→ Fg)Uc, in which h represents r ≥ rmax, g represents

r ≤ rmin and c means ω ≤ ωmax. So the formula informally

means the value of the angular rate r is in [rmin, rmax]
until ω ≤ ωmax holds. To our best knowledge, this property

should be satisfied in all programs, but the result shows that

it is violated in M2. We submit this “bug” to the developers,

and encouragingly it is accepted. However it is not always

true that the violated properties detected are interesting:

They may be meaningless in practice. Approximately there

are about 1% that are meaningful, and only 4 of them are

accepted.

VI. CONCLUSION

In this paper we propose the convergent formula pro-

gression with the novel fix-point reduction technique. We

prove the exact bound of generated formulas with the

convergent formula progress. Meanwhile, we implement this

new technique in the runtime framework and the experiments

not only show the efficiency of the method we proposed, but

also apply the new framework to a real case from industry

which succeeds to help the developers on bug detection and

future development.

ACKNOWLEDGEMENT

We thank anonymous reviewers for the useful comments.

Geguang Pu is partially supported by Shanghai Knowledge

Service Platform NO. ZF1213. Jianwen Li is partially sup-

ported by STCSM project NO. 14511100400. Ting Su is

partially supported by NSFC project NO. 61021004. Yan

Shen is also supported by NSFC project NO. 61361136002

and 91118007. Bin Fang is partially supported by China HGJ

project NO. 2014ZX01038-101-001. Zheng Wang is sup-

ported by the Open Project of Shanghai Key Laboratory of

Trustworthy Computing No. 07dz22304201304 and NSFC

No. 91118007. Wanwei Liu is partially supported by NSFC

grant No. 61103012. Mingsong Chen is partially supported

by NSFC grant No. 61202103.

REFERENCES

[1] L. Fix, “Fifteen years of formal property verification at Intel,”
in Proc. 2006 Workshop on 25 Years of Model Checking, ser.
Lecture Notes in Conmputer Science. Springer, 2007.

[2] E. Clarke, “The birth of model checking,” This Volume, 2007.

[3] D. W. Loveland, Automated Theorem Proving: A Logical
Basis (Fundamental Studies in Computer Science). sole dis-
tributor for the U.S.A. and Canada, Elsevier North-Holland,
1978.

[4] H. Barringer, K. Havelund, D. Rydeheard, and A. Groce,
“Rule systems for runtime verification: A short tutorial,” in
Runtime Verification, ser. Lecture Notes in Computer Science,
S. Bensalem and D. Peled, Eds. Springer Berlin Heidelberg,
2009, vol. 5779, pp. 1–24.

[5] A. Bauer, J.-C. Küster, and G. Vegliach, “Runtime verification
meets android security,” in NASA Formal Methods, ser. Lec-
ture Notes in Computer Science, A. Goodloe and S. Person,
Eds. Springer Berlin Heidelberg, 2012, vol. 7226, pp. 174–
180.

[6] Y. Falcone, K. Havelung, and G. Reger, “A Tutorial on
Runtime Verification,” in Engineering Dependable Software
Systems, ser. NATO Science for Peace and Security Series
- D: Information and Communication Security, G. K. Man-
fred Broy, Doron Peled, Ed. IOS Press, 2013, vol. 34, pp.
141–175, summer School Marktoberdorf 2012.

[7] O. Kupferman and M. Vardi, “Model checking of safety
properties,” Form. Methods Syst. Des., vol. 19, no. 3, pp. 291–
314, Oct. 2001.

[8] K. Rozier and M. Vardi., “Deterministic compilation of tem-
poral safety properties in explicit state model checking,” in
Hardware and Software: Verification and Testing, ser. Lecture
Notes in Computer Science. Springer Berlin Heidelberg,
2013, vol. 7857, pp. 243–259.

[9] L. Zhao, T. Tang, J. Wu, and T. Xu, “Runtime verification
with multi-valued formula rewriting,” in Theoretical Aspects
of Software Engineering (TASE), 2010 4th IEEE International
Symposium on, Aug 2010, pp. 77–86.

[10] F. Bacchus and F. Kabanza, “Planning for temporally ex-
tended goals,” Ann. of Mathematics and Artificial Intelligence,
vol. 22, pp. 5–27, 1998.

[11] E. Kindler, “Safety and liveness properties: A survey,” Bul-
letin of the EATCS, vol. 53, pp. 268 – 272, 1994.

[12] M. Vardi, “An automata-theoretic approach to linear temporal
logic,” in Logics for Concurrency: Structure versus Automata,
ser. Lecture Notes in Computer Science, F. Moller and
G. Birtwistle, Eds., vol. 1043. Springer, 1996, pp. 238–266.

[13] Z. Wang, J. Li, Y. Zhao, Y. Qi, G. Pu, J. He, and B. Gu,
“Spardl: A requirement modeling language for periodic con-
trol system,” in Leveraging Applications of Formal Methods,
Verification, and Validation, ser. Lecture Notes in Computer
Science, T. Margaria and B. Steffen, Eds. Springer Berlin
Heidelberg, 2010, vol. 6415, pp. 594–608.

[14] J. Li, G. Pu, Z. Wang, Y. Chen, L. Zhang, Y. Qi, and B. Gu,
“An approach to requirement analysis for periodic control
systems,” 2012 35th Annual IEEE Software Engineering
Workshop, vol. 0, pp. 130–139, 2012.

[15] K. Rozier and M. Vardi, “LTL satisfiability checking,” Int’l
J. on Software Tools for Technology Transfer, vol. 12, no. 2,
pp. 1230–137, 2010.

[16] N. Decker, M. Leucker, and D. Thoma, “jUnitrv: adding
runtime verification to junit,” in NASA Formal Methods,
ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2013, vol. 7871, pp. 459–464.

285262

