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Abstract—AUTOSAR, derived from OSEK/VDX, is the most
popular industrial standard in the automotive electric devel-
opment. It is challenging to manually verify or validate the
correctness and safety of AUTOSAR Operating System (OS) as
well as mission-critical or real-time applications built on it. In
this paper, we adopt timed CSP to describe and reason about the
Schedule Table, a new task scheduling mechanism in AUTOSAR.
We also employ timed CSP to model AUTOSAR OS and a real-
time application, i.e., the Engine Management System (EMS),
based on the Schedule Table mechanism, and verify some safety
properties. In addition, we simulate and verify our models in
Process Analysis Toolkit (PAT). The result indicates that both
AUTOSAR OS and EMS application conform to the specifications
and requirements.

I. INTRODUCTION

AUTOSAR stands for AUTomotive Open System AR-
chitecture [2], and has become the industrial standard in
the automotive electric software development. AUTOSAR is
developed from OSEK/VDK [3], another open-ended archi-
tecture for automotive system. Recently, more and more au-
tomotive companies tend to take AUTOSAR as their primary
standard and concentrate their interests on the improvement
and research about it rather than OSEK/VDK. The core
parts of OSEK/VDK including task, resource and scheduling
management [4] have been integrated into AUTOSAR, which
has also incorporated other new mechanisms such as schedule
table, stack monitor, memory protection, etc, to improve its
flexibility, safety and portability [1].

Moreover, many vendors offer their own automotive ap-
plications based on this standard. These applications include
engine management system [5], automated transmission sys-
tem [7], steer-by-wire system [6], etc. Many of them are real-
time and safety-critical applications, which involve complicate
execution logic and strict time constraint. From the perspective
of benefit, AUTOSAR facilitates Original Equipment Manu-
facturers (OEM), suppliers, tool developers and new market
entrants. In essence, AUTOSAR supports a higher reuse of
software components and gives convenience to develop more
mature automotive applications by the integration of compo-
nents. It brings higher flexibility but without compromising
high software quality.

In spite of the benefits of AUTOSAR mentioned above, we
still have to validate the correctness and safety of the kernel of
this operating system and some critical automotive applications
built on it. However, manual checking and analysis have
limitations and may miss intricate bugs. So many people have
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resorted to formal methods to conduct the verification work
and analyzed advantages and limitations of this promising
technology [8]. This kind of machine-checked or automated
model checking methodology facilitate verification tasks to a
great extent.

Waszniowski et al. employed model checking theory based
on timed automata to build the non-preemptive model of tasks
and resources of a real-time OSEK/VDX Operating System
(OS), and they also treated the application related control
system as separated automata to verify safety properties and
bounded liveness properties of the whole system [9]. Huang et
al. set out from the code of one real OSEK/VDX OS and use
Communication Sequential Process (CSP) [11] to model the
tasks, resources and scheduling. They also simulated system
service interfaces and finally reasoned about task scheduling
scheme and resource management [14]. Bertrand et al. com-
pared the timing protection mechanism of AUTOSAR with
that of other real time operating systems, and pointed out some
pitfalls in this mechanisms of AUTOSAR [15].

In this paper, we focus on adopting timed CSP [10] calculus
to model and verify AUTOSAR OS and a complicate real-
time application, Engine Management System (EMS), which
is based on AUTOSAR OS. We firstly build the formal
model of the OS and focus on the scheduling policies to
model AUTOSAR OS. We use a formal model to represent
task management, synchronization (resources management and
event mechanism), and schedule table scheduling. On the other
hand, we build the formal model of EMS control part and the
execution part. Despite of inheriting those API of AUTOSAR
OS, we use processes in PAT to model the pipeline of four
strokes. Next, we investigate the attributes of tasks, i.e., types,
priorities, states, as well as the schedule policy in AUTOSAR
OS standard and the application requirements. Those properties
are about tasks, resources, and schedule tables, i.e., mutual
exclusion between schedule tables, excluded priority inversion,
etc. The EMS application also has its requirements, i.e., fixed
started order of cylinders, mutual exclusion between cylinders.

The remainder of this paper is organized as follows. Section
II gives a general impression of AUTOSAR OS, EMS appli-
cation and timed CSP. In section III, we explain the overview
of our approach. Section IV and section V show the formal
models of AUTOSAR OS and EMS. Section VI abstracts
some important properties from AUTOSAR OS requirements
and EMS application requirements. The formal models and
verification are implemented in PAT [16, 17] in section VII.
Section VIII concludes the paper and discusses some future
improvements of our work.
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II. BACKGROUND

In this section, we give some general information about
AUTOSAR Operating System (OS) and its schedule table
mechanism. Next, we introduce the Engine Management
System (EMS) based on AUTOSAR OS follow by some
background on timed CSP.

A. AUTOSAR Operating System
AUTOSAR [1] has been gradually accepted as an automo-

tive system architecture standard in automotive industry and
applied in different kinds of Electronic Control Units (ECU)
of modern vehicles.

The AUTOSAR OS inherits many core mechanisms of OS-
EK/VDX standard. For instance, it provides task management,
two means of synchronization on tasks, i.e., resource man-
agement and event control. For task management, it provides
several interfaces or services to manipulate tasks and achieve
the expected purposes in some applications. Before the execu-
tion of the OS, the user has to configure the operating system
such as setting priorities of tasks and running parameters of the
target hardware. In brief, it gives a basis for application to run
independently and enable simultaneous execution of several
processes on one processor.

In the AUTOSAR OS, applications are composed of tasks,
which are divided into two types, namely basic task and
extended task. A basic task has three states: ready, running
and suspended, while a extended task has an extra waiting
state. A task transits from ready to running when it gets the
opportunity to execute. It may enter into suspended when it
terminates and get back to ready after activation. In addition,
an extended task always remains waiting until some related
events are trigged.

The OSEK/VDX OS employs alarm mechanism to achieve
tasks activation and event setting by means of using OS coun-
ters and a series of predefined alarms. But in the AUTOSAR
OS, it makes use of schedule table to implement synchroniza-
tion. A schedule table encapsulates a set of statically defined
expiry points. Each expiry point is composed of the following
two components:

• Action: one or more actions that must occur when it
is processed. An action is the activation of a task or
the setting of an event.

• Offset: an offset in ticks from the start of the schedule
table.

Generally, a schedule table has its own fixed duration. Its
expiry points will be sequentially processed by an OS counter.
Actually, schedule table is a time-based scheduling strategy. If
a schedule table repeats after its final expiry point is processed,
it is a repeating schedule table. Otherwise, it is a one-shot
schedule table if it stops at the end after one execution. In our
paper, the EMS is an application based on repeating schedule
table.

Example. Fig.1 shows an example of a schedule table. The
schedule table has three expiry points with the duration of
39 ticks. The initial expiry point locates at 8 ticks from the
beginning as indicated by its defined offset. Expiry point 1
contains an activation of TaskA and a event setting of TaskB.
The other two expiry points, i.e., expiry point 2 and expiry
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Fig.1 An Example of Schedule Table

Fig.2 The Four-stroke of A Single Cylinder

point 3, locate at 18 ticks and 31 ticks respectively. Note
that not every expiry point defines Task Activation or Event
Setting but it must define an offset.
B. Engine Management System

EMS is an automotive engine control application. This
application periodically collects environmental parameters af-
fected by the driver and controls the combustion processes in
the cylinders of an automobile to achieve the desired driving
speed. The environmental parameters include the rotation
speed of the engine, the temperature and pressure of intake
air-flow, the temperature of coolant. With these parameters, the
application figures out the amount of fuel to be injected and the
desired driving torque. Automobiles are usually equipped with
four-cylinder or eight-cylinder engines, and these cylinders are
air-flow controlled and intake manifold fuel injected. In this
paper, we illustrate this application with the four-cylinders
engine. The combustion process including four strokes, i.e.,
intake, compression, power, and exhaust. Fig.2 shows the
combustion process in a single cylinder following these four
strokes sequentially.

During the intake stroke, fuel is injected into the intake
manifold by an injector where it is mixed with air from
the inlet. The air/fuel mixture in the combustion chamber
is compressed until the piston reaches the top dead center
during the compression stroke. In power, the air/fuel mixture
is burned and the chemical energy of the air/fuel mixture
is transformed into heat and mechanical energy. At last, the
outlet valve opens and the exhaust gases stream out of the
combustion chamber. These four steps periodically repeat
during the combustion process.

C. Timed CSP

Timed CSP is an extension of CSP by adding some time
operators, which is proposed by Reed and Roscoe [12], and
later modified by Davies and Schneider [13]. The syntax of
timed CSP which we will use to model the AUTOSAR OS
and its application EMS is given as follows.
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Fig.3 The Overview of Our Research

P,Q ::= Stop | Skip | Wait t; P | a → P | P ;Q | P � Q

c!a → P | c?x → P | P‖|Q | P‖Q | μX • F (X)

Besides those operator in CSP, there are new operators, in our
paper we use the new operator Wait t; P , it is a delay form
of Skip which also does nothing but executes P after t time
units.

III. OVERVIEW

In this section, we present the overview of our approach
to formalizing AUTOSAR OS and a relative application EMS.
Our goal is to model the behaviors of period tasks dispatched
by “schedule table” introduced in AUTOSAR OS, and verify
whether the formal model satisfies the properties abstracted
from AUTOSAR OS specification and EMS requirements. In
our approach, a key element is to describe the real time in
AUTOSAR OS by timed CSP. Fig.3 shows three phases of
our approach.

Level 1. As mentioned before, we fucus on the schedule
table mechanism, which is a new mechanism introduced in
AUTOSAR OS. Our purpose is to use a formal model to
represent task management, synchronization (resources man-
agement and event mechanism), schedule table of a AUTOSAR
OS implementation provided by the company iSoft (iSoft
Infrastructure Software CO.). Based on this model, we also
represent an application EMS applied in AUTOSAR OS. We
verify whether those implementations satisfy the AUTOSAR
OS specification and the EMS requirements.

Level 2. In this level, the left part shows the formal models
abstracted from the implementations. Firstly, we use a formal
model to describe AUTOSAR OS implementation. We investi-
gate the attributes of tasks, i.e., types, priorities, states, as well
as the schedule policy. We also investigate the allocation of
resources and the event control. As for the schedule table,
we investigate its novelty: activate a task or set an event
periodically. Secondly, we use a formal model to describe
EMS application. We fucus on both the control part and the
execution part of this application. Meanwhile, the right part
shows the properties got from the AUTOSAR OS specification
and the EMS requirements. AUTOSAR OS specification is an
industry standard used for motor vehicles. It not only presents a
description which relates to a specific implementation, but also
lists the requirements the implementation should satisfy. We
abstract some properties about tasks, resources, and schedule
tables, i.e., excluded priority inversion, deadlock freedom,
mutual exclusion between schedule tables, and etc. The EMS
application also has its requirements, i.e., fixed started order
of cylinders.

Level 3. In this level, we adopt timed CSP to implement
the formal model in level 2. Timed CSP provides a timed

Fig.4 The Architecture of AUTOSAR OS

stability model, which assumes that all events recorded by
processes within the system relate to conceptual global clock.
The assumption is in accordance with the characteristics of
AUTOSAR OS and EMS applications. Moreover, the timed
CSP model can be translated in PAT. It has a timed CSP-style
process algebra combines high-level modeling operators and
low-level constructs, which can help describing the details of
the model. At the same time, all the properties will be rewritten
by first-order logic which is also supported in PAT.

IV. MODELING AUTOSAR OPERATING SYSTEM

Schedule table mechanism plays important role of activat-
ing tasks and setting related events at a series of predefined
time points (measured by offset). In the context of real-
time and concurrent applications, this mechanism provides the
precise task scheduling and synchronization. It also agrees with
the static property of the AUTOSAR OS, i.e., all tasks are
pre-configured with proper time constraints before the system
starts. From the perspective of this view, the schedule table’s
configuration has a direct impact on the tasks execution. So
it is important to ensure the correctness of the schedule table.
In fact, one application may contain one or more schedule
tables. Actually, it’s impossible to conduct manual checking
and human inspection to decide wether an application runs
as expected in various environments. In [14], Huang et al.
have adopted CSP to formalize task management, resource
allocation and event control of the OSEK/VDX OS from the
code level, but they did not take time properties into consid-
eration during the system execution. As we mentioned before,
AUTOSAR is based on OSEK/VDX has added some new
mechanisms, i.e., the “schedule table” discussed in this paper.
So, in order to deal with time properties of real automotive
applications, we adopt timed CSP to model the AUTOSAR
schedule tables, tasks and OS scheduling to verify whether
they satisfy the specification and requirements in this paper.

Fig.4 shows the whole architecture of AUTOSAR OS.
It shows the relationship among tasks, schedule tables, OS
scheduler and data table. Tasks and schedule tables can send
different requests to the OS scheduler via corresponding chan-
nels. When the OS scheduler receives the requests, it disposes
them immediately and sends the result to the requested task or
schedule table. The OS scheduler also can access and modify
the table which records the information of the tasks, resources
and schedule tables. The details are listed in Table 1.

The AUTOSAR OS is modeled as the parallel composition
of tasks, schedule tables and OS scheduler as below:

System =df (|‖
i∈0...(n−1)

Taski) ‖(|‖
j∈0...(m−1)

SchTabj)

‖ OSschedule

We use the processes names: Taski, SchTabj and
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Table 1. Records of Tasks, Resources and Schedule Tables

task task identifier, task initial priority, task running priority, tasks number,
task activated times, task ready queue, task occupied resources number,
max priority task identifier, ready tasks number

resource resource identifier, resource priority, resource state,
occupied resources number

schedule schedule table identifier, schedule tables number, schedule table state,
table schedule table ready queue, minimal offset schedule table identifier,

ready schedule tables number, schedule table initial offset
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Fig.5 The State Transition of Schedule Table

OSschedule to represent tasks, schedule tables and OS sched-
uler. The detailed communication between them will be ex-
plained in the subsections. We divide the modeling of the
AUTOSAR OS into three subsections: task management and
synchronisation, schedule table and the OS schedule. The OS
schedule involves the accessing and modification of the tables.

A. Task

In AUTOSAR OS, one task can not only provide the
same services just as in OSEK/VDX OS, but also can start
a schedule table (StartScheduleTable), stop a schedule table
(StopScheduleTable) or start any schedule table before one
schedule table stopped (NextScheduleTable). There are two
modes to start the schedule table, in this paper, we suppose
that the schedule table is started in the absolute mode, and
accordingly, it takes the implicit synchronization way. All
the new operations about schedule table cause the system
reschedule the schedule table, which we use the process
STScheduler which is presented in subsection C, to deal with
the schedule table’s rescheduling. The task uses channel SS to
tell the OS schedule that it requests to reschedule the schedule
table.

Overall, one schedule table has three states: running, next
and stopped. Fig.5 shows the state transition of a schedule ta-
ble. Service StartScheduleTable can invoke a stopped sched-
ule table into the next state and make no effect when the started
task is not in the stopped state. Service StopScheduleTable
can force the running schedule table into stopped schedule
table. NextScheduleTable causes the termination of the
running schedule table, and starts one schedule table. The three
services change the states of one or more schedule table in the
table.

We define the process Taski as follows where i belongs
to set 0...(n− 1) and i stands for the task identifier while the
first m tasks are extended tasks:

Taski =df

(�tid∈0...(n−1)AT !i.tid → (response?i.OK → Skip�
response?i.Pause → response?i.OK → Skip);Taski)

...

�(�stid∈0...(s−1)StartST !i.stid → (response?i.OK

→ Skip�response?i.Pause → response?i.OK →
Skip);Taski)�(�stid0∈0...(s−1)∧stid1∈0...(sn−1)NextST !stid0.stid1
→ (response?i.OK → Skip�response?Pause →
response?i.OK → Skip);Taski)�(�stid∈0...(s−1)StopST !i.stid → (response?i.OK →
Skip�response?i.Pause → response?i.OK → Skip);

Taski)�(�stid∈0...(s−1)SS!i.stid → (response?i.OK → Skip

�response?i.Pause → response?i.OK → Skip);

Taski);

In the process Taski, the ignored parts are the nine
services which have already been modeled in OSEK/VDX OS:
TerminateTask, ChainTask, Scheduler, SetEvent, WaitEvent,
ClearEvent, GetResource, ReleaseResource. The functionali-
ties of them and the scheduling mechanism of the nine services
are just the same as those in OSEK/VDX OS, the detailed
definitions of them can be found in [14]. On the whole, when
the task sends messages in different channels, it indicates that
the task calls the corresponding services. Now we consider
the new service StartScheduleTable in AUTOSAR OS. The
task sends its own identifier i and the started schedule table
identifier stid to OSschedule in StartST channel through
distinct channels. The task can start any schedule table. So stid
can be chosen from 0 to s − 1, where s is the total schedule
table number. If the task receives the OK signal, the running
task carries on its next service. If the reply is Pause, the task
should save its content and wait for another message OK to
continue executing again.

B. Schedule Table

In the following, we firstly give more details about AU-
TOSAR schedule table. Then we propose our method on how
to model the schedule table with timed CSP. A schedule
table is composed of several expiry points, which include two
components, i.e., offset and action (task activations and event
settings). The offset represents the time interval between two
expiry points expressed by ticks. The schedule table is actually
driven by an OS counter. In the sequel, we use ticks to measure
the actual system execution time for convenience. Then, the
constraints on time intervals can be precisely expressed by
the primitives of timed CSP. For instance, the fact that the
schedule table starts after t ticks is formalized as Wait[t].
During the system execution, the schedule table sequentially
iterate on its expiry points to conduct their own actions. System
services like SActivateTask and SSetEvent will be called to
conduct corresponding behaviors. These system calls involve
the synchronization between tasks.

Take a single repeating schedule table for example, it
can be formalized as timed CSP processes listed as follows.
Here, we omit the internal execution time of system calls and
suppose all the events take no time. These events can be easily
realized by defining all the events to be urgent events in timed
CSP.

SchTabj =df EP1;EP2; ...EPk;Wait[finaldelay];SchTabj ;

EPk =df Wait[delay]; (�tid∈0...(n−1)SAT !j.tid → Skip)�
(�tid∈0...(n−1)SSE!tid.eid → Skip) →
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(Sresponse?j.OKS → Skip�Sresponse?j.PauseS →
Sresponse?j.OKS → Skip);

In the process SchTabj , j stands for the schedule table
identifier, during every execution of each expiry point, it waits
for the corresponding delay, whose value is the difference of
offset of the two adjacent expiry points. Then it can activate
one task or more, or set an event to any extended task. The
following expiry points follow the same procedure. A schedule
table may have a final delay which we can see just as Fig.1
shows, it may also delay for a while before the next repetition.
As illustrated above, the schedule table introduces a new
mechanism to active a task or set an event, which is different
from [14].

We use another different channel SAT to denote activating
a task in schedule table instead of AT in task. If we use
the same channel AT , the OS Scheduler can not distinguish
whether it is the task or the schedule table call for activating a
task just by the identifier, because the identifier do not contain
any additional information. In addition, we even use different
replies (OKS and PauseS) to distinguish the response from
OS scheduler for the same request in two different ways. It’s
the same reason that we use SSE in schedule table while use
SE in task to set a event to any extended task.

C. OS Schedule

The process OSschedule takes charge of managing tasks,
schedule tables and resources which has four duties: han-
dling the requests from task, accessing the table and modi-
fying the records according to different demands, reschedul-
ing and scheduling the schedule tables. SO OSschedule
consists of four paralleling processes, i.e., OS, MdfTable,
CallScheduler and STScheduler which deal with the above
duties respectively. The process is shown as below:

OSschedule =df OS ‖MdfTable ‖ CallScheduler‖ STScheduler

The process OS communicates with task or schedule table
directly, which deals with kinds of requests from task or
schedule table. It contains 14 sub-processes which have the
same names as corresponding services, ActivateTask, Ter-
minateTask, and etc. 9 services are the same as those in
OSEK/VDX OS, 5 services are added, which are StartSched-
uleTable, StopScheduleTable, NextScheduleTable, SActivate-
Task, and SSetEvent. We omit the 9 services in OSEK/VDX
and list all the new services, OS is defined as follows:

OS =df ActivateTask ‖...‖ StartScheduleTable ‖ SActivateTask

‖ StopScheduleTable ‖ NextScheduleTable ‖ SSetEvent ;

We take the StartScheduleTable service for example, it
is defined as follows:

StartScheduleTable =df

StartST?i.stid → mdfTable → ScallScheduler →
(response!i.OK → Skip�response!i.Pause → Skip);

This process deals with the request that task start a schedule
table. The OS receives the calling task identifier i and the
started schedule table identifier stid from task in the StartST
channel. The action mdfTable modifies the records based on
the two identifiers. The action ScallScheduler chooses which
schedule table is the next running schedule table and modifies
the related schedule tables states. If the calling task is still the

next running task, the process sends OK via the response
channel, or sends Pause to task to suspend it.

Considering another process SActivateTask, which is
defined as:

SActivateTask =df SAT?j.tid → mdfTable → callScheduler

→ (Sresponse!j.OKS → Skip�Sresponse!j.PauseS → Skip);

This process is similar to the process ActivateTask and
deals with the request that a schedule table activate any task.
For both schedule table and task can activate a task or set
an event, we use different request and response channels and
replies to distinguish them: we use another different channel
SAT to denote activating a task in schedule table instead of
AT in task to distinguish whether it is the schedule table
or the task call for activating a task, because the identifier
do not contain any additional information. In addition, we
even use different replies (OKS and PauseS) to distinguish
the response from OS scheduler for the same request in two
different ways. It’s the same reason that we use SSE in
schedule table while use SE in task to set a event to any
extended task and channel Sresponse in OS response to
schedule table while using response in response to task in
both the services SActivateTask and SSetEvent.

Expressing the actions dealing with the records in the table
is trivial so that we use actions mdfTable, callScheduler and
ScallScheduler to replace the functionality of the three pro-
cesses in timed CSP. The schedule table’s scheduling policies
is also very important to the whole system. The AUTOSAR
operating system introduces the time sequence of the initial
offset to decide the running schedule table, it forbids any
two schedule tables running synchronously at any time. The
system always schedule the schedule table whose initial offset
is the least, to avoid deadlocks. The modeling of the schedule
table’s scheduling policies STScheduler is similar to those
of CallScheduler, which can be found in [14].

V. MODELING EMS APPLICATION

In this section, we use the EMS application to illustrate
the utility of our method. EMS is one of the most important
applications in automotive domain, it requires strict time
constraints to ensure its proper running. The EMS includes two
parts, i.e, the control part and the execution part, which will
be introduced in the following. We adopt the schedule table
and task mechanism in AUTOSAR to describe the control part.
For the execution part, we rely on timed CSP to simulate the
parallel features of four different strokes in four cylinders.

A. Architecture of EMS

Fig.6 shows the basic architecture of EMS, including the
control part and the execution one. The application involves
four basic steps, the first three steps belong to the control part
and the last step belongs to the execution one. These four steps
are:

Step 1. The application initializes the automotive Electronic
Control Unit (ECU) and pins of related peripheral hardware.
This first job is one-shot, which is expressed by TaskS0 in
the following part.

Step 2. It samples environmental parameters on the pressure
and temperature of intake air-flow and coolant temperature
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Fig.7 Pipeline of Combustion in the Four-cylinder Engine

according to A/D sampling signal, all the actions are presented
in TaskS2. Meanwhile, this step gets engine rotational speed
according to enhanced Time Processor Unit (eTPU) signal,
which is expressed in TaskS1 in the following part. The
former job executes periodically with 2 unit time duration and
the latter job with 1 unit time.

Step 3. It calculates fuel injection pulse width to decide the
amount of fuel injection according to environmental parame-
ters. It also yields cylinder storage power angle to decide when
to ignite four cylinders. All the actions are done in TaskS3,
which will be explained in next subsection. According to the
requirements of EMS, this job takes place periodically with 10
unit time duration.

Step 4. At last, the application updates the engine state and
triggers the combustion process of four cylinders. The four
strokes in four cylinders are conducted in a specified pattern.
This pattern, kind of “pipeline” execution, will be discussed
in detail in the process Cylinder that will be presented in the
following, once started, the four cylinder may not terminate.

Step 4 is the execution part in EMS, which describes
the Internal Combustion Engine (ICE) work. Since the ICE
may be single-cylinder or multi-cylinder, in this paper, we
consider four-cylinder engine in the implementation, the whole
combustion processes are arranged as Fig.7. As it shows, four
strokes, i.e., intake, compression, power and exhaust take place
in the cylinder sequentially. And each combustion process in
the cylinders makes contribution to overall driving torque. In
such multi-cylinder engines, the single combustion process
need to be coordinated according to a specific pattern. This
kind of coordination aims to reduce vibrations during the
combustion processes as much as possible. From Fig.7, we can
see that the combustion process of each cylinder has a relative
offset 180◦. The combustion processes are independent of each
other, meaning that no two combustion processes in any two
cylinders happen at the same time. This property ensures a
smooth running state of the automobile.
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Fig.8 The Schedule Table of EMS Control Part

B. Modeling EMS

We propose an approach to model EMS based on the
AUTOSAR OS which will be explained in detail in two parts:
modeling the control part and the execution part.

Modeling the Control Part

We abstract four tasks from four main jobs in the con-
trol part described before. TaskS0 is a one-shot task to do
initialization work. TaskS1 is responsible for sampling A/D
data, TaskS2 gets the rotational speed of the engine, TaskS3

updates the engine state and triggers the combustion process in
four cylinders. Considering that TaskS1, TaskS2 and TaskS3

are periodical tasks, we adopt the schedule table mechanism
to schedule these three tasks. Hence, we arrange the control
part of the EMS to be four tasks and one schedule table. Fig.8
shows this repeating schedule table with 10 duration whose
final delay is 0. We can conclude that when TaskS3 takes
place, TaskS1 must have happened 10 times and TaskS2 5
times.

We use TaskSi and Taski to express the task whose
identifier is i, the former one indicates all the jobs in the
actual part of EMS respectively, the latter one is the process
we presented in section 4, which means the jobs can use the
services provided by AUTOSAR OS. Here, we present each
jobs TaskSi, their definitions are listed below:

TaskS0 =df response?0.OK → initial → Task0;

TaskS1 =df response?1.OK → rpm!mid → phase!mid →
Task1;

TaskS2 =df response?2.OK → knock!mid →
intake pressure!mid → coolant temp!mid →
Task2;

TaskS3 =df response?3.OK → rpm?mid → phase?mid →
knock?mid → intake pressure?mid →
coolant temp?mid → width value!mid →
TDC ING!mid → Task3;

TaskS0 firstly receives the reply from system, and then do
the initialization, here we use an execution initial to represent
the whole initialization action, at last it can do any services of
the fourteen ones by the external selection just as described in
the OS model. TaskS1, TaskS2 and TaskS3 also receive the
system’s reply at first. TaskS1 can send the engine rotational
speed to TaskS3, we use the signal mid and channel rpm
and channel knock to express the communication of the two
tasks. The message between TaskS2 and Task3 are knocking
sinal, intake pressure and cooling water temperature, we use
the same signal mid and three different channels: knock,
intake pressure, coolant temp to describe their communi-
cations. TaskS3 not only communicates with TaskS1 and
TaskS2, but also triggers the combustion process of four
cylinders, which is the process Cylinder presented in the
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following. We use two different channel width value and
TDC ING to express the communication between TaskS3

and Cylinder. All the things that Task0, Task1, Task2 and
Task3 can do is the same services as those in OS.

We adopt ScheduleTablesEMS to schedule TaskS1,
TaskS2 and TaskS3, since all of the three tasks are periodic,
the ScheduleTablesEMS is repeating. Its definition is shown
as below:

ScheduleTablesEMS =df Sresponse?0.OKS → ScheduleTable;

ScheduleTable =df EP0;EP1;EP0;EP1;EP0;EP1;

EP0;EP1;EP0;EP2;ScheduleTable;

EP0 =df Wait[1];SAT !0.1 → (Sresponse?1.OK → Skip�
Sresponse?1.Pause → Sresponse?1.OK → Skip);

EP1 =df Wait[1];SAT !0.1 → (Sresponse?1.OK → Skip�
Sresponse?1.Pause → Sresponse?1.OK → Skip);

SAT !0.2 → (Sresponse?2.OK → Skip�
Sresponse?2.Pause → Sresponse?2.OK → Skip);

EP2 =df Wait[1];SAT !0.1 → (Sresponse?1.OK → Skip�
Sresponse?1.Pause → Sresponse?1.OK → Skip);

SAT !0.2 → (Sresponse?2.OK → Skip�
Sresponse?2.Pause → Sresponse?2.OK → Skip);

SAT !0.3 → (Sresponse?3.OK → Skip�
Sresponse?3.Pause → Sresponse?3.OK → Skip);

ScheduleTablesEMS firstly receives the system’s reply,
then as we metioned before, the delay of any two adjacent
expiry points in the schedule table for the application is
one unit time. The schedule table contains three kinds of
expiry points: one is responsible for request to the system to
activating TaskS1, one is responsible for request to the system
to activating both TaskS1 and TaskS2, and the last one is
responsible for request to the system to activating TaskS1,
TaskS2 and TaskS3.

Modeling the Execution Part

As for the combustion process of four cylinders, we rely on
timed-CSP to simulate the parallel features of strokes in four
cylinders. Four strokes under execution of four cylinders are
different from each other at the same time. This parallel pro-
cess is actually conducted by hardware under the supervision
of software. The model of the cylinder pipeline is:

Cylinder =df width value?mid → TDC ING?mid → pip0;

pip0 =df

Wait[1]; atomic{cyl0 intake → Skip};
Wait[1]; atomic{cyl0 compression → Skip‖cyl1 intake →
Skip};
Wait[1]; atomic{cyl0 power → Skip‖cyl1 compression →
Skip‖cyl2 intake → Skip}; pip1;

pip1 =df

Wait[1]; atomic{cyl0 exhaust → Skip‖cyl1 power →
Skip‖cyl2 compression → Skip‖cyl3 intake → Skip};
Wait[1]; atomic{cyl0 intake → Skip‖cyl1 exhaust →
Skip‖cyl2 power → Skip‖cyl3 compression → Skip};
Wait[1]; atomic{cyl0 compression → Skip‖cyl1 intake →
Skip‖cyl2 exhaust → Skip‖cyl3 power → Skip};
Wait[1]; atomic{cyl0 power → Skip‖cyl1 compression →
Skip‖cyl2 intake → Skip‖cyl3 exhaust → Skip}; pip1;

When the Cylinder process receives signals from TaskS3

through channel width value and TDC ING, it starts the

pipeline, we divide the pipeline into two parts: pip0 is respon-
sible for the unsteady level of the pipeline, and pip1 for the
steady level of the pipeline, which is the level that for one
step, the four cylinders do mutually exclusive actions, but for
every cylinder, it do its own actions in a sequential order. At
every moment, in order to make the four actions of the four
cylinder at the same time. We force every step to be an atomic
action.

The EMS application is modeled as the parallel composi-
tion of four tasks, one schedule table, one process Cylinder
and OS scheduler, its definition is listed as below:

Application =df (TaskS0|‖TaskS1|‖TaskS2|‖TaskS3)

‖ScheduleTableSEMS‖OSschedule‖Cylinder

The process Application represents the EMS’s actions,
each TaskSi and ScheduleTableSEMS can send requests
to the AUTOSAR OS, the process OSschedule receives the
request and deals with them.

VI. PROPERTIES

For the purpose of verifying whether the models obey
the specifications and requirements of AUTOSAR OS and
EMS application or not, we propose eight safety properties
based on the specifications and requirements by first-order
logic formulas. These properties involve task management,
resource assignment and schedule table scheduling in AU-
TOSAR OS and cylinder properties in the EMS application.
Since we had explained four properties: mutual exclusion
(ME), priority-sensitive scheme (PS), excluded priority
inversion (EPI) and deadlock freedom (DF) of task schedul-
ing and resource assignment in [14], AUTOSAR OS and EMS
application essentially conforms to those properties, here we
focus on other four important properties listed below. The
notation STIDS =df 0...(s − 1) contains all the schedule
table identifiers of s schedule tables both in AUTOSAR OS
and EMS application, while CylIDS =df 0...3 contains the
identifiers of four cylinders in the EMS application.

Property 1: Mutual Exclusion of Schedule Tables (MEST)
∀i, j ∈ STIDS •
(SchTabStatei == running ∧ j �= i

⇒ SchTabStatej �= running)

At any time at most one schedule table is running during
the system execution. It means that when SchTabi is running,
others cannot run.

The following three properties are all about the cylinder,
the global two-dimensional array CylState[4][4] records the
4 cylinder’s four strokes whose default value is unusedC ,
variable status indicates the pipeline of the cylinders is stable
or not, while data means the states of cylinders are readable
or not since during the atomic action in the pipeline, the
modifications of the states may not complete, and we cannot
access the states. When data is unlocked, we can access the
data.
Property 2: Fixed Started Order of Cylinders (FSOC)

∀i, j ∈ CylIDS, k ∈ {0, 1, 2, 3} •
(status == unstable ∧ i < j ∧ data == unlock

∧ CylStateik == intake

⇒ CylStatejk == unusedC)

The cylinders should start in proper order, that means in
the unstable state if the former cylinder starts, its following
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cylinders cannot start. We use the identifier value to indicate
the order of the cylinder, the less the value is, the earlier the
cylinder starts. The value of CylStateik and CylStatejk
correspond to the same step k.
Property 3: Mutual Exclusion between Cylinders (MEC)

∀i, j ∈ CylIDS, k ∈ {0, 1, 2, 3} •
(status == stable ∧ data == unlock ∧ i �= j

⇒ CylStateik �= CylStatejk)
According to the EMS application requirements, the

running states of the four cylinders cannot be the same once
they all started. So if the pipeline of the the four cylinders
is stable, any two cylinder at the same step k cannot be the
same.
Property 4: Fixed Order of Four Strokes (FOFS)

∀i ∈ CylIDS, j ∈ {0, 1, 2, 3} •
(status == stable∧data == unlock∧CylinderStateij == intake

⇒ CylStatei((j+1)%4) == compression

∧ CylStatei((j+2)%4) == power

∧ CylStatei((j+3)%4) == exhaust)
When the pipeline is stable, for a single cylinder, the pro-

cess always follows the fixed sequence: intake, compression,
power and exhaust. So when the state of cylinder i in the
step j is intake, then the states of the next three steps are
compression, power and exhaust undoubtedly. Because of
limited memory, we save the states of the 4 cylinders as
circular queue, if the column index increases to 3, then the
value of its following index is updated to 0.

VII. IMPLEMENTATION

PAT is a CSP-based tool designed to apply model checking
techniques for simulating the behaviors and verifying the
properties of concurrent systems. We check the correctness of
AUTOSAR OS model and EMS application model through
simulation and verification in PAT. We have verified eight
properties in all. The eight properties have been translated
into assertions in PAT. Table 2 shows the verification results
of AUTOSAR OS model and EMS application model. There

Table 2. Verification results

properties type properties name verification results

MEST satisfied
ME satisfied

OS properties PS satisfied
EPI satisfied
DF satisfied

FSOC satisfied
EMS properties MEC satisfied

FOFS satisfied

are 989 lines of our models and assertions, since we express
some properties by contradiction, the maximum memory con-
sumption even goes to 6.46 GB during verifying. From the
verification results in PAT, we can conclude that AUTOSAR
OS and EMS application conform to the above important
properties.

VIII. CONCLUSION AND FUTURE WORK

This paper has employed timed CSP in modeling and
verification of the AUTOSAR Operating System and Engine
Management System application. The OS and application
are modeled as timed CSP processes, all the properties are
expressed in first-order logic formula. The formal models and
properties are implemented in PAT. In the future, we will
analyze other parts of AUTOSAR OS and related applications.
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